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Online Supplemental Methods 

 
Animals. This study was carried out according to the guidelines of the National Institutes of 
Health on the Care and Use of Laboratory Animals. The project was approved by the 
Institutional Animal Care and Use Committee.  Six groups of male Sprague–Dawley rats were 
used (150–180g, 6 rats/group). All rats were housed individually in wire-mesh cages and were 
provided with Purina laboratory chow (No. 5001) and tap water ad libitum throughout the 
experiment.  
 
Animal study protocols. Following a one-week control period, 3 groups of rats were moved to a 
climate-controlled walk-in chamber maintained at moderately cold (5.0±1°C). The remaining 
groups were kept in an identical chamber maintained at room temperature (25±1°C, warm) and 
served as controls. The humidity of both environments was maintained at 45±5%.  After eight 
weeks of cold exposure, animals were anesthetized (ketamine/xylazine, 85/10 mg/kg, IP) and 
osmotic mini-pumps (Model 2ML1, Alzet) were placed subcutaneously with a catheter inserted 
into the external jugular vein for continuous i.v. infusion of drug.  Briefly, 3 groups in each 
temperature condition received 8-IBMX (PDE-1 inhibitor, 8.5 mg/kg/day1), apocynin (NADPH 
oxidase inhibitor, 25 mg/kg/day2-3) or the vehicle (dimethyl sulfoxide -DMSO, 50%). The doses 
of drugs have been validated for effective inhibition of PDE-1 and NADPH oxidase activity, 
respectively.1-3  Body weight was measured weekly and 24-hr urine samples were collected 
before and during drug delivery using metabolic cages.  

After one week of drug infusion, the animals’ right ventricular systolic blood pressure 
(RVBP) was measured under anesthesia (ketamine/xylazine, 75/5 mg/kg, IP) by maneuvering a 
PA-C40 (Data Sciences International, Minneapolis, MN) transmitter into the RV via the left 
jugular vein.  The RVBP was recorded continuously for 20 minutes (1 reading/min).  The data 
presented in Figure 1A is the average value of RVBP over a 20-min period. The RVBP is a 
reliable indicator of pulmonary arterial blood pressure (PAP) and has been used by numerous 
investigators for evaluating PH4-8.   After obtaining stable RVP, the animals were euthanized with 
overdose of ketamine/xylazine (200/20 mg/kg, IP) for tissue collections.  Because RV 
hypertrophy (RVH) is a hallmark of pulmonary hypertension, we examined the RV weight and 
wall thickness.     
 
Measurements of Systemic Blood Pressure 
Systolic blood pressure (BP) was measured using a CODA 6 BP monitoring system (Kent 
Scientific) as described in our previous study9.  The animals were handled twice a day to 
minimize handling stress.  The animals were trained for the tail-cuff measurements.  No signs of 
stress were seen during BP measurements.  The volume-based tail-cuff measurements of BP 
have been validated by using a telemetry system10.  The tail-cuff procedure is a common method 
used by our laboratory9, 11-13 and others14-15 to delineate cold-induced elevation of BP.  It has 
been confirmed by the intra-arterial cannulation that the noninvasive tail-cuff method is effective 
and reliable in monitoring systolic BP in animals exposed to cold.16-18 
 
Measurement of In Situ Superoxide Production 
The in situ superoxide production was measured in pulmonary arteries using the oxidation 
sensitive dye dihydroethidium (DHE, Sigma-Aldrich, Atlanta, GA, USA).  Dihydroethidium 
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enters the cells and is oxidized by O2
− to yield ethidium bromide (EB) which binds to DNA to 

produce bright red fluorescence.  EB emits red fluorescence (610 nm) when excited at 488 nm.  
Briefly, unfixed pulmonary artery rings were embedded in OCT, frozen at −80 °C, and cut at 10 
μm using a cryostat.  Sections were incubated in PBS (37°C) in a humidified chamber for 30 min 
followed by incubation with DHE (10−5 M in PBS) in the dark for 30 min.  The preparations 
were counterstained with the nuclear stain 4, 6-diamidin-2-phenylindol dichlorohydrate (DAPI, 
3×10−7 M, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) at 37°C for 5 min and 
mounted on slides.  The images were captured with FITC filter using Leica TCS NT Confocal 
fluorescence microscopy, the average intensity was measured at 400 X magnification in three 
randomly chosen fields (15 cells each) from three independent experiments.  EB and DAPI 
fluorescence were quantified using the Image J software as described in our recent studies.19-22 

 
Quantification of NADPH Oxidase Activity  

NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activity in pulmonary arteries 
was assessed using the lucigenin-enhanced chemiluminescence method as we described 
recently.19-21  To prevent autoxidation of lucigenin, a low concentration (5 µM) of lucigenin was 
used, as previously described23 with the following modifications.  Tissue sections (40 um) were 
rinsed in ice-cold PBS and kept in 96-well plate in cold saline on ice for 10 min.  Sections were 
incubated with lucigenin in the dark for 15 min.  Background counts were then obtained by 
measuring chemiluminescence using a luminometer (Biotek synergy 2 Luminometer) for 5 min 

(with a 2-min dark adjustment).  To evaluate NAD(P)H oxidase activity, 100 µM NAD(P)H was 
then added to samples, and luminescence was measured for an additional 8 min.  Background 
counts (with lucigenin) were subtracted from each value.  

