Stem Cell Reports, Volume 2

Supplemental Information

Programming and Isolation of Highly Pure Physiologically and Pharmacologically Functional Sinus-Nodal Bodies from Pluripotent Stem Cells

Julia Jeannine Jung, Britta Husse, Christian Rimmbach, Stefan Krebs, Juliane Stieber, Gustav Steinhoff, Andreas Dendorfer, Wolfgang-Michael Franz, and Robert David

Supplementary Material

Suppl. Table 1: Action potential parameters of cardiomyocytes derived from Tbx3 programmed cells. Related to Figure 4 Data are mean + SD.

AP-Type	MDB	DDR	Overshoot	APD (ms)	Cyclelength	Plateau
	(mV)	(mV/s)	(mV)		(ms)	(ms)
Ventricular (n=9)	-50.2	10.5	35.8	319.2	896.2	164.5
	±11.8	± 7.5	± 5.8	± 134.9	±552.5	± 108.4
Atrial (n=3)	-53.9	13.5	40.6	165.9	650.6	78.5
	± 4.7	± 18.2	± 0.05	± 66.6	± 296.7	± 48.0
Pacemaker	-47.9	105.0	20.5	203.6	342.2	
system (n=15)	± 4.7	± 37.6	± 10.7	± 96.1	± 130.2	
Intermediate	-50.5	52.8	30.5	210.4	378.7	66.4
(n=12)	± 6.1	± 20.5	± 14.6	± 98.4	± 123.3	± 29.5

Suppl. Table 2: Action potential parameters of cardiomyocytes derived from control cells. Related to Figure 4

Data	are	mean	± SD.
------	-----	------	-------

AP-Type	MDB	DDR	Overshoot	APD (ms)	Cyclelength	Plateau
	(mV)	(mV/s)	(mV)		(ms)	(ms)
Ventricular (n=13)	-73.7	3.8	28.8	241.1	1133	178.5
	± 4.2	± 2.4	± 5.5	± 35.8	± 354.2	± 35.3
Atrial (n=3)	-73.4	4.1	22.8	130.7	1244	83.0
	± 7.6	± 1.4	± 4.0	± 44.0	± 126.9	± 14.5
Pacemaker	-57.2	99.5	9.8	129.8	567.3	
system (n=6)	± 4.6	± 16.5	± 2.8	± 19.3	± 61.7	
Intermediate	-61.1	48.2	23.5	203.3	566.4	59.7
(n=7)	± 7.4	± 5.7	± 9.0	± 58.9	± 248.7	± 25.1

Suppl. Table 3: Action potential parameters of cardiomyocytes derived from iSABs. Related to Figure 4

Data are mean ± SD.

AP-Type	MDB	DDR	Overshoot	APD (ms)	Cyclelength	Plateau
	(mV)	(mV/s)	(mV)		(ms)	(ms)
Mat. Pacemaker	-54.7	116.7	21.6	86.2	197.4	
system (n=43)	± 3.7	± 85.3	± 7.6	± 28.2	± 63.2	
Early Pacemaker	-60.4	108.8	28.7	114.5	263.3	33.7
system (n=10)	± 3.5	± 102.0	± 24.1	± 97.4	± 154.7	± 32.6

Suppl. Fig. 1: Representative Action Potentials derived from Tbx3 programmed cells. Related to Figure 4

(A, B) Myocardial types with (A) ventricular-like and (B) atrial-like action potentials. (C, D) Pacemaker type action potentials, with (C) mature sinoatrial-like action potentials and (D) slightly immature pacemaker-like cells referred to as intermediate type cells of the murine embryonic heart. Horizontal time bar: 100 ms.

В

Suppl. Fig. 2: Representative Action Potentials derived from iSABcardiomyocytes. Related to Figure 4

(A) Pacemaker type action potentials resembling action potentials generated by adult murine sinoatrial node cells. (B) action potentials generated by slightly immature pacemaker-like cells. Horizontal time bar: 100 ms.

Suppl. Fig. 3: Calcium Characterisitics of pacemaker-like cardiomyocytes obtained from iSABs. Related to Figure 5

(A) Spontaneaous Ca²⁺-transients before and in the presence of 10 mM Caffeine in iSAB and aCaB derived cells. The amplitude of the Caffeine-induced peak in the former is comparable to the maxima of spontaneous Ca²⁺-transients. n≥8 (B) Blockage of Ca²⁺ uptake into the SR via Thapsigargin leads to increased diastolic Ca²⁺ levels in iSAB derived as opposed to aCaB derived cells. n≥11. (C) Ca²⁺-transients before and after blockage of the Na⁺/ Ca²⁺ exchanger and sarcolemmal Ca²⁺ channels: a large caffeine peak is observed in iSAB derived cells as opposed to aCaB derived cells. n>16. (D) Ca²⁺ transients before and after inhibition of Ca²⁺ uptake: Na⁺/ Ca²⁺ exchanger inhibition plus SERCA inhibition causes a rapid increase of intracellular Ca²⁺ in iSAB derived cells as opposed to aCaB derived cells. n>24. In addition, a small Caffeine peak appears in each case.

Suppl. Movie 1 Related to Figure 3

Increased and more vigorous spontaneous beating activity in EBs derived from TBX3 programmed cells combined with *Myh6*-promoter based antibiotic selection; Beating rate: 194 beats per min.

Suppl. Movie 2 Related to Figure 3

Controls related to Suppl Movie 3: unprogrammed cells after Myh6-promoter based antibiotic selection; Beating rate: 86 beats per min.

Suppl. Movie 3 Related to Figure 3

Typical induced sinoatrial bodies (iSABs) after additional decollating.

Suppl. Movie 4 Related to Figure 3

Highly synchronized cell layer beating at >350 beats per minute after further cultivation of iSABs on gelatine coated dishes for three weeks. Synchronisation was analysed via Keyence VW9000 Motion Analyser software.

Suppl Movie 5 Related to Figure 3

Typical beating spindle and spider cells derived from iSABs.

Suppl. Movie 6 Related to Figure 5

Calcium transients recorded from a typical iSAB.

Suppl. Movie 7 Related to Figure 6

Pacing of host slice tissue via an iSAB. The identical iSAB is shown in Fig. 6E demonstrating transmission of Calcein dye over time. ~30 beats per min are achieved in the host slice as compared to a maximum of ~60 beats per min via electrode stimulation.

Suppl. Movie 8 Related to Figure 6

iSAB based stimulation of adjacent slice regions leads to synchronized Ca²⁺ transients as evident from Fluo-4/AM imaging. Please refer to Fig. 6F and 6G, showing the identical iSAB, for detailed analysis.