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I. INTRODUCTION

In this supplementary material we give background information regarding the manuscript ‘Weighted Multiplex
Networks”. The material is organized as follows. In Section II we present additional information about the multiplex
datasets analyzed in the manuscript, and provide the details of the statistical analysis of the data. In section III
we describe the theory of weighted multiplex ensembles, and in particular we focus on the uncorrelated weighted
multiplex ensemble and on the correlated weighted multiplex ensemble used in the main body of the manuscript.
Finally, in section IV we provide background information that explains how Fig. 4 in the main text of the manuscript
was obtained.
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II. ADDITIONAL INFORMATION ON THE MULTIPLEX NETWORKS ANALYZED IN THIS STUDY

A. The two datasets

We have considered the American Physical Society (APS) research data that is organized into two main datasets:

• Article metadata: for each article the metadata includes DOI, journal, volume, issue, first page and last page,
article id and number of pages, title, authors, affiliations, publication history, PACS codes, table of contents,
heading, article type, and copyright information.

• Citing article pairs: this dataset consists of pairs of APS articles that cite each other. Each pair is represented
by a pair of DOIs. The first id cites the second id.

In the APS metadata an author is usually identified by given name, middle name, and surname. In different articles,
the same author can appear with his/her full name or with his/her initials. To deal with this issue, we decided to
identify a specific author with the initials of his/her given name and middle name and with his/her full surname.
We restricted our analysis to the article metadata and citing article pairs that relate only to PRL and PRE. The
total number of PRL articles is 95, 516 and the total number of PRL authors is 117, 412. The total number of PRE
articles is 35, 944 and the total number of PRE authors is 36, 171. The number of authors that published both in
PRE and PRL is equal to 17, 470.

Among the papers published in PRE and PRL, we focused our study only on those containing a number of authors
np ≤ 10. This excludes most of the experimental high-energy collaborations that are typically characterized by a
number of authors of a different order of magnitude. We decided to place such a cut-off to the maximum number of
authors allowed per paper to avoid biases due to very large publications. Given the cut-off, our study thus becomes
limited to 35, 766 PRE articles (99.5 %) and 35, 205 PRE authors (97.3 %) on the one hand, and 89, 245 PRL articles
(93.4 %) and 92, 436 PRL authors (78.7 %) on the other. The intersection of these two datasets includes 16, 207
authors (i.e., 92.8 % of the previous intersection).

We analyzed two types of interaction between APS authors: scientific collaborations and citations, with weights
defined as follows.

• Collaborations: two authors are connected if they co-authored at least one paper. The collaborative interaction
between author i and author j is defined as in [1, 2], i.e., the undirected adjacency matrix element aij is given
by

aij =
∑

p∈I

=
δp
i δp

j

np − 1
i 6= j (1)

aii = 0, (2)

where the index p indicates an article in the dataset I, np indicates the number of authors of article p and
δp
i = 1 if node i is an author of article p, and δp

i = 0 otherwise. The resulting network is undirected and without
self-loops.

• Citations: two authors are connected by a directed link if one author cites the other one. In this case, the
element aij of the directed adjacency matrix indicating how many times node i cites node j is given by

aij =
∑

p,p′∈I

δp
i δp′

j bp,p′ , (3)

where bp,p′ = 1 if article p cites article p′, and bp,p′ = 0 otherwise. Moreover δp
i is defined as above and indicates

whether i is author of article p (δp
i = 1) or not (δp

i = 0). The resulting network is directed and with self-loops.

We constructed the following two duplex networks:

1. CoCo-PRL/PRE: collaborations among PRL and PRE authors. The nodes of this multiplex network are the
authors who published articles both in PRL and PRE (i.e., 16, 207 authors). These nodes are connected in layer
1 through weighted undirected links indicating the strength of their collaboration in PRL (i.e., co-authorship
of PRL articles). The same nodes are connected in layer 2 through weighted undirected links indicating the
strength of their collaborations in PRE (i.e., co-authorship of PRE articles).
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FIG. 1: The degree distributions and the multidegree distributions in the CoCo-PRL/PRE multiplex network.

TABLE I: Total overlap and total weighted overlap in the CoCo-PRL/PRE and CoCi-PRE multiplex networks.

Dataset Layer Total overlap % Total weighted overlap %

CoCo-PRL/PRE PRL 35.75 28.35

CoCo-PRL/PRE PRE 39.10 33.84

CoCi-PRE coll 39.51 14.24

CoCi-PRE cit 12.64 20.76

2. CoCi-PRE: collaborations among PRE authors and citations to PRE articles. The nodes of this multiplex
network are the authors of articles published in PRE (i.e., 35, 205 authors). These nodes are connected in layer
1 through weighted undirected links indicating the strength of their collaboration in PRE (i.e., co-authorship of
PRE articles). The same nodes are connected in layer 2 through weighted directed links indicating how many
times an author (with articles in PRE) cited another author’s work, where citations are limited to those made
to PRE articles.

B. Total overlap and total weighted overlap of the multiplex networks

In order to characterize the overlap existing between the links of the multiplex networks, we define the total overlap
Oα,α′

between layer α and layer α′ as the total number of pair of nodes (i, j) connected both in layer α and in layer
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FIG. 2: The degree distributions and the multidegree distributions in the CoCi-PRE multiplex network.

α′, i.e.,

Oα,α′

=
∑

i<j

θ(aα
ij)θ(a

α′

ij ), (4)

where θ(x) = 1 if x > 1 and θ(x) = 0 otherwise. This definition can be extended to weighted multiplex networks by

defining the total weighted overlap O(w)α,α′

between layer α and layer α′ as

O(w),α,α′

=
∑

i<j

min

(

wα
ij

wα
max

wα′

ij

wα′

max

)

, (5)

where wα
max is the maximal weight in layer α. Table I reports details on the total overlap and total weighted overlap,

and indeed shows that our multiplex networks are characterized by a significant overlap of links.

