Additional files

Complete genome sequence and comparative genomic analyses of the vancomycin-producing *Amycolatopsis orientalis*

Li Xu^{1,2}*, He Huang³*, Wei Wei²*, Yi Zhong^{3#}, Biao Tang⁴, Hua Yuan³, Li Zhu², Weiyi Huang¹, Mei Ge², Shen Yang³, Huajun Zheng⁵, Weihong Jiang³[§], Daijie Chen^{2,6}[§], Guo-Ping Zhao^{3,4,5,7}[§], Wei Zhao^{3,4,8,9}§

*These authors contributed equally to this work

[#]Current address: Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.

[§]Corresponding authors: W.Z.: <u>181zhao@163.com</u>; G-P.Z.: <u>gpzhao@sibs.ac.cn</u>; D.C.: <u>hccb001@163.com</u>; W.J.: <u>whjiang@sibs.ac.cn</u>

Total DNA extraction

Spores of *Amycolatopsis orientalis* HCCB10007 were inoculated into a 250 ml-baffled flask containing 25 ml TSB (Tryptone Soya Broth, $30g L^{-1}$) medium and cultivated at 28 °C, 220 rpm for 32 h. The cells were harvested and the genomic DNA was extracted directly from the expanded culture for 454 sequencing.

Scanning electron microscopy

A.orientalis HCCB10007 was cultured on Gause medium (amidulin 20 g L⁻¹, NaCl 0.5 g L⁻¹, K₂HPO₄ 0.5 g L⁻¹, KNO₃ 1.0 g L⁻¹, MgSO₄·7H₂O 0.5 g L⁻¹, FeSO₄·7H₂O 0.01 g L⁻¹ agar 20 g L⁻¹) covered with cellophane, the cells on which were fixed with fresh 2% glutaraldehyde (pH 7.2) and 1% osmium tetroxide after 1-day or 3-days incubation at 28 °C. After dehydration, ethanol was replaced by amyl acetate. The samples were then dried in HCP-2 (Hitachi, Tokyo, Japan) using the supercritical drying method, subsequently coated with gold by Fine Coater JFC-1600 (Jeol, Tokyo, Japan), and then examined with a JSM-6360LV scanning electron microscopy (SEM; Jeol).

RNA isolation and reverse transcription PCR

A. orientalis HCCB10007 spores were inoculated into a 250 ml-baffled flask containing 25 ml seed medium and cultivated at 28 °C and 220 rpm for 44 h, which then transferred to the fermentation medium F1 or the nutrient medium F5 at 28 °C and 220 rpm for 48 h. The seed medium contains glycerol (20g L⁻¹), amidulin (40 g L⁻¹), soybean flour (20 g L⁻¹), glucose (15 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), MgCl₂·6H₂O (0.4 g L⁻¹). The fermentation medium F1 contains glycerol (20 g L⁻¹), soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), Soybean flour (20 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), MgCl₂.6H₂O (0.4 g L⁻¹),

 $CaCO_3$ (3 g L⁻¹), while the composition of nutrient medium F5 is the same as that of the F1 except that yeast extract is instead of soybean flour.

A. orientalis HCCB10007 total RNA was isolated from the F1 or F5 medium according to the description for streptomyces elsewhere. The quantity of RNA was examined by denaturing formamide agarose gel electrophoresis. One microgram of RNA was used to synthesize cDNA in a total volume of 10 μ l using the SuperScriptTM III Reverse Transcriptase (Invitrogen, California, USA). After incubation of 1 h at 50 °C, 1 μ l of the cDNA reaction mixture was used as the template for the following PCR.

The culture conditions for A. orientalis HCCB10007 and other mutant strains

The culture conditions were the same for *A. orientalis* and all the mutants. Spores were inoculated into a 250 ml-baffled flask containing 25 ml seed medium and cultivated at 28 $^{\circ}$ C and 220 rpm for 48 h, which then transferred (8% inoculum dose) to the fermentation medium at 28 $^{\circ}$ C and 220 rpm for 120 h.

The seed medium contains glycerol (20g L⁻¹), amidulin (40 g L⁻¹), soybean flour (20 g L⁻¹), glucose (15 g L⁻¹), KNO₃ (6 g L⁻¹), KH₂PO₄ (0.2 g L⁻¹), MgCl₂·6H₂O (0.4 g L⁻¹).

The fermentation medium (PH6.5) contains glycerol (20 g L^{-1}), soybean flour (20 g L^{-1}), KNO₃ (6 g L^{-1}), KH₂PO₄ (0.2 g L^{-1}), MgCl₂.6H₂O (0.4 g L^{-1}), CaCO₃ (3 g L^{-1}).

The nuclear magnetic resonance (NMR) analysis of dimethylvancomycin and dimethylaglucovancomycin

For dimethylvancomycin (40mg ml⁻¹), ¹H-NMR was measured at 500 MHz in D_2O , and ¹³C-NMR was measured at 125 MHz in D_2O . For dimethylaglucovancomycin (40mg ml⁻¹), ¹H-NMR was measured at 400 MHz in DMSO- d_6 , and ¹³C-NMR was measured at 100 MHz in DMSO- d_6 . The ¹H and ¹³C

NMR spectra were recorded on Bruker Avance-400 spectrometer with TMS as an internal standard.

