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Supporting Information S1

A population size class model

The population size class model (PSCM) is formulated in order to analyze the results of the simulations

of the epidemiological dynamics of the commute network in the Tokyo metropolitan area using our

individual-based model (IBM). This section describes how we defined the PSCM (Section A); used the

stochastic version of the PSCM to analyze the probability of a global epidemic (Section B); and used

the deterministic version of the PSCM to analyze the final size of the global epidemic, the time until

the global epidemic attains its peak, the final size of the local epidemic, and the arrival time of the

epidemic in each local population (all Section C). At the final part, we particularly focus on the clear

relationship between the arrival time of the epidemic at a local population and its logarithmic population

size dependence that are observed in the IBM simulations.

This model is based on the commute network data for the Tokyo metropolitan area but incorporates

only the connectivity between the different population size classes of the home and work populations. This

was accomplished by classifying all home and work populations into population size classes. We use Lnm

to represent the number of commuters between the n-th home population size class with representative

population size Kn and the m-th work population size class with representative population size Km

(Figure 2D). Given this, the number of individuals in the n-th home (m-th work) population size class

is given by LH
n ≡

∑
m Lnm (LW

m ≡
∑

n Lnm). The values of Lnm are obtained from the sample data

of UTC [1] just like the IBM simulations. Hereafter, for simplicity, we refer to the group of commuters

traveling between the n-th home population size class and the m-th work population size class as the

commuter population of the (n,m)-th size class. We then define the epidemiological dynamics within

these groups of commuters (PSCM). For a given set of Lnm, the probability of a global epidemic is

calculated using a branching process [2] (Section B), and the other epidemiological properties for the

deterministic PSCM are derived (Section C). Only the connectivity via commuting flows between the

above-defined population size classes, out of all of the characteristics of the commute network, is used in

the PSCM. Therefore, we ignore all of the other details, such as the geographical locations of the local

populations and the complicated connectivity properties that could not be summarized by the commuter

flows between the size classes. Nonetheless, as stated in the main manuscript, such a simple model could

explain a great deal of the results obtained from the individual-based model.
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Numerical burden to calculate the PSCM is relatively small compare to IBM simulation, thence it

seems reasonable to use the actual population data of Tokyo metropolitan area, then to use the sample

data of UTC. However, when each population size is scaled-up to the actual size than the contact rate

should be scaled-down simultaneously with the same ratio to get a realistic value of basic reproduction

ratio. Therefore, the results of both stochastic and deterministic PSCM are exactly the same for both

data sets (actual population and UTC sample). For the sake of easier comparison between the IBM

simulation and PSCM analysis, we have utilized the same UTC sample data for PSCM.

B stochastic PSCM

Here, we describe how we calculate the probability that a global epidemic occurs in the Tokyo metropolitan

area using a branching process [2] associated with our population size class model (PSCM). For this

purpose, a global epidemic is defined as the case in which the infection never dies out in the branching

process (i.e., extinction of disease did not occur). Therefore, we first calculate the probability of disease

extinction for an initially infected individual living in a home population of size class n (with representative

size Kn) and commuting to a work population of size class m (with representative size Km). The

probability of a global epidemic is then simply given by subtracting the extinction probability from 1.

We begin by defining the probability that an individual will commute between a given pair of home

and work population size classes. As defined earlier, the number of individuals who live in a home

population of size class and commute to a work population of size class is Lnm (Figure 2D in the main

manuscript). The probability that an individual living in a home population of size class n commutes to a

work population of size class m is given by ϕW (m|n) = Lnm/
∑

m′Lnm′ . In the same vein, the probability

that an individual commuting to a work population of size class m lives in a home population of size

class n is given by ϕH(n|m) = Lnm/
∑

n′Ln′m.

The single primary infectious individual belongs to a commuter population of the (n0,m0)-th size class.