TABLE II: Pearson coefficients r, Spearman coefficients ρ, and Kendall τ coefficients measuring the correlations between the
degrees in the different layers and the strengths in the different layers in the CoCi-PRE multiplex network.

r k1 kin
2 kout

2 r s1 sin
2 sout

2

k1 1 0.70 0.79 s1 1 0.80 0.88

kin
2 0.70 1 0.71 sin

2 0.80 1 0.80

kout
2 0.79 0.71 1 sout

2 0.88 0.80 1

ρ k1 kin
2 kout

2 ρ s1 sin
2 sout

2

k1 1 0.47 0.49 s1 1 0.64 0.65

kin
2 0.47 1 0.51 sin

2 0.64 1 0.54

kout
2 0.49 0.51 1 sout

2 0.65 0.54 1

τ k1 kin
2 kout

2 τ s1 sin
2 sout

2

k1 1 0.36 0.37 s1 1 0.53 0.53

kin
2 0.36 1 0.38 sin

2 0.53 1 0.41

kout
2 0.37 0.38 1 sout

2 0.53 0.41 1
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TABLE III: Pearson coefficients r, Spearman coefficients ρ, and Kendall τ coefficients measuring the correlations between the
degrees in the different layers and the strengths in the different layers in the CoCo-PRL/PRE multiplex network.

r k1 k2 r s1 s2

k1 1 0.74 s1 1 0.65

k2 0.74 1 s2 0.65 1

ρ k1 k2 ρ s1 s2

k1 1 0.56 s1 1 0.50

k2 0.56 1 s2 0.50 1

τ k1 k2 τ s1 s2

k1 1 0.44 s1 1 0.37

k2 0.44 1 s2 0.37 1

C. Degree and multidegree distribution of the two multiplex networks

The nodes i = 1, 2 . . . , N of the multiplex networks have degrees k1
i in layer 1 and k2

i in layer 2. Moreover, we can
define the multidegree k ~m

i of a generic node i as the sum of the multilinks ~m incident on it. We observe that, since
we always have

k
~0
i = (N − 1) −

∑

~m 6=0

k ~m
i , (6)

we can therefore restrict the analysis to multidegrees ~m 6= ~0. Figs. 1 and 2 show that the degree and multidegree
for both the CoCo-PRL/PRE and the CoCi-PRE multiplex network are broadly distributed. Moreover, in both
duplex networks, the degrees each author has in the two layers are positively correlated, as indicated by the Pearson,
Spearman, and Kendall correlation coefficients between degrees (See Tables II, III ). Finally, also multidegrees in
the multiplex networks are correlated, as indicated by their Pearson, Spearman, and Kendall coefficients (See Tables
IV , V ). These correlations coefficients are calculated both for degree and multidegrees. In what follows, we give the
definition in the case of two degree sequences. The extension to multidegree sequences is straightforward.

The Pearson correlation coefficient r between two degree sequences {kα
i } and {kβ

i } is given by

r =

〈

kαkβ
〉

− 〈kα〉
〈

kβ
〉

σασβ
, (7)

where σα =

√

〈kαkα〉 − 〈kα〉2. The Spearman correlation coefficient ρ between the degree sequences {kα
i } and {kβ

i }
in the two layers α and β is given by

ρ =

〈

xαxβ
〉

− 〈xα〉
〈

xβ
〉

σ(xα)σ(xβ)
, (8)

where xα
i is the rank of the degree kα

i in the sequence {kα
i }, and xβ

i is the rank of the degree kβ
i in the sequence {kβ

i }.
Moreover, σ(xα) =

√

〈(xα)2〉 − 〈xα〉2, and σ(xβ) =

√

〈(xβ)2〉 − 〈xβ〉2. The Spearman coefficient suffers from the

problem that the ranks of the degrees in each degree sequence are not uniquely defined because the degree sequence
has in general some degeneracy. Thus, the Spearman correlation coefficient is not a uniquely defined number. The

Kendall’s τ correlation coefficient between the degree sequences {kα
i } and {kβ

i } in the two layers α and β is a measure

that takes into account the sequence of ranks {xα
i } and {xβ

i }. A pair of nodes i and j are concordant if their ranks

have the same order in the two sequences,.i.e., (xα
i − xα

j )(xβ
i − xβ

j ) > 0; otherwise, they are discordant. The Kendall’s
τ is defined in terms of the number nc of concordant pairs and the number nd of discordant pairs, and is given by

τ =
nc − nd

√

(n0 − n1)(n0 − n2)
, (9)

where n0 = 1/2N(N − 1) and the terms n1 and n2 account for the degeneracy of the ranks and are given by

n1 =
1

2

∑

n

un(un − 1),

n2 =
1

2

∑

n

vn(vn − 1), (10)
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where we call un the number of nodes in the nth tied group of the degree sequence {kα}, and we call vn the number
of nodes in the nth tied group of the degree sequence {kβ}.