Primers used for RT-PCR

Cluster primers	
nrps3F	CAGATTCACCGGGACCGTCG
nrps3R	TCGGCCTCCTTCGCGTACA
nrps4F	ACCGTCGGGTGGTTCACC
nrps4R	ACCAGTCGGTCGCTTCGGG
nrps7F	GCCGTGGCGGTCGATCTGGA
nrps7R	TCGCTCGCGTGGTCACCCTG
n_p1F	GCAACGTCGGGATCGCGCT
n_p1R	ACGTAGGCGAGCCCGATCCC
n_p2F	ATTCAAGCAGCCGGTCCAGG
n_p2R	ACCTGCTGGTCGGATTGGCC
n_p3F	GCCACGGCGGTGGTGAACTA
n_p3R	ACCACGTCCGTCCGCCAT
pks3F	GGGAAACCGGCGCACGAGA
pks3R	ATCAGCAACACCGGCCCGG
pks5F	GCCGAAGAAGGCGAGGAGGTCG
pks5R	ACGCTGGTGCCGGAGCACAC
pks9F	CTCGCCCCAGTTCATCAACG
pks9R	CAACCGGGTGATCCTGTTCG
vcmF	GCCGACTACCTCGCGCAGAT
vcmR	CCAGAGATTGCGCATGACCG
ecoF	TCCTGGTGGCCCACTCCTCT
ecoR	TGATCCCCCTCGACGTCCAC

Primers used for amplifying the DNA sequences of unique gene in different strains

ForAORI_2733-C-F:	TGGACGCACTACTCGATCGC
ForAORI_2733-C-R:	TACTGGCTGCACCACCACAT

Gene	Primers
vmtF	GGGCCTGAGACGAATGTCGACCTGGAGGTTGTCCTGATG <u>ATTCCGGG</u>
	GATCCGTCGACC
vmtR	TGATCGAGGAGGGCGTGAGCAGGCTCGCCGCGCTCATCA <u>TGTAGGCT</u>
	<u>GGAGCTGCTTC</u>
vmt-C-F	CGAACTCCCGGAAGGATTCC
vmt-C-R	ATGAGCTCAGCCAATCGA
VhalF	GCGCCGTGGCTGTGCGGTGAGCGGGGGAAGGACCATCATG <u>ATTCCGGGGGA</u>
	TCCGTCGACC
vhalR	CGAACAGGGCCGGTGTCGTGGCCGCCGAAAAAACGGTCA <u>TGTAGGCTGG</u>
	AGCTGCTTC
vhal-C-F	AAGGTACGGTCACCGCAGTG
vhal-C-R	ATGAGCTCAGCCAATCGA
gtfDF	TGCGCCGGTGGTCGAGCACGAAACAGGGGTAGCGAAATG <u>ATTCCGG</u>
	GGATCCGTCGACC
gtfDR	TTCTCCGGTCCTGGCCGGCGTCCGGTCGCTGATGGTTCA <u>TGTAGGCTG</u>
	GAGCTGCTTC
gtfD-C-F	CCGTCGACAAGATGGCGAC
gtfD-C-R	ATGAGCTCAGCCAATCGA
gtfEF	CGCCGGCCAGGACCGGAGAAAACGGGGAAATACGTGATG <u>ATTCCGGGG</u>
	ATCCGTCGACC
gtfER	GTGGTCGACATGCGGTCTCCTCTGTACTGGTGATGATCA <u>TGTAGGCTGGA</u>
	GCTGCTTC
gtfE-C-F	GGAACACCGACCAGCCGTAC
gtfE-C-R	ATGAGCTCAGCCAATCGA

Primers used for gene inactivation and checking

*The nucleotides underlined are primers for antibiotics resistance gene amplification.

Primers used for Vmt expression

Primers	
vmt-E-F	CATATGACCGATCAACTGGACCGC
vmt-E-R	AAGCTTCTTCGCGTCTGCCGTGAC

Figure S1. (A) Phylogeny tree based on 16S ribosome RNA of selected actinobacteria and other related species. (B) Comparative analyses of the orthologs between different actinomycete genomes. The orthologs of *A. orientalis* are shared with *A. mediterranei* S699 (AMN), *A. mediterranei* U32 (AMD), *A. sp* (ASP), *S. erythraea* (SEN), *S. coelicolor* (SCO), *S. viridis* (SVI), *N. farcinica* (NFA),

and *M. tuberculosis* (MTU). The red bars represent the number of orthologs (left vertical axis), and the blue bars represent the percentages of orthologs in each species (right vertical axis). All the sequences (including the 16S ribosome RNA) were obtained from NCBI at http://www.ncbi.nlm.nih.gov/.

			Serial number	#1	#2	#3	#4	#a	#b	#c	#d
			location	core	core	quasi-core	core	core	core	quasi-core	quasi-core
			Transcriptional direction	+	+	-	-	+	+	-	-
Serial number	location	Transcriptional direction		AORI_R016	AORI_R022	AORI_R041	AORI_R045	AMED_R16	AMED_R25	AMED_R39	AMED_R49
#a	core	+	AMED_R16	97.20	97.20	97.20	97.20	100.00			
#b	core	+	AMED_R25	97.27	97.20	97.20	97.20	99.93	100.00		
#c	quasi-core	-	AMED_R39	97.13	97.13	97.13	97.13	99.93	99.86	100.00	
#d	quasi-core	-	AMED_R49	97.13	97.13	97.13	97.13	99.93	99.86	100.00	100.00
#1	core	+	AORI_R016	100.00							
#2	core	+	AORI_R022	98.91	100.00						
#3	quasi-core	-	AORI_R041	99.04	98.63	100.00					
#4	core	-	AORI_R045	99.04	98.63	100.00	100.00				

Table S1. The comparison of 16S rRNA between and in A. orientalis (four sequences: #1, #2, #3,#4) and A. mediterranei (four sequences: #a, #b, #c, #d) genomes

Table S2: The *P*-values derived from grouped t test for the coding densities of orthologs or essential genes comparing the core (or R1, or R2) region against the non-core regions under the conditions of different sliding window sizes*.