Therefore, the expected numbers of secondary infections in the home and work populations are given by

the basic reproductive ratio as RH
n0

= βKn0/γ and RW
m0

= βKm0/γ, respectively [3, 4]. We assume

complete mixing of each local population and that all local populations are initially consisted only of sus-

ceptible individuals. Susceptible hosts can be infected only by sharing either a home or a work population

with an infectious host. Therefore, the number of secondarily infected hosts appearing in a non-initially

infected home (work) population of size class n (m) is given by RW
m0

ϕH(n|m0) (R
H
n0
ϕW (n0|m)), and the
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expected number of secondarily infected hosts appearing in a commuter population of the (n,m)-th size

class is given by

Rn0m0(n,m) = δnn0R
H
n0
ϕW (m|n0) + δmm0R

W
m0

ϕH(n|m0). (1)

Here, δnm denotes the Kronecker delta (i.e., δnm = 1 if n = m and δnm = 0 if n ̸= m). Rn0m0(n,m)

for a commuter population of the (n,m)-th size class may be non-zero only when either the home or

work population is shared with commuters in the initially infected population (i.e., either n = n0 or

m = m0). Assuming that the number of secondary infections from an infectious host follows a Poisson

distribution, the probability that there will be k secondarily infected hosts in a universally susceptible

commuter population of the (n,m) size class as

πk(n0,m0, n,m) =
{Rn0m0(n,m)}k

k!
exp [−Rn0m0(n,m)]. (2)

Next, we use the branching process to calculate the extinction probability of the infection. Let Qt(n0,m0)

represent the probability that all of the infectious commuters originating from a single initially infectious

individual in a commuter population of the (n0,m0)-th size class will go extinct within t infection cycles.

This event is equivalent to the probability that all of the infectious commuters driven from k secondarily

infected hosts in any possible commuter population of the (n,m)-th size class will go extinct within t− 1

infection cycles:

Qt(n0,m0) =
∏
n

∏
m

∞∑
k=0

{Qt−1(n,m)}k πk(n0,m0, n,m)

=
∏
n

∏
m

∞∑
k=0

{Qt−1(n,m)Rn0m0(n,m)}k

k!
exp [−Rn0m0(n,m)]

=
∏
n

∏
m

exp [−Rn0m0(n,m) (1−Qt−1(n,m))] (3)

Note that because this is a branching process focusing on the extinction probability of the infectious

descendants of a single infected individual, subsequent infection from the secondarily infected hosts is

assumed to occur mutually independently. Equation (3) can be used as a recurrence formula to calculate

Qt(n0,m0) from Q0(n0,m0) = 0. The last equality holds because the extinction probability within 0

generations of infection must be zero. By iterating Equation (3), we obtain Qt(n0,m0) for an arbitrary
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value of t until it converges to a fixed-point value for t → ∞. The fixed-point value can be obtained by

solving the implicit relationship

Q∞(n0,m0) =
∏
n

∏
m

exp [−Rn0m0(n,m) (1−Q∞(n,m))] (4)

which gives the probability that the infection will eventually be extinct in the branching process. Because

a global epidemic is defined as an exclusive event of disease extinction, the probability of a global epidemic

can then be calculated as PG(n0,m0) = 1−Q∞(n0,m0).

With reference to equation (1), above equation (4) can further be simplified as follows.

Q∞(n0,m0) =
∏
n

∏
m

exp [−Rn0m0(n,m) (1−Q∞(n,m))]

= exp

[
−
∑
n

∑
m

Rn0m0(n,m) (1−Q∞(n,m))

]

= exp

[
−

{
RH

n0

∑
m

ϕ(m|n0) (1−Q∞(n0,m))

}
−

{
RW

m0

∑
n

ϕ(n|m0) (1−Q∞(n,m0))

}]

= exp

[
−
(
RH

n0
+RW

m0

)
+

{
RH

n0

∑
m

ϕ(m|n0)Q∞(n0,m)

}
−

{
RW

m0

∑
n

ϕ(n|m0)Q∞(n,m0)