TABLE IV: Pearson correlation coefficient r, Spearman correlation coefficient ρ, and Kendall’s τ coefficients measuring the
correlations between multidegrees in the CoCi-PRE multiplex network.

r kin
11 kout

11 kin
10 kout

10 kin
01 kout

01

kin
11 1 0.93 0.36 0.52 0.71 0.72

kout
11 0.93 1 0.46 0.45 0.67 0.75

kin
10 0.36 0.46 1 0.90 0.32 0.48

kout
10 0.52 0.45 0.90 1 0.43 0.51

kin
01 0.71 0.67 0.32 0.43 1 0.65

kout
01 0.72 0.75 0.48 0.51 0.65 1

ρ kin
11 kout

11 kin
10 kout

10 kin
01 kout

01

kin
11 1 0.70 -0.07 0.16 0.66 0.50

kout
11 0.70 1 0.15 -0.02 0.48 0.61

kin
10 -0.07 0.15 1 0.78 0.05 0.17

kout
10 0.16 -0.02 0.78 1 0.18 0.12

kin
01 0.66 0.48 0.05 0.18 1 0.45

kout
01 0.50 0.61 0.17 0.12 0.45 1

τ kin
11 kout

11 kin
10 kout

10 kin
01 kout

01

kin
11 1 0.63 -0.06 0.13 0.54 0.39

kout
11 0.63 1 0.12 -0.02 0.39 0.49

kin
10 -0.06 0.12 1 0.68 0.03 0.12

kout
10 0.13 -0.02 0.68 1 0.13 0.09

kin
01 0.54 0.39 0.03 0.13 1 0.34

kout
01 0.39 0.49 0.12 0.09 0.34 1

TABLE V: Pearson coefficients ρ measuring the correlations between multidegrees in the CoCo-PRL/PRE multiplex network.

ρ k11 k10 k01

k11 1 0.41 0.46

k10 0.41 1 0.53

k01 0.46 0.53 1

ρ k11 k10 k01

k11 1 0.13 0.13

k10 0.13 1 0.23

k01 0.13 0.23 1

ρ k11 k10 k01

k11 1 0.17 0.17

k10 0.17 1 0.30

k01 0.17 0.30 1
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D. Weighted network properties of single layers

Here we report the weighted network properties of the single layers of our multiplex networks. In general, the
average strength sα

k of nodes with degree k in layer α and the average inverse participation ratio Y α
k of nodes with

degree k in layer α are described by the functional behavior

sα
k ∝ kβα ,

Y α
k ∝ 1

kλα
. (11)

We have considered both the CoCo-PRL/PRE dataset and the CoCi-PRE dataset and fitted sα
k and Y α

k according to
this expected power-law behavior.

TABLE VI: CoCo-PRL/PRE multiplex network: power-law exponents λα and βα determining the functional behavior for
the average strength sα

k of nodes with degree k and the average inverse participation ratio Y α
k , with α corresponding to the

collaboration layer in PRL or in PRE.

layer α βα R2 λα R2

PRL 1 0.96 ± 0.04 0.96 0.84±0.03 0.97

PRE 2 1.01 ± 0.05 0.96 0.80± 0.05 0.94

TABLE VII: CoCi-PRE multiplex network: power-law exponents λα and βα determining the functional behavior for the average
strength sα

k of nodes with degree k and the average inverse participation ratio Y α
k , with α corresponding to the collaboration

layer or to the citation layer, both for PRE. For the citation layer, we consider separately the in-behavior and the out-behavior.

layer α βα R2 λα R2

Co 1 1.03 ± 0.04 0.96 0.79±0.04 0.94

Ciin 2,in 1.13 ± 0.02 0.98 0.72± 0.03 0.85

Ciout 2,out 1.14 ± 0.03 0.97 0.70± 0.04 0.83

The exponents shown in Table VI and Table VII have been computed with the method “regression”, function of
Matlab [3]. This function performs a multiple linear regression, and for each coefficient gives the 95% confidence
interval. In the tables, we show also the coefficient of determination R2 indicating how well the power-law trend fits
the data.

As shown by Fig. 3 and Table VI, the CoCo-PRL/PRE multiplex network is characterized by a linear behavior
of average strength as a function of the degree of nodes. Fig. 4 and Table VII show that the CoCi-PRE multiplex
network is characterized by a linear behavior of average strength as a function of the degree of nodes in the
collaboration network, and by a super-linear behavior in the citation network.

E. Statistical analysis of the properties of multilinks in the CoCo-PRL/PRE multiplex network

In this subsection, we discuss in detail the results of our statistical analysis of the properties of multilinks in the
CoCo-PRL/PRE multiplex network. In particular, we focus on the average multistrength of nodes with a given
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FIG. 3: Average strength versus degree and average inverse participation ratio in the two layers of the CoCo-PRL/PRE
multiplex network. The average strength and the average inverse participation ratio follow the functional form described by
Eq. (11).

multidegree, i.e., s~m,α(k ~m) =
〈

s~m,α
i δ(k ~m

i , k ~m)
〉

, and the average inverse multiparticipation ratio of nodes with a

given multidegree, i.e., Y ~m,α(k ~m) =
〈

Y ~m,α
i δ(k ~m

i , k ~m)
〉

. These quantities are expected to scale as

s~m,α(k ~m) = eq ~m,α

(k ~m)β~m,α

Y ~m,α(k ~m) = ep~m,α 1

(k ~m)λ~m,α
, (12)

with exponents β~m,α ≥ 1 and λ~m,α ≤ 1. We have computed these exponents with the method “regression”, function of
Matlab [3] This function performs a multiple linear regression, and for each coefficient gives the 95% confidence inter-
val. We have also computed the coefficient of determination R2 indicating how well the power-law trend fits the data.
For a complete list of the exponents characterizing multistrength and the inverse multiparticipation ratio, see Ta-
ble VIII. In what follows, we will label the PRL collaboration layer as α = 1 and the PRE collaboration layer as α = 2 .