Gene category	window	dow <i>P</i> values for the comparisons				
for comparison	size	core vs non-core	R1 vs non-core	R2 vs non-core		
orthologs	00kb	4.34*1e-10	0.011	2.2*6e-05		
orthologs	90KU	(sample: 63 vs 30)	(sample: 3 vs 30)	(sample: 3 vs 30)		
accontial games	90kb	5.1*1e-04	0.14	0.17		
essential genes		(sample: 63 vs 30)	(sample: 3 vs 30)	(sample: 3 vs 30)		
accontial cones	151rb	8.5*1e-05	0.051	0.046		
essential genes	43KD	(sample: 127 vs 61)	(sample: 5 vs 61)	(sample: 5 vs 61)		

*Refer to the *Methods* for details.

Table S3. Enzymes in different actinomycetes involved in the pathway of incorporating arabinose into the cell wall (Note: " $\sqrt{}$ ", present in the microorganism; "-", absent in the microorganism)

Enzymes	Transketolase	Phosphoribosyl pyrophosphate synthetase	5-phosphoribosyl transferase	Phospholipid phosphatase	Epimerase1	Epimerase2
Nocardia farcinica IFM 10152	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark
Mycobacterium tuberculosis H37Rv	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark
Saccharopolyspora erythraea NRRL23338	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Corynebacterium glutamicum ATCC 13032	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Rhodococcus jostii RHA1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Amycolatopsis mediterranei U32	AMED_2809	AMED_8235	AMED_0226	AMED_0225	AMED_0230	AMED_0229
Amycolatopsis mediterranei S699	RAM_14275	RAM_42295	RAM_01145	RAM_01140	RAM_01165	RAM_01160
Amycolatopsis orientalis HCCB10007	AORI_2796	AORI_7026	AORI_0229	AORI_0228	AORI_0235	AORI_0234
Streptomyces. albus J1074	\checkmark	\checkmark	-	-	-	-
Streptomyces avermitilis MA-4680	\checkmark	\checkmark	-	-	-	\checkmark
Streptomyces clavuligerus ATCC 27064	\checkmark	\checkmark	-	-	-	-
Streptomyces coelicolor A3(2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Streptomyces flavogriseus ATCC 33331	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Streptomyces ghanaensis ATCC 14672	\checkmark	\checkmark	\checkmark	-	\checkmark	-
Streptomyces griseoflavus Tu4000	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
Streptomyces griseus subsp. griseus NBRC 13350	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Streptomyces hygroscopicus ATCC 53653	\checkmark	\checkmark	-	-	-	-
Streptomyces lividans TK24	\checkmark	\checkmark	-	-	-	\checkmark
Streptomyces pristinaespiralis ATCC 25486	\checkmark	\checkmark	-	-	-	-
Streptomyces sp. ACTE	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Streptomyces sp. C	\checkmark	\checkmark	-	-	-	-
Streptomyces sp. Mg1	\checkmark	\checkmark	_	-	-	-
Streptomyces sp. SPB74	\checkmark	\checkmark	-	-	-	-
Streptomyces sp. SPB78	\checkmark	\checkmark	-	-	-	-
Streptomyces sviceus ATCC 29083	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Streptomyces viridochromogenes DSM 40736	\checkmark	~	\checkmark	-	\checkmark	\checkmark

Note: Genes (*AORI_2796, AORI_7026, AORI_0228-0229, AORI_0234-0235*) coding for enzymes involved in incorporating arabinose into the cell wall were found throughout the genome of *A. orientalis*. These genes can also be found in other arabinose-containing species in addition to *A. mediterranei*, such as *Mycobacterium tuberculosis, Nocardia farcinica* and *S. erythraea*, but not in the arabinose-deficiency *Streptomyces* species (except *S. coelicolor* A3(2)).

Table S4. Genes characterized in different actinomycetes responsible for recruiting glycine residues crossbridging to the peptidoglycan lateral chains (Note: "--", absent in the microorganism)

Genes Species	<i>femA</i> (the second and third glycine)	<i>femB</i> (the fourth and fifth glycine)	<i>fmhB</i> (the first glycine)
Staphylococcus aureus	SA1206	SA1207	SA2057
Streptomyces coelicolor	SCO3593	SCO3904	SC00602
Nocardia farcinica			
Saccharopolyspora erythraea			
Amycolatopsis mediterranei			
Amycolatopsis orientalis			

Note: Similar to that of *A. mediterranei*, none of genes (*femA, femB and fmhB*) responsible for recruiting glycine residues cross-bridging to the peptidoglycan lateral chains exist in *A. orientalis*.

Figure S2. Pylogenetic analyses of MurE in actinomycetes. The amino acid sequences of the MurE are from 27 selected species color-coded based on the their special amino acid compositions of corresponding peptidoglycan: red, containing *meso*-diaminopimelic acid (DAP); blue, containing LL-DAP; green, containing lysine; pink, containing ornithine. The numbers on the internal branches are the percentage of bootstrap probability. The protein sequences were obtained from NCBI at http://www.ncbi.nlm.nih.gov/protein/. The phylogenetic relationship of the MurE protein from *A. orientalis* (AORI_2293) presents close relationship with those from *A. mediterranei* and *S. erythraea*, both of which synthesize cell wall using meso-DAP as the substrate. It is clearly distinguished from that of streptomycetes where LL-DAP is used as the substrate.