}]
= exp

[
− (1−Q∞(n,m))

(
RH

n0
+RW

m0

)]
× exp

[
RH

n0

∑
m

ϕ(m|n0) (Q∞(n0,m)−Q∞(n0,m0))

]

× exp

[
RW

m0

∑
n

ϕ(m0|n) (Q∞(n,m0)−Q∞(n0,m0))

]
(5)

The first factor in the last equality can be interpreted as an equation to give the probability of initial

extinction within the initial home and work populations (i.e., invasion of only the initial home and work

populations and not the entire commute population) and the last 2 factors as a correction term for

it. Neglecting this correction term allows the equation for the probability of a global epidemic to be

approximated as

1− PG(n0,m0) = exp

[
−PG(n0,m0)

(
β (Kn0

+Km0
)

γ

)]
. (6)

This simply gives the probability of an epidemic in a set of initial home and work populations with a

combined local population size of Kn0 +Km0 .
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C deterministic PSCM

(1) Epidemic dynamics among the commuter population size classes

Here, we describe our attempt to derive various properties of the epidemic dynamics of the commute

network in the Tokyo metropolitan area by considering a deterministic system of difference equations

for a commuter population of the (n,m)-th size class. Individuals in a commuter population of the

(n,m)-th size class are classified by disease state as susceptible, infectious, or removed, allowing the

total number of individuals in the (n,m) class, Lnm, to be decomposed as Lnm = xnm(t) + ynm(t) +

znm(t), where xnm(t), ynm(t), and znm(t) denote, respectively, the numbers of susceptible, infectious,

and recovered/removed individuals at time t. The populations within the same population size class

are assumed to be statistically equivalent; that is, the epidemiological situations are assumed to be

identical for all populations within the same population size class for both home and work populations.

Accordingly, for an individual in the commuter population of the (n,m)-th size class, the numbers of

encounters with infected individuals in their home and work populations becomesKnθ
H
n (t) and KmθWm (t),

respectively, where θHn (t) =
∑

mynm(t)/
∑

m Lnm and θWm (t) =
∑

n ynm(t)/
∑

n Lnm denote the fractions

of infected individuals within the home population of sizeKn and work population of sizeKm, respectively,

at time t. For each commuter population of the (n,m)-th size class, these assumptions yield the following

system of difference equations:

xnm(t+∆) = xnm(t) exp
{
−βKnθ

H
n (t)∆t− βKmθWm (t)∆t

}
, (7)

ynm(t+∆) = ynm(t)
[
1− exp

{
−βKnθ

H
n (t)∆t− βKmθWm (t)∆t

}]
− ynm(t) exp (−γ∆t), (8)

znm(t+∆) = ynm(t) {1− exp (−γ∆t)}+ znm(t). (9)

The first terms of equation (7) and equation (8) represent the infections within the home and work

populations within time interval ∆t. The last term of equation (8) and the first term of equation (9)

represent the removal of infected individuals from the commute network (i.e., the transition from the

asymptomatic state to the symptomatic state) within time interval ∆t. In the actual calculations, we set

∆t = 1 (i.e., the time interval is set to 1 day). For the single initially infectious individual commuting

between home and work populations within the commuter population of the (n0,m0)-th size class, the

initial conditions are represented as xnm(0) = Lnm − δnn0δmm0 , ynm(0) = δnn0δmm0 , and znm(0) = 0.
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Here, we assume that the entire population initially consisted only of susceptible individuals except for

the single initially infected host. Using these initial conditions, we solved equations (7)-(9) to obtain

the final size of the global epidemic (the fraction of the total number of individuals who acquired the

infection during the entire epidemic period), the peak time of the epidemic (the time until the total

number of infected individuals attains its peak), the final size of each local epidemic, and the arrival time

of the epidemic in each local population. In addition to these numerical results, we also used equations

equations (7)-(9) to obtain several analytical results concerning the final size of the epidemic and the

arrival time of the epidemic in each local population, as follows.