1. Statistical analysis of the average multistrengths in the CoCo-PRL/PRE multiplex network

In the CoCo-PRL/PRE multiplex network (see Fig. 2 in the main text), the fitted exponents β~m,1 for multilinks
~m = (1, 1) and ~m = (1, 0) and the fitted proportionality constants in Eq. (12) are not significantly different. However,
we can perform a paired samples Student’s t-test to show how the average multistrength per fixed multidegree s~m,α(k ~m)
is significantly higher for multilinks (1, 1) than multilinks (1, 0). We have identified pairs of average multistrength

s(1,1),1(k(1,1)) and s
(1,0),1
k (k(1,0)), corresponding to the same multidegree value k(1,1) = k(1,0) = k. The paired samples

Student’s t-test returns a test decision for the null hypothesis that the values log
(

s(1,1),1(k)/s(1,0),1(k)
)

come from a
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FIG. 4: Average strength and average inverse participation ratio versus degree in the two layers of the CoCi-PRE multiplex
network. Average strength and average inverse participation ratio follow the functional form described by Eq. (11).

normal distribution with mean zero and variance from the data. In our case, the null hypothesis is rejected with a
p-value equal to 2.90 · 10−16. Furthermore,

〈

log
(

s(1,1),1(k)/s(1,0),1(k)
)〉

is equal to 0.53. This analysis suggests that

for a particular value of degree k the related s(1,1),1(k) is higher than s(1,0),1(k), and the two average multistrengths
satisfy the relation s(1,1),1(k) ≈ e0.53s(1,0),1(k). Similar results were obtained in the case of the multistrengths on
the second layer indicating the collaboration network on PRE articles. The null hypothesis is rejected with a p-value
equal to 8.98 · 10−15, and

〈

log
(

s(1,1),2(k)/s(0,1),2(k)
)〉

is equal to 0.57.

2. Statistical analysis of the average inverse multiparticipation ratio in the CoCo-PRL/PRE multiplex network

In the PRL layer the fitted exponents λ~m,α are significantly different. The weights regarding multilinks (1, 1) are
distributed more heterogeneously than the weights regarding multilinks (1, 0). A similar situation is found also in the
PRE layer. The paired Student’s t-test is also useful to understand the properties of the average inverse multipar-
ticipation ratio. In addition to the fitted exponents, we can perform a t-test as we did previously considering now
Y ~m,α(k ~m). This test underlines how the inverse multiparticipation ratios regarding multilinks (1,1) are significantly
higher than those regarding multilinks (1,0) or (0,1). In the case Y (1,1),1(k) vs Y (1,0),1(k), the t-test gives a p-value
equal to 0.002 and an average value

〈

log
(

Y (1,1),1(k)/Y (1,0),1(k)
)〉

= 0.11. In the case Y (1,1),2 vs Y (0,1),2(k), the

p-value is equal to 6.64 · 10−6, and the average value is
〈

log
(

Y (1,1),2(k)/Y (0,1),2(k)
)〉

= 0.19.

F. Statistical analysis of the properties of multilinks in the CoCi-PRE multiplex network

We analyzed the average multistrength of nodes with a given multidegree, i.e., s~m,α,(in/out)(k ~m(in/out)) =
〈

s
~m,α,(in/out)
i δ(k

~m,(in/out)
i , k ~m,(in/out))

〉

, and the average inverse multiparticipation ratio of nodes with a given mul-

tidegree, i.e., Y ~m,α,(in/out)(k ~m,(in/out)) =
〈

Y
~m,α,(in/out)

i δ(k
~m,(in/out)
i , k ~m,(in/out))

〉

, where a distinction was made
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TABLE VIII: CoCo-PRL/PRE multiplex network: power-law exponents λ~m and β~m and parameters p~m, q~m determining the
functional behavior for average multistrength of nodes with a given multidegree, s~m,α(k ~m), and for average inverse multipar-
ticipation ratio of nodes with a given multidegree, Y ~m,α(k ~m), with α corresponding to the collaboration layer in PRL (1) or in
PRE (2). The value of the determination coefficient R2 for the power-law fits is also reported.

~m, α β~m q~m R2 λ~m p~m R2

(1,1), 1 1.06 ± 0.09 -0.51 ± 0.26 0.94 0.74±0.05 -0.09 ± 0.16 0.95

(1,0), 1 0.97 ± 0.03 -0.78 ± 0.10 0.99 0.84± 0.03 0.06 ± 0.12 0.97

(1,1), 2 1.09 ± 0.10 -0.40 ± 0.29 0.93 0.73± 0.06 -0.10 ± 0.19 0.93

(0,1), 2 1.00 ± 0.04 -0.71 ± 0.14 0.98 0.84± 0.05 0.04 ± 0.16 0.95

between incoming and outgoing links in the citation layer. These quantities are expected to scale as

s~m,1,(in,out)(k
~m,(in,out)) = eq

~m,(in,out),1

(k ~m,(in/out))β~m,1,(in/out)

s~m,2,(in/out)(k ~m,(in/out)) = eq ~m,2,(in/out)

(k ~m,(in/out))β~m,2,(in/out)

Y ~m,1,(in/out)(k ~m,(in/out)) = ep~m,1,(in/out) 1

(k ~m,(in/out))λ~m,1,(in/out)

Y ~m,2,(in/out)(k ~m,(in/out)) = ep~m,2,(in/out) 1

(k ~m,(in/out))λ~m,2,(in/out)
, (13)

with exponents β~m,α,(in/out) ≥ 1 and λ~m,α,(in/out) ≤ 1. We have computed these exponents with the method
“regression”, function of Matlab [3] This function performs a multiple linear regression, and for each coefficient gives
the 95% confidence interval. We have also computed the coefficient of determination R2 indicating how well the
power-law trend fits the data. The complete list of the exponents and the multiplication constants characterizing
multistrength and the inverse multiparticipation ratio can be found in Table IX together with the correspondening
values of R2. In what follows we will label the PRE collaboration layer as α = 1 and the PRE citation layer as α = 2.

