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Figure legends

Figure S1 Knockdown of BLM, WRN and RECQL4 induces cellular senescence in primary
fibroblast cells. Knockdown of each RecQ helicase by lentivirus-mediated shRNA in human
primary fibroblast cells (GM00969, passage 19). (A) knockdown efficiencies were measured by
qPCR. (B) Images of SA-B-gal stained cells. (C) Quantitation of SA-B-gal stained cells. Data are
from three independent replicates. Student T-test were performed for statistical analysis in this
paper.*, p<0.05; *** p<0.001.

Figure S2 Knockdown of BLM, WRN or RECQL4-induced cell senescence in telomerase
positive cells. The five RecQ helicases were knocked down by lentivirus-mediated shRNA in
human primary fibroblast cells BJ and its hTERT-immortalized derivative BJ-5TA. The
remaining mRNA of RecQ helicases in BJ (A) and BJ-5TA (C) were confirmed by RT-PCR.
Senescence in RecQ helicases-depleted BJ (B) and BJ-5TA (D) were measured by SA-B-gal
staining. Data are from three independent replicates. *, p<0.05; **, p<0.01; ***, p<0.001.

Figure S3 Apoptosis did not increase in RecQ helicase-deficient human fibroblast cells.
RecQ helicases were depleted by shRNA-mediated knockdown in human primary fibroblast cells
GMO05565 at passage 11. After selection with puromycin, cells were submitted for apoptosis
analysis using propidium iodide and Annexin V FACS staining and FACS analysis.

Figure S4 Oxidative stress from high oxygen culture conditions promotes senescence in
RecQ helicase-deficient fibroblast cells. RecQ helicase were knocked down in primary human
fibroblast cell lines GM00969 at passage 19 and the cells were cultured under low oxygen (3%)
or high oxygen (20%) culture conditions for six days. (A) Remaining mRNA of RecQ helicases
in GM00969 were measured by qPCR; (B) Quantitation of SA-B-gal stained cells in RecQ
helicase-depleted as well as scramble shRNA treated cells. Data are from three independent
replicates. *, p<0.05; **, p<0.01; ***, p<0.001.

Figure S5 Increased YH2AX foci in primary fibroblast cells after RecQ helicase loss. RecQ
helicases were depleted by lentivirus-mediated shRNA in human primary fibroblast cell line
GMO05565 at passage 11. The cells in the experiments were six days after transfection of
lentivirus. (A) The indicated cell lines were immunostained with YH2AX antibody. Bar scale is

20 um. (B) Percentage of cells with 5 or more YH2AX foci in the indicated cell lines as in Panel
A.

Figure S6 Loss of BLM, WRN or RECQL4 caused similar transcriptome pathway changes.
RecQ helicases were knocked down in primary human fibroblast cell line GM05565 at passage
11, and six days after transfection of lentivirus the cells were processed for RNA extraction and
microarray analysis. Data are from three independent biological replicates. (A) A principal
component analysis (PCA) of the unselected average gene expression Z-score from each RecQ
helicase knockdown and control samples (n=3). (B) Number of up-/ down-regulated pathway in



BLM-, WRN-, or RECQLA4-depleted cells. (C) Cluster of the top 100 canonical pathways that
displayed the greatest Z-score in RecQ helicase-depleted cells compared with controls.

Figure S7 Cluster of the top 100 canonical pathways affected in RecQ helicase depleted
fibroblast cells. RecQ helicases were knocked down in primary human fibroblast cell line
GMO05565 at passage 11, and six days after transfection of lentivirus the cells were processed for
RNA extraction and microarray analysis. Cluster of the top 100 canonical pathways that
displayed the greatest Z-score from controls. Data are from three independent biological
replicates.
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Figure S3
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Figure S4
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Figure S5
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Figure S6

>
os)

BLM/Ctrl WRN/Ctrl

PC1 (23%)
20 -10 0 10 20 30 40 ?0_ 60 %
— 1ttt | A

PC3 (12.3%)
Upregulated Pathways

RECQL4/Ctrl
BLM/Ctrl  WRN/Citrl

. A
N

Downregulated Pathways

RECQL4/Ctrl

[ _——

RECQL4/Ctrl
RECQL5/ctrl

Q
—
g
O
LU
o

BLM/Ctrl
WRN/Ctrl

-
o

|1 - Pathways

Packaging of telomere ends
Telomere maintenance
Il Oxidative phosphorylation

Electron transport chain

. ] Parkinson’s Disease

N
o

Diabetes' pathways
Alzheimer’s Disease

Huntington’s Disease




Figure S7
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Table S1 Number of genes with changed transcriptional level in response to
deletion of individual RecQ helicases in human primary fibroblasts

. Up-regulated genes Down-regulated genes
Analysis Set
Number Percentage Number Percentage
RECQL1 shRNA/Ctrl shRNA 1478 4.67% 1423 4.50%
BLM shRNA/ Ctrl shRNA 1302 4.11% 1292 4.10%
WRN shRNA/ Ctrl shRNA 1492 4.71% 1500 4.74%
RECQL4 shRNA / Ctrl shRNA 1156 3.66% 1580 5.00%

RECQLS5 shRNA / Ctrl shRNA 1166 3.69% 1835 5.80%




Table S2 Information of siRNA, shRNA and primers used in this study.