(2) Final size of the epidemic in each local population

The final size of the epidemic in each local population is defined as the fraction of individuals who

have ever experience infection during the epidemic period. We denote the total numbers of susceptible,

infectious, and removed individuals in the n-th home population size class as xH
n (t) =

∑
m xnm(t), yHn (t) =∑

m ynm(t) and zHn (t) =
∑

m znm(t), and the corresponding quantities in the m-th work population class

as xW
m (t) =

∑
n xnm(t), yWm (t) =

∑
n ynm(t) and zWm (t) =

∑
n znm(t), respectively. The final sizes of the

local epidemic in the n-th home population size class ΨH
n and the m-th work population size class ΨW

m

are defined as ΨH
n ≡ zHn (∞)/LH

n and ΨW
m ≡ zWm (∞)/LW

m , respectively. To calculate these values, we

further define the final size of the epidemic within the commuter population of the (n,m)-th size class as

Ψnm ≡ znm(∞)

Lnm
= 1− xnm(∞)

Lnm
. (10)

Equation (7) and equation (9) are then combined to obtain

xnm(t) = xnm(0) exp

[
−β∆t

Kn

LH
n

∑
m′

T∑
i=1

ynm′(t− i∆t)

]
exp

[
−β∆t

Km

LW
m

∑
n′

T∑
i=1

yn′m(t− i∆t)

]
(11)

ynm(t) =
1

1− e−γ∆t
(znm(t+∆t)− znm(t)) (12)

Where t = T∆t, we substituted equation (12) in equation (11) with t = ∞ and using xnm(0) ∼= Lnm we

have

xnm(∞) = Lnm exp

[
− β∆t

1− e−γ∆t

(
Kn

LH
n

∑
m′

znm′(∞) +
Km

LW
m

∑
n′

zn′m(∞)

)]
(13)
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and combining this with equation (10), we have a set of equations to determine Ψnm:

Ψnm = 1− exp

[
− β∆t

1− e−γ∆t

(
Kn

LH
n

∑
m′

Lnm′Ψnm′ +
Km

LW
m

∑
n′

Ln′mΨn′m

)]
(14)

This system of equations can be solved numerically by recursively inserting Ψnm from the right side as

Ψnm on the left side, starting from Ψnm = 1, until the result converges to a fixed point. Needless to

say, the above values also give the final size of the epidemic in each local population within the specified

population size class. Moreover, the final size of the global epidemic can also be calculated from Ψnm as

Ψ =

∑
n

∑
m znm(∞)

N
=

∑
n

∑
m LnmΨnm

N
(15)

(3) Arrival time of the epidemic in each local population

The arrival time of the epidemic in each local population is defined as the time until the infected individual

first appears in the local population since the epidemic has started. This can be calculated from the time

course of the number of infected individuals (i.e., yHn (t) and yWm (t)) in each population size class as follows.

To define the time tHn at which the first infected individual appears in a home population of size class

n, we first note that yHn (t) is for the total number of infected individuals in such a size class. As the

total number of hosts in the home population size class n is LH
n , and as the representative population

size of class n is Kn, there are L
H
n /Kn such populations. Therefore, the number of infected hosts at time

t in each local home population of size class n is given by yHn /(LH
n /Kn), and tHn and, similarly, tWm , are

defined as

yHn (tHn )

LH
n /Kn

= 1

yWm (tWm )

LW
m /Km

= 1 (16)
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To obtain the approximate formula (including the logarithmic dependence mentioned in the main text)

for the arrival times we linearize the system of equations (7)-(9) as

ynm(t+∆t) = Lnm

{
βKn

∑
m ynm(t)

LH
n

∆t+ βKm

∑
n ynm(t)

LW
m

∆t

}
− exp (−γ∆t)ynm(t)

=
∑
i

∑
j

{
βKn

Lnm

LH
n

∆tδin + βKm
Lnm

LW
m

∆tδjm + e−γ∆tδinδjm

}
yij(t) (17)