1. The statistical analysis of the average multistrengths in the CoCi-PRE multiplex network

In the CoCi-PRE multiplex network (see Fig. 3 in the main text), we can perform, at first, a statistical analysis of
the multistrengths in the collaboration layer. The fitted exponents β(1,1),1,in, β(1,1),1,out, β(1,0),1,in and β(1,0),1,out are
not significantly different. Conversely, the fitted intercepts of the log-log plot, regarding multilinks (1, 1), (in/out) are
significantly different from the intercept for multilinks (1, 0), (in/out).

From a paired samples Student’s t-test, in the same way as we did for the average multistrengths in the CoCo-
PRL/PRE multiplex network, we obtained that both s(1,1),1,in(k) and s(1,1),1,out(k) are significantly higher than
s(1,0),1,in(k) and s(1,0),1,out(k). In the case s(1,1),1,in(k) vs s(1,0),1,in(k), we have a p-value equal to 1.91 · 10−35 and an
average value

〈

log
(

s(1,1),1,in(k)/s(1,0),1,in(k)
)〉

= 0.78. In the case s(1,1),1,out(k) vs s(1,0),1,out(k), we have a p-value

equal to 9.93 · 10−30 and an average value
〈

log
(

s(1,1),1,out(k)/s(1,0),1,out(k)
)〉

= 0.80.
Based on the fitted parameters and the Student’s t-test, the data suggest that both multidegrees for multilinks

(1, 1) and multilinks (1, 0) have a linear relation with their own multistrengths in the collaboration layer, and that
multistrengths (1,1) are related to multistrengths (1,0) by a multiplicative constant. In the citation layer, the fitted
exponents β~m,in/out indicate a super-linear scaling, and are significantly different (see Table IX).
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2. The statistical analysis of the inverse multiparticipation ratio in the CoCi-PRE multiplex network

For the collaboration layer, comparing λ(1,1),1,in with λ(1,0),1,in, and λ(1,1),1,out with λ(1,0),1,out, the confidence
intervals of these fitted exponents do not overlap for a narrow window. Performing the t-test as usual, we found that
the inverse multiparticipation ratio for multilinks (1, 1) is always larger than the inverse multiparticipation ratio for
multilinks (1, 0). In the case Y (1,1),1,in(k) vs Y (1,0),1,in(k), the t-test gives a p-value equal to 3.70 · 10−17 and an
average value

〈

log
(

Y (1,1),1,in(k)/Y (1,0),1,in(k)
)〉

= 0.39. In the case Y (1,1),1,out vs Y (1,0),1,out(k), the p-value is equal

to 5.48 · 10−19 and the average value is
〈

log
(

Y (1,1),1,out(k)/Y (1,0),1,out(k)
)〉

= 0.33.
In the in− and out−citation layers, the fitted exponents λ~m,2,(in/out) regarding multilinks (1, 1) are not significantly

different from those regarding multilinks (0, 1). Nevertheless, the paired Student’s t-test shows how the inverse
multiparticipation ratio for multilinks (1, 1) is always larger than the inverse multiparticipation ratio for multilinks
(0, 1). In the case Y (1,1),2,in(k) vs Y (0,1),2,in(k), the t-test gives a p-value equal to 7.60 · 10−21 and an average
value

〈

log
(

Y (1,1),2,in(k)/Y (0,1),2,in(k)
)〉

= 0.34. In the case Y (1,1),2,out(k) vs Y (0,1),2,out(k), the p-value is equal to

1.12 · 10−15 and the average value is
〈

log
(

Y (1,1),2,out(k)/Y (0,1),2,out(k)
)〉

= 0.34.

TABLE IX: CoCi-PRE multiplex network: power-law exponents λα and βα and parameters p~m, q~m determining the functional
behavior for the average multistrength of nodes with a given multidegree s~m,α,(in/out)(k ~m(in/out)) and the average inverse

multiparticipation ratio of nodes with a given multidegree, Y ~m,α,(in/out)(k ~m,(in,out)), with α corresponding to the collaboration
layer (1) or to the citation layer (2), both for PRE. The coefficient of determination R2 determining the quality of the power-law
fit is also reported

~m, α, in/out β~m q~m R2 λ~m p~m R2

(1,1), 1, in 1.02 ± 0.04 -0.33 ± 0.15 0.97 0.76±0.05 -0.03 ± 0.16 0.94

(1,1), 1, out 1.05 ± 0.04 -0.38 ± 0.14 0.98 0.77±0.05 -0.03 ± 0.17 0.94

(1,0), 1, in 0.98 ± 0.05 -0.97 ± 0.17 0.96 0.88± 0.03 -0.03 ± 0.09 0.99

(1,0), 1, out 0.97 ± 0.05 -0.95 ± 0.16 0.97 0.90± 0.02 0.00 ± 0.06 0.99

(1,1), 2, in 1.30 ± 0.07 0.47 ± 0.25 0.95 0.73± 0.05 -0.17 ± 0.16 0.94

(1,1), 2, out 1.32 ± 0.08 0.45 ± 0.26 0.95 0.74± 0.04 -0.50 ± 0.20 0.80

(0,1), 2, in 1.11 ± 0.01 -0.01 ± 0.07 0.99 0.75± 0.05 -0.12 ± 0.16 0.95

(0,1), 2, out 1.10 ± 0.02 0.06 ± 0.09 0.98 0.69± 0.05 -0.62 ± 0.22 0.77
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III. WEIGHTED MULTIPLEX ENSEMBLES

A. Definition

A weighted multiplex network is formed by N nodes connected within M weighted networks Gα = (V, Eα), with

α = 1, . . . , M and |V | = N . Therefore we can represent a multiplex network as ~G = (G1, G2, . . . , Gα, . . . GM ). Each
network Gα is fully described by the adjacency matrix of elements aα

ij , with aα
ij = wα

ij > 0 if there is a link of weight
wα

ij between nodes i and j in layer α, and aα
ij = 0 otherwise. In what follows, in order to simplify the treatment of the

weighted multiplex networks, we will assume that the weight of the link between any pair of nodes i and j, aα
ij = wα

ij ,
can only take integer values. This is not a major limitation because in a large number of weighted multiplex networks
the weights of the links can be considered as multiples of a minimal weight.