Figure S3. Genetic organization of the *fadD-pks-accD* and *fas-I* gene clusters in 20 selected actinobacterial genomes. The result was obtained by BLASTP using FadD32-PKS13-AccD4 and Fas-I of *M. tuberculosis* H37Rv as the query sequences. 11 strains above the gray bar are mycolic acids-containing bacteria that harbor both fadD-pks-accD clusters and fas-I genes. The remaining seven strains lack the mycolic acids in their cell envelope. The genomes used are as follow: Corynebacterium glutamicum ATCC 13032 (NC 003450), Corynebacterium diphtheriae NCTC 13129 (NC 002935), M. tuberculosis H37Rv (NC 000962), Mycobacterium bovis AF2122/97 (NC_002945), Mycobacterium smegmatis str. MC2 155 (NC_008596), M. leprae TN (NC 002677), Mycobacterium avium 104 (NC 008595), Nocardia farcinica IFM 10152 (NC_006361), Rhodococcus jostii RHA1 (NC_008268), Gordonia bronchialis DSM 43247 (NC_013441), Tsukamurella paurometabola DSM 20162 (NZ_ABVA0000000), Corynebacterium kroppenstedtii DSM 44385 (NZ ABZU0000000), (NC 012704), Corynebacterium amycolatum SK46 Bifidobacterium adolescentis ATCC 15703 (NC_008618), Streptomyces avermitilis MA-4680 (NC_003155), Saccharopolyspora erythraea NRRL 2338 (NC_009142), Amycolatopsis mediterrabei U32 (NC_014318), Frankia alni ACN14a (NC_008278). This analysis indicates that, no authentic gene cluster of fadD-pks-accD critical for synthesizing mycolic acid component was found in the whole genome of A. orientalis, nor in the genome of A. mediterranei. It confirmed the characteristic phenotype of lacking mycolic acid in the cell wall of genus Amycolatopsis.

Figure S4. phylogenetic analysis of isoprenyl diphosphate synthases from type strains of actinomycetes using the MP method. The names and amino acid sequences of the strains with different colors represent actinomycetes harboring different-length MKs: red, MK7 (C35); olive-green, MK8 (C40); blue, MK9 (C45). The amino acid sequences of the chain-length determination (CLD) region are emphasized in green on the right of the panel. The protein sequences were obtained from NCBI at http://www.ncbi.nlm.nih.gov/protein/.

