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S1. Sensitivity of Educational Assortative Mating Estimate
Weaddress two issues in the computation of educational assortative
mating (EAM): the addition of small quantities of noise and the
within-sex standardization of educational attainment.Working with
the raw squared educational differences leads to inaccurate results
for EAM. The reason for this is subtle. The left-hand side of the
distribution of educational differences is a long string of 0s (those
pairs with the same education). Any quantile, no matter how small,
computed relative to this empirical cumulative distribution function
is going to be the percentage of pairs with the same education.
Because this is a rather sizeable percentage of the overall distri-
bution when there is no measurement error, the area between the
curves is distorted. For this reason, we instead worked with edu-
cation that was slightly perturbed at the individual level by adding
a very small amount of noise. To demonstrate the robustness of
our finding to this addition of noise, we conducted a sensitivity
analysis in which the SD of the noise varied. Results are shown in
Fig. S1. When the distribution of noise is quite large (SD = 1), the
signed area starts at around 0.11. As the SD decreases to very near
0, the signed area settles around the estimate from Fig. 1. The far
right-hand dot in Fig. S1 represents the signed area when no error
is used. We also considered an estimate of EAM in which edu-
cation was not standardized. The resulting EAM estimate, 0.131,
was quite similar to the estimate 0.127 presented in Results, Esti-
mates of EAM and GAM. This lack of a change is due in part to the
fact that the educational differences between males and females in
our sample were fairly small (a median of 12 y for both genders
and only a difference of 0.2 y in the means). These results provide
confidence that our approach for EAM measurement is not a
remnant of modeling decisions.

S2. Principal Components
Fig. S2 shows the first four principal components (PCs) for the
sample of spouses. These PCs were computed within the non-
Hispanic white sample of respondents that are analyzed in Fig. 1.
There is substantially more variation on the first PC than on any
of the others. There is no information on ethnicity aside from
Hispanicity in the Health and Retirement Study (HRS) (1), so we
used the region of birth as one way of characterizing the PCs.
Fig. S3 shows the mean by census division for PCs 1 and 2. The
scale of this figure is based on the range of the individual values
of the PCs (and the vertical line represents a cutoff to be dis-
cussed shortly). In brief, the PCs did not sharply distinguish
between regions although one can see that the Atlantic seaboard
(regions 1 and 2) tended to have slightly lower values on PC 1
than the other regions.
Analyses in which the kinships were adjusted for pairwise

difference in either the squared or absolute value of the PCs are
described in Table S1. After adjusting for just PC 1, the genetic
assortative mating (GAM) estimates declined substantially.
Adjusting for additional PCs moved the estimates to nearly 0. For
example, adjusting for the first PC reduces GAM to 0.011 [95%
confidence interval: −0.006, 0.029]. As described in Impact of
Population Stratification on GAM, we believe that this approach is
potentially flawed because it is unclear what differences between
individuals (geographic differences? differences in countries of
origin?) are being captured by the PCs. Turning back to Fig. S2,
the red dots were chosen as a subset of the spousal sample
(PC 1 > −0.003) that was relatively comparable on these PCs. We
estimated a GAM value of 0.021 among this sample. This estimate

is comparable to the value found among the ethnically homogenous
Framingham sample described in Description of Framingham Data.

S3. Geography as a Proxy for Ethnicity
In this section, we present evidence that controls for the census
division capture regional variability in ethnicity. The census
divisions partition the states in the following way:

1) New England division: Connecticut, Maine, Massachusetts,
New Hampshire, Rhode Island, and Vermont

2) Middle Atlantic division: New Jersey, New York, and Penn-
sylvania

3) East North Central division: Illinois, Indiana, Michigan,
Ohio, and Wisconsin

4) West North Central division: Iowa, Kansas, Minnesota, Missouri,
Nebraska, North Dakota, and South Dakota

5) South Atlantic division: Delaware, District of Columbia, Florida,
Georgia, Maryland, North Carolina, South Carolina, Virginia,
and West Virginia

6) East South Central division: Alabama, Kentucky, Mississippi,
and Tennessee

7) West South Central division: Arkansas, Louisiana, Oklahoma,
and Texas

8) Mountain division: Arizona, Colorado, Idaho, Montana, Nevada,
New Mexico, Utah, and Wyoming

9) Pacific division: Alaska, California, Hawaii, Oregon, and
Washington

HRS contains data on the census division at birth for each re-
spondent (unspecified US births and foreign births are coded as 10
and 11, respectively; see Fig. S3). We used data from the 1980 US
census (2) to compare ancestry within and across census divisions.
We focused on spouses living in the same households, with valid
ancestry records, and born between 1930 and 1940 (to make the
respondents comparable to the sample of HRS respondents used
here). After imposing these filters, we had 650,724 individuals of
European ancestry and 165,552 individuals of non-European an-
cestry. We define European ancestry based on the ANCESTR1
variable, specifically codes 1–195. These codes correspond to nu-
merous countries or regions across Western and Eastern Europe.
However, we have excluded those of European Hispanic origin to
be consistent with the exclusion of Hispanics from the HRS dataset.
To determine ethnic concentration within census divisions, we

computed the mean percentage of individuals identifying as
a particular ancestry within a census division. A lower value
indicates a more diverse set of ancestries within a region. Suppose
one state was evenly split between white, black, and Hispanic
individuals. A second state was evenly split between white and
Asian individuals. The index for the first state would be one-third
whereas the index for the second state would be one-half. The first
state, with the lower value, has the more diverse population. We
then divided this index by the mean across the entire nation. We
define this as the ethnic concentration within a region. Within
a census division, the average concentration of Europeans
European was 1.6. Within states, the average concentration was
2.9. Clearly there is more ethnic concentration within states, but
census divisions explain a proportion of this. It is interesting to
note that there is much greater concentration of ethnicities within
both census divisions (2.5) and states (6.5) when non-European
ethnicities are considered.
We can also use this data to understand the tendency toward