B. Canonical weighted multiplex ensembles or exponential weighted multiplex ensembles

The canonical network ensembles (also known as exponential random graphs) are a very powerful tool for building
null models of networks [4, 5]. Here we generalize the formalism developed for unweighted multiplex ensembles [6] to
take weighted multiplex ensembles into account.

The construction of the canonical weighted multiplex ensembles or exponential random multiplex graphs follows
closely the derivation or the exponential random graphs. A weighted multiplex ensemble is defined once the probability

P (~G) of any possible weighted multiplex is given. We can build a canonical multiplex ensemble by maximizing the
entropy S of the ensemble given by

S = −
∑

~G

P (~G) log P (~G), (14)

under the condition that the soft constraints we want to impose are satisfied. We assume there are K of such
constraints determined by the conditions

∑

~G

P (~G)Fµ(~G) = Cµ, (15)

for µ = 1, 2 . . . , K, where Fµ(~G) determines one of the structural constraints that we want to impose on the multiplex
network. Therefore, the maximal-entropy multiplex ensemble satisfying the constraints given by Eqs. (15) is the
solution of the following system of equations

∂

∂P (~G)



S −
K
∑

µ=1

ωµ

∑

~G

Fµ(~G)P (~G) − Λ
∑

~G

P (~G)



 = 0, (16)

where the Lagrangian multiplier Λ enforces the normalization of the P (~G) probability distribution, and the Lagrangian

multiplier ωµ enforces the constraint µ. Therefore, we obtain that the probability of a multiplex network P (~G) in a
canonical multiplex ensemble is given by

P (~G) =
1

Z
exp

[

−
∑

µ

ωµFµ(~G)

]

, (17)

where the normalization constant Z = exp(1+Λ) is called the “partition function” of the canonical multiplex ensemble

and is fixed by the normalization condition on P (~G). Thus, Z is given by

Z =
∑

~G

exp

[

−
∑

µ

ωµFµ(~G)

]

. (18)

The values of the Lagrangian multipliers ωµ are determined by imposing the constraints given by Eq. (15) assuming

for the probability P (~G) the structural form given by Eq. (17). From the definition of the partition function Z and
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Eq. 17, it can easily be shown that the Lagrangian multipliers ωµ can be expressed as the solutions of the following
set of equations

Cµ = −∂ log Z

∂ωµ
. (19)

In this ensemble, we can then relate the entropy S (given by Eq. (14)) to the canonical partition function Z, and we
obtain

S =
∑

µ

ωµCµ + log Z. (20)

We call the entropy S of the canonical multiplex ensemble the Shannon entropy of the ensemble.

C. Uncorrelated and correlated canonical multiplex ensembles

Multiplex ensembles can be distinguished between uncorrelated and correlated ones [6]. For uncorrelated multiplex

ensembles, the probability of a multiplex network P (~G) is factorizable into the probability Pα(Gα) of each single
network Gα in layer α, i.e.,

P (~G) =

M
∏

α=1

Pα(Gα). (21)

Therefore, the entropy S of any uncorrelated multiplex ensemble given by Eq. (14) with P (~G) given by Eq. (21) is
additive in the number of layers, i.e.,

S =

M
∑

α=1

Sα = −
M
∑

α=1

Pα(Gα) log Pα(Gα). (22)

For a canonical uncorrelated multiplex ensemble, P (~G) has to satisfy both Eq. (21) and Eq. (17). Therefore, in

order to have an uncorrelated multiplex ensemble, the functions Fµ(~G) should be equal to a linear combination of
constraints fµ,α(Gα) on the networks Gα in a single layer α, i.e.,

Fµ(~G) =

M
∑

α

fµ,α(Gα). (23)

A special case of this type of constraints is given when each constraint depends on a single network Gα in layer α. An
example of this type of constraints will be discussed in the following subsection where we will focus on the important
case in which the constraints are the strength sequence {sα

i } in any layer α, and the degree sequence {kα
i } in any

layer α.
Moreover, we can define the marginal probability for a specific value of the element aα

ij

πα
ij(a

α
ij = w) =

∑

~G

P (~G)δ(aα
ij , w), (24)

where δ(x, y) is the Kronecker delta. The marginal probabilities πα
ij(a

α
ij) sum up to one

∞
∑

aα
ij=0

πij(a
α
ij) = 1. (25)

We can also calculate the average weight 〈aα
ij〉 of links between nodes i and j as

〈

aα
ij

〉

=
∑

~G

P (~G)aα
ij =

∞
∑

aα
ij=0

aα
ijπij(a

α
ij). (26)

In layer α, a link between two nodes i and j exists with probability pα
ij , related with all the possible weights different

from zero

pα
ij =

∑

~G

P (~G)θ(aα
ij) =

∞
∑

aα
ij 6=0

πα
ij(a

α
ij). (27)
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D. Multiplex ensemble with given expected strength sequence and degree sequence in each layer

Here we consider the relevant example of the uncorrelated multiplex ensemble in which we fix the expected strength
sα

i and the expected degree kα
i of every node i in each layer α. We have K = M ·2N constraints in the system. These

constraints are given by

∑

~G

Fi,α(~G)P (~G) =
∑

~G

(

∑

j 6=i aα
ij

)

P (~G) = sα
i

∑

~G

Fi,α(~G)P (~G) =
∑

~G

(

∑

j 6=i θ(aα
ij)
)