		A. orientali	is HCCB10007			Best hits in the NCBI database		
Cluster	AORI_CDs	location	predicted domain	products/prelim inary products	Orthologs	strain	protein	identity%
nrps1(vcm) (P1 in figure 3A)	AORI_1478	core	A-T-C-A-T-E-C-A-T	Leu-Tyr-Asn	lcl Y16952.3_cdsid_CAC48360.1	Amycolatopsis balhimycina DSM5908	peptide synthetase	81
6	AORI_1479		C-A-T-E-C-A-T-E-C-A-T	Hpg-Hpg-Tyr	lcl Y16952.3_cdsid_CAC48361.1	Amycolatopsis balhimycina DSM5908	peptide synthetase	82
	AORI_1480		C-A-T-C-TE	Dpg	lcl Y16952.3_cdsid_CAC48362.1	Amycolatopsis balhimycina DSM5908	peptide synthetase	87
car	AORI_1550	core		Carotene	AMED_4070 (car)	Amycolatopsis mediterranei U32	crtU	83
	AORI_1551				AMED_4071	Amycolatopsis mediterranei U32	ubiE	80
	AORI_1552				AMED_4072	Amycolatopsis mediterranei U32	lycopene cyclase	77
	AORI_1553				AMED_4073	Amycolatopsis mediterranei U32	lycopene cyclase	81
	AORI_1554				AMED_4074	Amycolatopsis mediterranei U32	crtB	80
	AORI_1555				AMED_4075	Amycolatopsis mediterranei U32	crtI	85
	AORI_1556				AMED_4076	Amycolatopsis mediterranei U32	idsA	79
pks1(pksE)	AORI_1833	core			AMED_6872 (pks4)	Amycolatopsis mediterranei U32	enediyne biosynthesis protein	79
	AORI_1840		KS-AT-KR		AMED_6864	Amycolatopsis mediterranei U32	PKS	80
	AORI_1843				AMED_6859	Amycolatopsis mediterranei U32	propionyl-CoA carboxylase	48
lyc	AORI_2309	core		Lycopene	AMED_2322 (lyc)	Amycolatopsis mediterranei U32	crtB	74
	AORI_2310				AMED_2323	Amycolatopsis mediterranei U32	crtI	80
	AORI_2311				AMED_2324	Amycolatopsis mediterranei U32	idsA	87
nrps2	AORI_2921	non core	C-A-T-C-T-TE-MFS	?	gi 271965573 ref YP_003339769.1	Streptosporangium roseum DSM 43021	non-ribosomal peptide synthetase-like protein	50
	AORI_2922		A-T-C-A-T-C-A-T	Arg-?-?	gi 158339498 ref YP_001520887.1	Acaryochloris marina MBIC11017	peptide synthetase, putative	35
pks2(eco)	AORI_2945	non core	ACP-KS-AT-DH-KR-ACP -KS-AT-DH-ER-KR-ACP		gi 216409659 dbj BAH02268.1	Streptomyces platensis	polyketide synthase type I	56
	AORI_2946		KS-AT-DH-KR-ACP-KS- AT-DH-ER-KR-ACP-KS- AT-DH-ER-KR-ACP		gi 345015244 ref YP_004817598.1	Streptomyces violaceusniger Tu 4113	polyketide synthase type I	57
	AORI_2947		KS-AT-DH-KR-ACP		gi 15824140 dbj BAB69304.1	Streptomyces avermitilis	polyketide synthase type I	55
	AORI_2948		KS-AT-KR-ACP-KS-AT-D H-KR-ACP KS-AT-DH-KR-ACP-KS-		gi 345011738 ref YP_004814092.1	Streptomyces violaceusniger Tu 4113	polyketide synthase type I	55
	AORI_2949		AT-DH-KR-ACP-KS-AT- DH-KR-ACP		gi 323435190 gb ADX66472.1	Streptomyces chattanoogensis	synthase type I	57
	AORI_2950		KS-AT-DH-KR-ACP-TE		gi 306407929 dbj BAJ16471.1	Streptomyces graminofaciens	synthase type I amino acid	53
n_p1	AORI_3262	non core	A-T-KS	Phe	gi 302867256 ref YP_003835893.1	Micromonospora aurantiaca ATCC 27029	adenylation domain-containin g protein amino acid	65
	AORI_3263		A-T-C-T	Trp	gi 302867259 ref YP_003835896.1	Micromonospora aurantiaca ATCC 27029	adenylation domain-containin g protein	60
	AORI_3264		KS-AT-KR-ACP		gi 271963948 ref YP_003338144.1	Streptosporangium roseum DSM 43021	polyketide/non-rib osomal peptide synthetase	64
	AORI_3265		C-A-T	Asn	gi 271963946 ref YP_003338142.1	Streptosporangium roseum DSM 43021	peptide synthetase/polyket ide synthase	58
	AORI_3266		C-A-T-TE-MFS	Ser	gi 271963945 ref YP_003338141.1	Streptosporangium roseum DSM 43021	peptide synthetase	68
pks3	AORI_3405	non core			AMED_3367 (pks1)	Amycolatopsis mediterranei U32	FadD	
	AORI_3406		ACP-KS-AT-DH-KR-ACP -TE		AMED_3368	Amycolatopsis mediterranei U32	typeI polyketide synthase	67
nrps3	AORI_3539	non core	A	?	gi 257056094 ref YP_003133926.1	Saccharomonospora viridis DSM 43017	peptide arylation enzyme amino acid	81
	AORI_3547		Т		gi 345003770 ref YP_004806624.1	Streptomyces sp. SirexAA-E	adenylation domain-containin g protein	67
nrps4	AORI_3675	quasi core	C-A-T-C-A-T-C-A-M-T-C- A-T-C-A-T-C-A-T-E	Ser-Gln-Ser- Thr-Ser-Ala	gi 271964951 ref YP_003339147.1	Streptosporangium roseum DSM 43021	peptide synthetase-like protein	61
nrps5	AORI_4035	non core	A-T	?	gi 119952361 ref YP_950027.1	Arthrobacter aurescens TC1	putative non-ribosomal peptide synthetase	56

Table S5. The orthologs of key CDSs for secondary metabolite biosynthesis in *A.orientalis* HCCB10007 genome compared with the NCBI database.