Name _ Sequence Source Cat. No Ref
shRNA targeting RecQ helicases
Control shRNA 5’CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGA  Addgene plasmid# 1864 (Sarbasso
CTTAACCTTAGG3’ vetal.,
2005)
RECQL1 shRNA 5’CCGGGCACATGCTATTACTATGCAACTCGAGTTGCA | Sigma-Aldrich A TRCN0000289591  (Sharma
TAGTAATAGCATGTGCTTTTTG 3’ and Brosh,
2007)
BLM shRNA CCGGCGCTTATGTGATGCTCGGAAACTCGAGTTTCCG TRCN0000004906  (Popuri et
AGCATCACATAAGCGTTTTT al.)
WRN shRNA 5’CCGGCCTGTAAGATTGCTTTAAGAACTCGAGTTCTT TRCNO0000004899  This study
AAAGCAATCTTACAGGTTTTT3’
RECQL4 shRNA 5’CCGGCCTCGATTCCATTATCATTTACTCGAGTAAAT TRCNO0000051169 | (Singh et
GATAATGGAATCGAGGTTTTTGY’ al., 2012)
RECQLS shRNA 5’CCGGCCCTAAAGGTACGAGTAAGTTCTCGAGAACTT TRCNO0000051415  (Ramamo
ACTCGTACCTTTAGGGTTTT3’ orthy et
al., 2012)
siRNA
Control siRNA ON-TARGETplus Non-targeting siRNA #1 Dharmacon D-001810-01-05 (Singh et
al., 2012)
siRECQL1 5’"GCAAGGAGAUUUACUCGAA3’ Custom design (Sharma
and Brosh,
2007)
siBLM 5S’GGGAAGACAUAAUGCAUAA3’ This study
siWRN 5S’GUGUAUAGUUACGAUGCUAGUGA3’ This study
siRECQL4 5’CAAUACAGCUUACCGUACAY’ (Singh et
al., 2012)
siRECQLS 5S’CCCTAAAGGTACGAGTAAGTTY’ This study
siRECQL4 UTR-1 5S’GCTCCAAAATGCAGAATAA3’ This study
siRECQL4 UTR-2 5S’ACTGAGGACCTGGGCAAAA3’ This study
Primers for RT-PCR
RECQLI1-RT-PF 5S’TGAAGGGTCAAGGGAGGAZY’ Custom design This study

RECQL1-RT-PR

S’TCCAAATTTGTTTCTAAAATAATCCA3’




BLM-RT-PF

S’TTTATCCTGATGCCGACTGGY’

BLM-RT-PR 5’ACCCCAGGAGAAACACAGGY
WRN-RT-PF S’TGCAGCCATTTCTTGTCAAAY
WRN-RT-PR 5S’GAAGGACAGTAGATGATTGTTGGAY’

RECQLA4-RT-PF

5S’GGCCGCTACTTTGAGGAAG3’

RECQLA4-RT-PR

S’TCCTCCCAATCCTGGAGTCT3’

RECQLS5-RT-PF

S’ACAAAGCATCTGATAAAGCCAC3’

RECQLS-RT-PR S’TCGTCATACCTGCTGAAGTC3’
GAPDH-RT-PF 5S’GCCACATCGCTCAGACACSY
GAPDH-RT-PR 5’GCCCAATACGACCAAATCC3’

Primers for constructing

lasmids expressing RecQL4 fragments

hRQ4-F1-Not1

S'TTAATGGCGGCCGCACCATG GAGC3'

hRQ4 R447 NLS STATACTCGAGTACCTTTCTCTTCTTTTTTGGGTCCAG
GCTGGGCACCTCAG3'

hRQ4 F447 STTAATGGCGGCCGCACCATGGACCCCACCGTGCTGC
CAC3'

hRQ4 R860 NLS STATACTCGAGTACCTTTCTCTTCTTTTTTGGCGGCCT
GGTGCAGGTGCAG3'

hRQ4 F863 S'TTAATGGCGGCCGCACCGAGCAGGAAGGGGCCGTG3

hRQ4 R1208 NLS STATACTCGAGTACCTTTCTCTTCTITTTTTGGGCGGGC

CACCTGCAGGAG3'

hRQ4A448-860-PF

S'ACTCAGTAAAGCTTTACCTTTCTCTTCTTTTTTGGGT
CCAGGCTGGGCACCTCAG 3

hRQ4A448-860-PR

5'CAGCCTTAATGGAAGCTTGCCGAGCAGGAAGGGGC
CGTG 3

pCMV4A- 5S’GATTATAAAGATCATGACATCGATTACAAGGATGAC
3XFLAG-fwd GACGATY

pCMV4A- 5’ACCGTCATGGTCTTTGTAGTCCTCGAGGTCGACGGT
3XFLAG-rev ATCGATY®

RecQ4-Notl-Kozak-
fwd

5’GAGATTGCGGCCGCACCATGGAGCGGCTGCGGGAC
GT3’

RecQ4-Xhol-
nostop-rev

5’GAGATTCTCGAGGCGGGCCACCTGCAGGAGCT3’

This study
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