P (~G) = kα
i , (28)

with α = 1, 2, . . . , M . We introduce the Lagrangian multipliers wi,α for the first set of N · M constraints and the

Lagrangian multipliers ωi,α for the second set of N · M constraints. Therefore, the probability P (~G) of a multiplex
network in this ensemble, in general given by Eq. (17), in this specific example is given by

P (~G) =
1

Z
exp



−
M
∑

α=1

N
∑

i=1

wi,α

∑

j 6=i

aα
ij −

M
∑

α=1

N
∑

i=1

ωi,α

∑

j 6=i

θ(aα
ij)



 ,

where the partition function Z can be expressed explicitly as

Z =
∑

~G

exp



−
M
∑

α=1

N
∑

i=1

∑

j 6=i

(

wi,αaα
ij + ωi,αθ(aα

ij)
)





=

M
∏

α=1

∏

i<j

(

1 +
e−(ωi,α+ωj,α)−(wi,α+wj,α)

1 − e−(wi,α+wj,α)

)

, (29)

and the Lagrangian multipliers are fixed by the conditions Eqs. (28). From Eq. (24) we write the marginal probabilities
πα

ij(a
α
ij) for this specific ensemble that are given by

πα
ij(a

α
ij) =

e−(wi,α+wj,α)aα
ij−(ωi,α+ωj,α)θ(aα

ij)(1 − e−(wi,α+wj,α))

1 + e−(wi,α+wj,α)(e−(ωi,α+ωj,α) − 1)
. (30)

The average weight of the link (i, j) in layer α, i.e.,
〈

aα
ij

〉

, is given by Eq. (26) that in this case reads

〈

aα
ij

〉

= =
e−(ωi,α+ωj,α)+(wi,α+wj,α)

(ewi,α+wj,α − 1)(e−(ωi,α+ωj,α) + ewi,α+wj,α − 1)
. (31)

Moreover, from Eq. (27) the probability pα
ij that the link (i, j) in layer α has weight different from zero is given by

pα
ij = =

e−(ωi,α+ωj,α)

e−(ωi,α+ωj,α) + ewi,α+wj,α − 1
. (32)

Finally, the probability of a multiplex network ~G in this ensemble, characterized by the M adjacency matrices aα, is
given by

P (~G) =

M
∏

α=1

∏

i<j

πij(a
α
ij), (33)

with the marginals πα
ij(a

α
ij) given by Eq. (30).

Therefore the entropy S of this canonical multiplex ensemble is given by

S = −
M
∑

α=1

∑

i<j

∞
∑

aα
ij=0

πα
ij(a

α
ij) log(πα

ij(a
α
ij)), (34)

with the marginals πα
ij(a

α
ij) given by Eqs. (30).
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E. Multiplex ensemble with given expected multidegree sequence and given expected multistrength
sequence

Here we consider the example of the correlated weighted multiplex ensemble, in which we fix the expected multide-
grees k ~m

i of node i, for each node i = 1, . . . , N , for each ~m. Moreover, in addition to these constraints we impose also

a given expected strength s~m,α
i for each node i = 1, 2, . . . , N and each multilink ~m, in each layer α where mα = 1.

The number of constraints is therefore K = 2M · N + (2M−1) · M · N . In particular, the constraints we are imposing
are

∑

~G

F ~m
i (~G)P (~G) =

∑

~G

(

∑

j 6=i A~m
ij

)

P (~G) = k ~m
i (35)

∑

~G

F ~m
i,α(~G)P (~G) =

∑

~G

(

∑

j 6=i A~m
ij aα

ij

)

P (~G) = s~m
i,α, (36)

where we have now used the multiadjacency matrices A~m
ij with elements given by

A~m
ij =

M
∏

α=1

{

θ(aα
ij)mα + [1 − θ(aα

ij)](1 − mα)
}

. (37)

Here we introduce the Lagrangian multipliers ω ~m
i for the first set of constraints and the Lagrangian multipliers w~m

i,α

for the second set of constraints. Without loss of generality, if mα = 0 we set w~m
α = 1/2. We can do this because

the probability of a multiplex network does not depend on any of these values, and we need to define this Lagrangian
multipliers only for simplifying the notation. Using these expression for the Lagrangian multipliers, we obtain the

following expression for the probability P (~G) of the multiplex network in the ensembles

P (~G) =
1

Z
exp



−
∑

~m

N
∑

i=1

∑

j 6=i

(

ω ~m
i A~m

ij +

M
∑

α=1

w~m
i,αA~m

ij aα
ij

)





=
1

Z
exp



−
∑

i<j

∑

~m

(ω ~m
i + ω ~m

j )A~m
ij −

∑

i<j

∑

~m

M
∑

α=1

(w~m
i,α + w~m

j,α)A~m
ij aα

ij



 . (38)

The partition function Z can be expressed explicitly as

Z =
∏

i<j

Zij , (39)

where Zij is given by

Zij =
∑

~m

e−(ω ~m
i +ω ~m

j )
M
∏

α=1

(

e−(w ~m
i,α+w ~m

j,α)

1 − e−(w ~m
i,α+w ~m

j,α)

)mα

. (40)

Finally, the Lagrangian multipliers are fixed by the conditions given by Eqs. (36).