Morphometric measurements and IHC analysis of SM α-actin expression and macrophage 
infiltration. The histological and IHC analysis of macrophage infiltration and SM α-actin 
expression were performed as described in our recent studies.9, 24  Lung and pulmonary artery 
(PA) tissue were post-fixed in 4% paraformaldehyde, embedded in paraffin and sectioned at 5 
µm thickness.  Basically, the morphometric measurements were taken approximately at the 
beginning of the 3rd order branch of pulmonary arteries (PAs).  At this position, the diameters 
small PAs were very close in the same group of animals.  A total of 2-5 small PAs were 
examined randomly for each section in a series of 5 sections.  The value was the average of 5-10 
readings for each animal.  

Activation of inflammatory cascades could contribute to the cardiovascular disease in 
rodents and humans.  Macrophage infiltration was assessed using a CD-68 marker (1:100, 
Abcam) as described in our recent studies.9, 24  PA SMC proliferation was assessed by semi-
quantifying protein expression of α-SM actin using α-SMA specific antibody (1:500, Abcam).  
α-SMA protein expression was determined by measuring the density and the total area and of α-
SMA-positive staining using the image J software as described in our recent studies. 9, 24  
 
Western blot analysis of PDE-1 and PDE-5 protein expression in tissue. Pulmonary arteries 
and kidneys were collected for western blot analysis of protein expression of PDE-1A (1:500, 
Santa Cruz), PDE-1B (1:500, Santa Cruz), and PDE-1C (1:500, Santa Cruz) as we described 
previously.9, 24.  Kidney cortex was used for western blot analysis.  PDE-5 protein expression 
was measured in lungs (1:500, Cell Signaling)  
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Supplemental Figure S1. 8-IBMX and apocynin did not significantly affect the systemic blood 
pressure (BP) and body weight.  Systemic BP was increased within one week of exposure to 
cold and remained elevated thereafter (A). Systemic BP was not significantly altered during the 
week of drug administration.  

All warm groups showed an increase in body weight compared to the cold groups but 
there was no significance amongst the 3 warm groups and amongst the 3 cold groups (B). In our 
experiments, an average lower body weight due to cold exposure is regularly observed.9, 13   

Exposure to cold significantly increased the RV wall thickness, which can be attenuated 
by treatment with IBMX (C).  For quantitative analysis, please refer to Figure 1C. 

The data for blood pressure and body weight were analyzed by a repeated measures one-
way analysis of variance (ANOVA).  Tukey’s multiple comparison tests were used to assess the 
significance of differences between means. Significance was set at a 95% confidence limit.  N=6. 
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Supplemental Figure S2.  Superoxide production was viewed using the dye DHE. DAPI was 
used to view nuclear staining. A, Photomicrograph of PA segments showing DHE staining, 
DAPI staining, and a merge of DHE and DAPI, respectively. Red fluorescence is indicative of 
superoxide production. Blue staining indicates nuclei.  For quantitative analysis, see Figure 4A.  
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Supplemental Figure S3.  Mn-SOD protein expression in lungs was not altered by cold 
exposure or treatment with IBMX or apocynin.  Western blot analysis of Mn-SOD protein 
expression (A) and quantification of Mn-SOD protein expression (B).  N=3.  
 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure S4. PDE5 protein expression in lungs was not altered significantly by cold 
exposure or by treatment with Apocynin or IBMX although IBMX tends to decrease lung PDE5 
expression.  N=6.  
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Supplemental Figure S5. PDE1A and PDE1C expression in aortas.  Cold exposure tended to 
decrease PDE1A protein expression in aortas although no significant difference was found 
among groups. IBMX and apocynin did not affect PDE1A expression.  PDE1C protein 
expression was not detectable in aortas.  N=3. 
 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure S6. PDE1A and PDE1C protein expression in kidney cortex.  PED1A 
and PDE1C protein expression was not altered by either cold exposure or treatments with IBMX 
or apocynin. N=6. 
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Supplemental Figure S7. IL-1β and IL-6 in the lungs.  The lung IL-1β and IL-6 protein levels 
were not altered significantly by cold exposure.  IBMX significantly decreased IL-1β and IL-6 
expression. Apocynin also significantly decreased IL-6 protein expression in the lungs.  IL-10 
was not detectable in lungs.  A, Lung IL-1β protein expression.  B, Lung IL-6 protein expression.    
N=3.   
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Supplemental Figure S8.  The alveolar diameter was decreased due to chronic cold exposure 
which can be reversed by 8-IBMX treatment. Chronic cold exposure decreased the average 
diameter of lung alveoli compared with the warm controls (A). Treatment with 8-IBMX restored 
the alveolar diameter almost to the control levels (B).  N=3. 
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Figure S9. The postulated relationship PDE-1C and NADPH oxidases in CIPH. Cold 
exposure increases PDE-1C expression in the pulmonary vasculature leading to degradation of 
second messengers, cGMP and cAMP. Decreased cGMP levels can increase PA SMC 
proliferation and decrease vasodilation resulting in occlusion of small PAs. Occlusion of the 
small PAs increases pulmonary vascular resistance (PVR) and pulmonary arterial blood pressure 
(PAP) resulting in pulmonary hypertension. Increased PDE-1C also decreases cAMP levels that 
result in activation of NADPH oxidases (via Rac1 and inflammatory cytokines) and increased 
production of superoxide, leading to oxidative stress in the pulmonary vasculature. Increased 
oxidative stress can further contribute to CIPH pathogenesis. Inhibition of PDE-1 with 8-IBMX 
or inhibition of NADPH oxidase with apocynin ultimately attenuates PA remodeling and CIPH. 
Although PDE-1 inhibition decreased NADPH oxidase activity and superoxide production in 
PAs, the underlying mechanism remains to be determined (represented by dashed arrows). 
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