By denoting the total number of population size classes as MH for the home populations and MW for

the work populations, we then interpreted ynm(t) as a vector with MHMW elements with 2 indices n

(n = 1, 2, · · · ,MH) and m (m = 1, 2, · · · ,MW ). The coefficients within the curly bracket of equation

(17) could then be read as an MHMW × MHMW matrix. This matrix has MHMW eigenvalues and

corresponding eigenvectors (i.e., left and right eigenvectors forming a biorthogonal set). As both the left

and right eigenvectors spanned a complete set in MHMW space, the solution of the linearized equation

(17) under the initial condition ynm(0) = δnn0δmm0 can be expanded using the right eigenvectors as

follows.

ynm(t) =
∑
n′

∑
m′

cn′m′v(n
′m′)

nm (ρn′m′)
t

(18)

where the (n′,m′)-th eigenvalue is denoted as ρn′m′ and the (n,m)-th element of the corresponding right

eigenvector as v
(n′m′)
nm . Because the right eigenvector and the left eigenvector form a biorthogonal set, the

expansion coefficient cn′m′ is given from the inner product between the (n′,m′)-th left eigenvector and

the initial vector ynm(0) as

cn′,m′ =
∑
n

∑
m

u(n′m′)
nm ynm(0) = u(n′m′)

n0m0
. (19)

Here, the (n,m)-th element of the (n′,m′)-th right eigenvector is denoted by u
(n′,m′)
nm and the initial con-

dition in which the initial infected individual is only in a commuter population of the (n0m0)-th size class

is used. Up to now, equation (18) and equation (19) give the formal solution for the linearized system

of equation (17). As a second approximation step, we will assume exponential growth of the infected

populations at a rate given by the largest real eigenvalue ρ. The left and right eigenvectors corresponding

to the largest real eigenvalues are denoted as unm and vnm, respectively. Because the linearized coeffi-

cient matrix is a non-negative matrix (i.e., the Perron-Frobenius theorem is applicable), the dominant

eigenvalue is purely real; moreover, the elements of the corresponding left and right eigenvectors are also
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purely real. This means that at the long time limit, the contribution from the eigenstate with eigenvalue

ρ would exceed the other eigenstates in the expansion of equation (18). Under this exponential growth

approximation, the elements of the corresponding right eigenvector gives the relative ratio between the

populations in the exponential growth phase and the elements of the corresponding left eigenvector gives

the greproductive value,h which represents the contribution from each population to the exponential

growth. Using this exponential growth approximation, it is possible to approximate the expansion of

equation (18) as

ynm(t) ∼= un0m0vnm (ρ)
t
. (20)

From this, we calculate yHn and yWm and then insert the results into the definition of the arrival time of

the epidemic in equation (16) to obtain the arrival times of the epidemic as follows

tHn =
1

ln ρ

{
ln

LH
n

vHn
− lnun0m0 − lnKn

}
tWm =

1

ln ρ

{
ln

LW
m

vWm
− lnun0m0 − lnKm

}
(21)

where vHn =
∑

m vnm and vWm =
∑

n vnm.

The logarithmic population size dependence appears in the third factor of equation (21) (i.e., lnKn

and lnKm). However, the first factor of equation (21) contains a population size class dependence. In

addition, both LH
n (LW

m ) and vHn (vWm ) should also have depend on the population size class. However,

the calculated numerical results show that the population size class dependence of the first factor is

relatively small (i.e., the dependence is somehow cancelled out in the ratio LH
n /vHn (LW

m /vWm )) relative

to that of the third factor. Therefore, the clear logarithmic population size dependence in the arrival

time of the epidemic in each local population that we observed in the IBM must have originated from

the third factor of equation (21). Although the actual calculation of equation (21) requires a numerical

eigenvalue calculation, it gives the formal explicit solution, which is very effective for examining the

epidemic parameter dependence.
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