We now indicate with ~aij the vector (a1
ij , a

2
ij , . . . , a

α
ij , . . . , a

M
ij ). The probability of a multiplex network P (~G) can

be rewritten as

P (~G) =
∏

i<j

πij(~aij), (41)

where the probability of a specific multiweight ~aij between nodes i and j is

πij(~aij) =
e−(ω ~mij

i +ω ~mij

j )∏M
α=1

(

e−(w ~mij

i,α +w ~mij

j,α )aα
ij

)mij
α

Zij
, (42)

where ~mij = (mij
1 , . . . , mij

α , . . . , mij
m) with mij

α = θ(aα
ij). We note here that πij(~aij) satisfies the following normalization

condition
∑

~aij

πij(~aij) = 1. (43)
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The average weight
〈

aα
ijA

~m
ij

〉

of multilink ~m between nodes i and j in layer α and the probability p~m
ij of multilink ~m

between nodes i and j are given by

〈

aα
ijA

~m
ij

〉

=
e−(ω ~m

i +ω ~m
j )

Zij

(

1

1 − e−(w ~m
i,α+w ~m

j,α)

) M
∏

β=1

(

e−(w ~m
i,β+w ~m

j,β)

1 − e−(w ~m
i,β+w ~m

j,β)

)mβ

, (44)

p~m
ij =

e−(ω ~m
i +ω ~m

j )

Zij

M
∏

α=1

(

e−(w ~m
i,α+w ~m

j,α)

1 − e−(w ~m
i,α+w ~m

j,α)

)mα

. (45)

Finally, since the probability of a multiplex network P (~G) is given by Eq. (41), the entropy S defined in Eq. (14)
in this ensemble is given by

S = −∑i<j

∑

~aij
πij(~aij) log πij(~aij). (46)

IV. BACKGROUND INFORMATION ON FIG. 4 OF THE MAIN TEXT

As an example of a possible application of the indicators Ψ and Ξ, we analyze a case inspired by the CoCi-PRE
multiplex network. Due to the numerical limitations of the programs that are able to evaluate the entropy of multiplex
ensembles, we perform a finite-size analysis of the indicators Ψ and Ξ as a function of the size of the multiplex network
N = 128, 256, . . . , 2048. In particular, we consider the following undirected multiplex ensembles:

• Correlated weighted multiplex ensemble. First, we create the correlated multiplex ensemble with power-law
expected multidegree distributions with exponents γ(1,m2) = 2.6 for m2 = 0, 1 and γ(0,1) = 1.9 (for multidegree
(0, 1) we impose a structural cut-off). In particular, in order to avoid the effects of fluctuations in the expected
multidegree sequence, we rank the multidegrees as r = 1, 2, . . .N , and take the sequence in which the multidegree
k ~m

r of rank r is defined by

r

N
=

∫ K

k~m
r

P (k ~m)dk ~m, (47)

where we take the maximal cut-off K = N1/γ ~m

for γ ~m > 2 and K =
√

〈k ~m〉N for γ ~m < 2. Note that this is
possible because the expected multidegrees are real values. Moreover, the expected multistrengths are assumed
to satisfy

s~m,α
i = c~m,1(k

~m,α)λ~m,α , (48)

with c~m,α = 1, β(1,m2),1 = 1 for m2 = 0, 1, β(1,1),2 = 1.3, and β(0,1),2 = 1.1.

• Uncorrelated weighted multiplex ensemble. In this ensemble, we set the expected degree kα
i of every node i

in every layer α = 1, 2 to be equal to the sum of the expected multidegrees (with mα = 1) in the correlated
weighted multiplex ensemble. Moreover, we set the expected strengths sα

i of every node i in every layer α to
be equal to the sum of the expected multistrengths of node i in layer α in the correlated weighted multiplex
ensemble.

We measure the indicator Ψ that compares the entropy of a weighted multiplex ensemble S with the entropy of a
weighted multiplex ensemble in which weights are distributed homogeneously. Therefore, Ψ can be defined as

Ψ =
|S − 〈S〉π(w)|
〈(δS)2〉π(w)

, (49)

where the average 〈. . .〉π(w) is calculated over multiplex networks with the same structural properties but with weights
distributed homogeneously. In particular, when the weight distribution is randomized, the multiplex networks are
constrained in such a way that each link must have a minimal weight (i.e. wij > 1), while the remaining of the total
weight is distributed randomly across links. When numerically evaluating 〈. . .〉π(w), we obtain the average over 100

weight randomizations.
The distribution P (S) of the entropy S calculated over these randomizations, both for the uncorrelated weighted

multiplex ensemble and for the correlated weighted multiplex ensemble, is shown in Fig. 5. In both cases, we observe
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FIG. 5: The P (S) distribution in the null models for correlated and uncorrelated multiplex ensembles in which the weights are
distributed uniformly over the links of the multiplex network. The P (S) distributions are calculated over 100 randomizations
of the weights for multiplex networks of N = 1024 and N = 2048 nodes.

a distribution that can be fitted by a Gaussian function with mean and variance scaling as 〈S〉 ∝ N log N and
〈

(δS)2
〉

π(w)
∝

√
N (See Fig. 6). We call Ψcorr the indicator Ψ calculated on the correlated multiplex ensemble

and indicate with Ψcorr the indicator Ψ calculated on the corresponding uncorrelated multiplex ensemble. Finally,
to quantify the additional amount of information carried by the correlated multiplex ensemble with respect to the
uncorrelated multiplex ensemble, we measure the indicator Ξ as

Ξ =
Ψcorr

Ψuncorr
. (50)

The finite-size scaling of Ψcorr, Ψcorr and Ξ are shown in Fig. 4 in the manuscript.
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[2] A.Barrat, M. Barthélemy, R. Pastor-Satorras,A. Vespignani (2004) PNAS 101: 3747.
[3] http://www.mathworks.co.uk/help/stats/regress.html
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FIG. 6: The mean 〈S〉 and variance σS as a function of the system size N for the null models of correlated and uncorrelated
multiplex ensembles in which the weights are distributed uniformly over the links of the multiplex network. The solid lines
indicate the fit of the data in which we assume 〈S〉 = aN log N and σS = b

√
N .