				1				
tps1	AORI_4062	non		Terpene	AMED_3240 (tps2)	Amycolatopsis mediterranei U32	terpene synthase	67
nrps6	AORI_4540	non core	C-A-T-C-T-C-A-T	Arg-Ahp	gi 159900486 ref YP_001546733.1	Herpetosiphon aurantiacus DSM 785	adenylation domain-containin g protein	35
	AORI_4541		C-A-T-C-A-T-TE	Thr	gi 256377653 ref YP_003101313.1	Actinosynnema mirum DSM 43827	amino acid adenylation domain-containin	39
pks4	AORI_4645	non core	KS-AT-DH-ER-KR-ACP-T E		gi 297153560 gb ADI03272.1	Streptomyces bingchenggensis BCW-1	putative type-I PKS	44
nrps7	AORI_4675	non core			AMED_3103 (nrps1)	Amycolatopsis mediterranei U32	MbtH	57
	AORI_4676				AMED_3106	Amycolatopsis mediterranei U32	MFT	71
	AORI_4677		C-A-T-C-A-T-E-C-A-T-C-	Trp-Thr-Thr-?	AMED_3105	Amycolatopsis mediterranei U32	NRPS	53
	AORI_4678		A-T-C-A-T-E-C-A-T-E-C- A-T-E-C-A-T	Val-Val-Val -Val-Val	AMED_3102	Amycolatopsis mediterranei U32	NRPS	45
pks5	AORI_4816	non	TE		AMED_4485 (pks2)	Amycolatopsis mediterranei U32	esterase	79
	AORI_4818				AMED_4483	Amycolatopsis mediterranei U32	acyl-CoA synthetase	77
	AORI_4819		ACP-KS-AT-ACP		AMED_4482	Amycolatopsis mediterranei U32	PKS	68
pks6	AORI_4851	non	-11		AMED_4606 (pks3)	Amycolatopsis mediterranei U32	ACT	75
	AORI 4852	core	KS-AT		AMED 4605	Amvcolatopsis mediterranei U32	PKS	80
	AORI 4853		KS-AT-KR		AMED 4604	Amycolatopsis mediterranei U32	PKS	83
112058	AORI 5017	non	A-T-Bacterial transferase	2	gi 302527007/ref[7P_07280330_1]	Straptomycas sp. AA4	non-ribosomal	87
2	AODI 5225	core non	hexapeptide (six repeats)		112400055714XD 001105218 1	Saccharopolyspora erythraea	peptide synthetase non-ribosomal	45
n_p2	AORI_5325	core	A-1-1E	ſ	gi 134099557/ref YP_001105218.1	NRRL 2338 Streptomyces venezuelae ATCC	peptide synthetase	45
	AORI_5330		Chalcone synthases		gi 328880541 emb CCA53780.1	10712	Chalcone synthase	66
	AORI_5331		С		gi 108762076 ref YP_631821.1	Myxococcus xanthus DK 1622	peptide synthase amino acid	39
	AORI_5337		С		gi 354565110 ref ZP_08984286.1	Fischerella sp. JSC-11	adenylation domain protein amino acid	34
	AORI_5340		A-T-Cy-A-T	?	gi 284032053 ref YP_003381984.1	Kribbella flavida DSM 17836	adenylation domain-containin g protein amino acid	53
	AORI_5344		A-T	Me-Pro	gi 284032033 ref YP_003381964.1	Kribbella flavida DSM 17836	adenylation domain-containin g protein	44
	AORI_5345		TE		gi 284032033 ref YP_003381964.1	Kribbella flavida DSM 17836	amino acid adenylation domain-containin g protein	42
	AORI_5346		C-T		gi 284032032 ref YP_003381963.1	Kribbella flavida DSM 17836	N-(5-amino-5-car boxypentanoyl)-L -cysteinyl-D-valin e synthase amino paid	44
	AORI_5347		C-A-T	Phe	gi 284032030 ref YP_003381961.1	Kribbella flavida DSM 17836	adenylation domain-containin g protein	39
	AORI_5348		TE		gi 302547201 ref ZP_07299543.1	Streptomyces hygroscopicus ATCC 53653	pyochelin biosynthetic protein PchC	45
	AORI_5349		A-T	Thr	gi 297197053 ref ZP_06914450.1	Streptomyces sviceus ATCC 29083	non-ribosomal	51
nrps9	AORI_5362	non	TE		gi 330468934 ref YP_004406677.1	Verrucosispora maris AB-18-032	thioesterase	37
	AORI_5363	core	A-T	Gln	gi 556565397 ref YP_008733822.1	Actinoplanes friuliensis	non-ribosomal	45
pks7	AORI 5390	non			gi 11595497 emb CAC18323.1	Amvcolatopsis sp. HR167	feruloyl-CoA	60
×	AORI_5391	core	A-T-KS-AT-DH-KR-ACP- TE		gi 297156588 gb ADI06300.1	Streptomyces bingchenggensis BCW-1	synthetase type I modular polyketide synthase	67
	AORI_5395				gi 21225119 ref NP_630898.1	Streptomyces coelicolor A3(2)	polyketide	48
	AORI_5397		KS-AT-DH-KR-ACP		gi 224812393 gb ACN64831.1	Streptomyces	PokM1	48
	AORI 5398				gi 217978970 ref YP_002363117.1	Methylocella silvestris BL2	putative acyl-CoA	43
		non	short chain		61 ·····		dehydrogenase	
pks8	AORI_5439	core	dehydrogenase-KS -KS*-KR		gi 311893816 dbj BAJ26224.1	Kitasatospora setae KM-6054	synthase	41
	AORI_5440		AT-ACP		gi 311893815 dbj BAJ26223.1	Kitasatospora setae KM-6054	synthase	42
n_p3	AORI_5501	non core	dehydrogenase-KS -KS*		gi 167840976 ref ZP_02467660.1	Burkholderia thailandensis MSMB43	polyketide synthase, putative	43
	AORI_5502		KR-DH-KR		gi 167840976 ref ZP_02467660.1	Burkholderia thailandensis MSMB43	polyketide synthase, putative	34
	AORI_5505		ACP		gi 291435672 ref ZP_06575062.1	Streptomyces ghanaensis ATCC 14672	acyl carrier protein	45
	AORI_5506		А	?	gi 45580865 emb CAG15025.1	Actinoplanes teichomyceticus	adenylation protein	45
nrps10	AORI_6000	core	A-T-TE	?	gi 302545361 ref ZP_07297703.1	Streptomyces hygroscopicus ATCC 53653	non-ribosomal peptide synthetase	61

	AORI_6001		TE		gi 337769426 emb CCB78139.1	Streptomyces cattleya NRRL 8057	esterase	49
<i>pks9</i> (P4 in figure 3A)	AORI_6604	core	KS*		gi 330465416 ref YP_004403159.1	Verrucosispora maris AB-18-032	beta-ketoacyl synthase	53
	AORI_6605		KS		gi 145595315 ref YP_001159612.1	Salinispora tropica CNB-440	beta-ketoacyl synthase	60
	AORI_6606		KS*		gi 145595316 ref YP_001159613.1	Salinispora tropica CNB-440	beta-ketoacyl synthase	56
	AORI_6607		KS		gi 145595317 ref YP_001159614.1	Salinispora tropica CNB-440	beta-ketoacyl synthase	74
	AORI_6608		ACP		gi 330465412 ref YP_004403155.1	Verrucosispora maris AB-18-032	phosphopantethei ne-binding protein	63
	AORI_6609				gi 145595319 ref YP_001159616.1	Salinispora tropica CNB-440	beta-hydroxyacyl- (acyl-carrier-prote in) dehydratase, FabA/FabZ	67
	AORI_6610				gi 330465410 ref YP_004403153.1	Verrucosispora maris AB-18-032	3-hydroxyacyl-A CP dehydratase	52
	AORI_6611				gi 145595321 ref YP_001159618.1	Salinispora tropica CNB-440	3-oxoacyl-(acyl-c arrier-protein)	73
	AORI_6613				gi 330465407 ref YP_004403150.1	Verrucosispora maris AB-18-032	reductase acetyl-CoA acetyltransferase	74
	AORI_6614				gi 330465392 ref YP_004403135.1	Verrucosispora maris AB-18-032	acyl-CoA dehydrogenase domain-containin	69
	AORI_6615				gi 330465391 ref YP_004403134.1	Verrucosispora maris AB-18-032	g protein acyl-CoA dehydrogenase domain-containin g protein	53
tps2	AORI_7417	core		Terpene	AMED_1325 (tps1)	Amycolatopsis mediterranei U32	terpene synthase	55

Note: All of the polyketide synthases, the nonribosomal peptide-synthetases, or the terpene synthases in total 26 biosynthetic gene clusters were employed to run the BLASTP program comparing against to the NCBI database and the best hits information was listed. The domain organization of PKS/NRPS enzymes and the putative precursors of NRPSs are analyzed on the SBSPKS or NRPSDB database. Nine clusters of *car*, *pks1*, *lyc*, *pks3*, *tps1*, *nrps7*, *pks5*, *pks6* and *tps2* have their orthologs in the *A. mediterranei* genome with the highest hitting scores, respectively.

Figure S5. The reverse-transcription PCR of RNA isolated from different cultures (poor medium F1 and rich medium F5). Line 1 to 9 represents the genes of *nrps3*, *nrps4*, *nrps7*, *n_p1*, *n_p2*, *n_p3*, *pks3*, *pks5*, *pks9*, respectively. Line *vcm* and *eco* represent the genes of vancomycin biosynthetic cluster and *eco* polyketide cluster.

AORI_CDS	Strand	Racemase_name	Location
AORI_0075	+	amino acid aldolase or racemase	core region
AORI_0725	+	alanine racemase	core region
AORI_2199	-	fatty acid-CoA racemase	core region
AORI_2442	+	alpha-methylacyl-CoA racemase	core region
AORI_3621	+	proline racemase	non-core region
AORI_4003	+	mandelate racemase/muconate lactonizing	non-core region
		enzyme-like protein	
AORI_5039	+	Asp/Glu/hydantoin racemase	quasi-core region
AORI_6044	-	mandelate racemase	core region
AORI_6304	+	enoyl-CoA hydratase/carnithine racemase	core region
AORI_6488	-	glutamate racemase	core region
AORI_6491	-	aspartate racemase	core region

Table S6. Genes encoded for racemases in A. orientalis HCCB10007 genome

	dimethylvancomycin ^a			vancomy	vancomycin ^b	
NO.	$\delta_{\rm H}$	δ_{C}	NO.	$\delta_{\rm H}$	δ_{C}	group
1	1.18 (d, 6.3)	18.4	1	/	/	CH ₃
2	0.96 (d, 6.3)	22.7	2	/	/	CH ₃
3	0.92 (d, 6.1)	23.2	3	/	/	CH_3
4	1.17 (s)	24.5	4	/	/	CH_3
5	1.28 (m 7.4)	26.8	5	/	/	CH
6	2.14 (br m)	25.4	<i>.</i>	1	,	CU
0	2.38(br d, 7.3)	35.4	0	/	/	CH_2
-	1.83 (br d,14.8, 5.6)	27.0	7	1	,	CU
/	2,29 (br m)	37.9	1	/	in ^b δ _C / / / / / / / 33.2 - / / / / / / / / / / / / / / / / / /	CH_2
0	1.52 (m)	20.0	0	,	,	CII
8	1.69 (m)	38.8	8	/	/	CH_2
8'	2.91 (s)	43.9	8'	2.37(s)	33.2	CH_3
8"	2.91 (s)	43.9	с	-	-	CH ₃
9	3.2 (br m)	49.3	9	/	/	CH
10	3.82 (m)	63.3	10	/	/	СН
11	4.78 (s)	54.0	11	/	/	СН
12		56.5	12	/	/	С
13	4.56 (s)	57.1	13	/	/	СН
14	5.84 (s)	57.6	14	/	/	СН
15	5.58 (m)	61.0	15	/	/	СН
1.6	5.40 (dd, 16.3, 7.6)	<i>(</i>) 1	1.4	,	,	CII
16	5.58(m)	62.1	16	/	/	СН
17	5.56(m)	62.9	17	/	/	СН
18	3.65 (m)	71.9	18	/	/	СН
19	4.83 (br d, 1.0)	73.2	19	/	/	СН
20	4.92(br d, 11.5)	73.8	20	/	/	СН
21	4.85(0)	74.0	21	/	/	СН
22	4.82 (o)	74.1	22	/	/	СН
23	5.40 (m)	78.5	23	/	/	СН
24	5.38 (m)	79.0	24	/	/	СН
25	4.82 (o)	81.6	25	/	/	СН
26	4.85 (o)	100.0	26	/	/	СН
27	5.41 (m)	103.8	27	/	/	СН
28	6.32 (d, 2.1)	105.4	28	/	/	СН
29	5.25 (d, 1.4)	108.3	29	/	/	СН
30	6.58 (d, 2.1)	107.0	30	/	/	СН
31	5.45 (m)	108.3	31	/	/	СН
32	6.70 (d, 8.2)	120.1	32	/	/	СН

 Table S7. NMR spectroscopic data for dimethylvancomycin (see the chemical structural formula below)

33		120.6	33	/	/	С
34		123.8	34	/	/	С
35	7.35 (d, 8.1)	125.2	35	/	/	СН
36	7.24 (d, 8.2)	126.2	36	/	/	CH
37	6.58 (d, 8.1)	126.8	37	/	/	СН
38		127.8	38	/	/	С
39		128.6	39	/	/	С
40		128.7	40	/	/	С
41	7.73 (d, 8.2)	129.0	41	/	/	СН
42	7.71 (d, 8.2)	129.7	42	/	/	СН
43	7.76 (s)	130.2	43	/	/	СН
44	7.61 (s)	130.6	44	/	/	СН
45		131.2	45	/	/	С
46		131.6	46	/	/	С
47	7.47 (br s)	135.0	47	/	/	СН
48		138.0	48	/	/	С
49		140.7	49	/	/	С
50		141.1	50	/	/	С
51		142.5	51	/	/	С
52		142.9	52	/	/	С
53		144.5	53	/	/	С
54		151.5	54	/	/	С
55		153.1	55	/	/	С
56		155.2	56	/	/	С
57		156.7	57	/	/	С
58		157.3	58	/	/	С
59		158.9	59	/	/	С
60		170.4	60	/	/	С
61		170.5	61	/	/	С
62		173.0	62	/	/	С
63		173.5	63	/	/	С
64		176.6	64	/	/	С
65		179.1	65	/	/	С

a: ¹H-NMR was measured at 500 MHz in D_2O , and ¹³C-NMR was measured at 125 MHz in D_2O .

b: The NMR data for vancomycin was studied by Pearce (1995).

c: Compared with that of vancomycin, the NMR data for dimethylvancomycin shows another methyl-group at the position of 8'' was added.

-: absent; /: identical

NO.	dimethylaglucovancomyc	dimethylaglucovancomycin ^a		vancomycin ^b		
	δ_{H}	δ_{C}	NO.	δ_{H}	δ_{C}	group
1	0.87 (d, 3.0)	22.7	1	/	/	CH ₃
2	0.86 (d, 2.96)	23.8	2	/	/	CH ₃
3	1.64(m)	25.4	3	/	/	СН
4	1.27(m) 1.55(m)	35.8	4	/	/	CH_2
5	2.12(dd,16.24, 5.05) 2.29(m)	39.3	5	/	/	CH ₂
5'	2.29(s)	42.2	5'	2.37(s)	33.2	CH ₂
5"	2.29(s)	42.2	С	-	-	CH ₃
6	4.49(m)	51.3	6	/	/	СН
7	4.43 (d, 5.68)	55.0	7	/	/	СН
8	4.45(s)	57.2	8	/	/	СН
9	4.18 (d, 11.96)	62.3	9	/	/	СН
10	4.88(q)	58.7	10	/	/	СН
11	3.03(m)	67.1	11	/	/	СН
12	5.71(s)	54.2	12	/	/	СН
13	5.19 (d, 4.32)	71.3	13	/	/	СН
14	5.10 (d, 5.56)	72.1	14	/	/	СН
15	6.40 (d, 1.92)	102.8	15	/	/	СН
16	5.20 (d, 4.32)	104.9	16	/	/	СН
17	6.27(s)	106.2	17	/	/	СН
18	5.50(s)	107.3	18	/	/	СН
19	6.71 (d, 8.6)	116.7	19	/	/	СН
20		118.5	20	/	/	С
21		122.1	21	/	/	С
22	7.22 (d, 15.36)	123.8	22	/	/	СН
23	7.33 (d, 8.36)	125.0	23	/	/	СН
24	6.78 (d, 8.6)	126.0	24	/	/	СН
25		126.6	25	/	/	С
26		126.8	26	/	/	С
27		127.5	27	/	/	С
28	7.46 (dd, 15.36,8.36)	127.6	28	/	/	СН
29	7.50 (dd, 15.36, 8.36)	127.8	29	/	/	СН
30	7.83(s)	128.0	30	/	/	СН
31	7.28(m)	128.7	31	/	/	СН
32		129.3	32	/	/	С
33		134.4	33	/	/	С
34	7.18(s)	136.1	34	/	/	СН
35		136.7	35	/	/	С

 Table S8. NMR spectroscopic data for dimethylaglucovancomycin (see the chemical structural formula below)

36	140.0	36	/	/	С
37	142.6	37	/	/	С
38	147.8	38	/	/	С
39	148.0	39	/	/	С
40	149.4	40	/	/	С
41	151.0	41	/	/	С
42	155.5	42	/	/	С
43	157.0	43	/	/	С
44	157.6	44	/	/	С
45	168.1	45	/	/	С
46	168.3	46	/	/	С
47	169.7	47	/	/	С
48	170.8	48	/	/	С
49	171.0	49	/	/	С
50	171.1	50	/	/	С
51	172.5	51	/	/	С
52	173.0	52	/	/	С

a: ¹H-NMR was measured at 400 MHz in DMSO- d_6 , and ¹³C-NMR was measured at 100 MHz in DMSO- d_6 .

b: The NMR data for vancomycin was studied by Pearce (1995).

c: Compared with that of vancomycin, the NMR data for dimethylaglucovancomycin shows another methyl-group at the position of 5" was added. Differences include the lack of a glucosyl- group and a vancosamine- group in dimethylaglucovancomycin (data not shown).

-: absent; /: identical

dimethylvancomycin

dimethylaglucovancomycin