intraethnic marriages and the relationship between intraethnic
marriages and place of birth. Among 195,355 spousal pairs (where
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each spouse is of European ancestry), 41% of the pairs were of the
same ancestry. To interpret this number, the fact that the ancestry
indicator is relatively fine-grained (over 100 different ancestry
designations) must be remembered. We also considered the
following hierarchical regression model:

logit
�
Pr
�
Same_Ancestryijk = 1

��
= α+ β ·

�
Same_Divisionijk

�

+ μj + γk

for pair i in census division j and state k. Being born in the same
census division increases the odds of a marriage between indi-
viduals of the same ancestry by 70%. The variance components
associated with μj and γk were 0.11 and 0.06, respectively. Based
on this evidence, we argue that there is clearly ethnic concentra-
tion among individuals of European ancestry in the United
States that is captured by geography. Furthermore, we argue that
being born in the same census division explains some of the
preference for intraethnic marriages in the United States.

S4. Removal of SNPs Associated with PCs
We identified SNPs associated with population stratification by
performing a genome-wide association for each of the first five
PCs (controlling for sex and birth year). We then systematically
removed those SNPs from our genetic data which had a P value in
one of the five regressions that was below a given threshold (this
varied from 5e-8 to 5e-2). With these different sets of SNPs, we
then recomputed kinship values based on the remaining SNPs
and reestimated GAM and adjusted GAM (based on controlling
for census division of birth). The results of this exercise are
presented in Table S2. Note that we lose over 70% of the SNPs
going from the full genetic sample to only those SNPs with
P values from all five regressions greater than 0.05. These re-
maining 457,201 SNPs are those that show very little evidence of
population stratification in our sample. The most important
observation is that our estimated GAM is relatively insensitive to
the removal of SNPs until we get to the 5e-3 threshold, where
nearly half of the SNPs have been removed. However, even after
the removal of the majority of the SNPs, there is still evidence
for GAM. Furthermore, the reduction due to the adjustment
(based on same census division at birth) is much less for these
estimates based on kinship computed using only SNPs un-
associated with the first five PCs.

S5. Simulation Study
The proposed methodology is, to our knowledge, unique in the
study of homogamy. Hence, it is important to determine that it is
a viable approach for detecting homogamy in our sample. This
simulation study demonstrates two crucial facts. First, the meth-
odology can distinguish assortative mating from random mating.
Second, the results produced by the methodology vary as expected
as a function of the strength of assortative mating. The simulation
study presented here is based on systematically controlling the
strength of homogamy in a simulated sample and then calculating
the area (as described in Materials and Methods), which acts as
a measure of assortative mating.
The simulation involves three key steps. In the below de-

scription of the simulation, it is important to remember that there
are in fact two simulation studies (one for kinship, one for ed-
ucational differences) that share a common structure. For fixed
values of the sample size (N), homogamy strength (indexed by A,
described below), and SD of kinship values (σ2), consider the
following:

i) For each pair of individuals, a quantity is randomly gener-
ated that represents either genetic relatedness or the squared
difference in years of education. Consider first relatedness.
We simulate relatedness values by sampling ðN2 −NÞ=2 (this

is the number of lower-triangular entries in an N ×N matrix)
values from Normal[0, σ2]. We use the observed SD for
kinships in our sample as the value of σ2. For education,
we first generate individual-level educations using the ob-
served distribution of educations in our sample and then
generate all possible squared pairwise differences.

ii) We now let individuals select into unions. Individuals select
into pairs based on a multinomial distribution. The proce-
dure differs for education and kinship. Consider the set of
relatedness estimates for all individuals with individual i. If
individuals k and i have relatedness Rik, then a weight (pro-
portion to the probability of individual k marrying individual
i) is assigned to individual k:

wk =
expðARikÞ

1+ expðARikÞ:

The degree of homogamy in the simulation is manipulated
through A. When A = 0, there is no homogamy (mating is ran-
dom with respect to relatedness) and this is reflected by all
pairings getting equal weights. The weights are then standardized
to sum to unity and are the probabilities for the multinomial
distribution. A draw from multinomial distribution (with only
a single trial) is used to generate a mate for individual i. Mates
are generated for all individuals in this manner with the additional
restriction that only a single mate is assigned to each person.
To understand the computation of the weights for education, it

is important to be aware of a key distinction between kinship and
education. With kinship, we have more and less related indi-
viduals and there should be amonotonically increasing relationship
between relatedness and the probability of getting married. This is
the motivation behind the choice of the logistic transformation
above. With squared education differences, not only is the distri-
bution bounded below by 0, but the relationship should also be
monotonically decreasing (increasing differences in education
should lead to decreasing probabilities of getting married). This
requires a different transformation and we use

wk =
1

1+ADik
;

where Dik is the squared education difference between two in-
dividuals. Again, A is used to control the strength of homogamy
in the simulation. Once weights are computed, the same pro-
cedure is used to generate matched pairs.

iii) The signed area metric is then computed based on the dis-
tribution of spousal differences to differences between all
pairs. Unlike in the main text, we do not multiply edu-
cational differences by −1. This is done to emphasize the
difference between educational differences and genetic
relatedness values in the simulation.

The simulation performs those steps for a fixed value of N
(chosen to replicate the number of spousal pairs, n = 825, in our
sample) and different values of A.
Key results for the simulation study are shown in Fig. S4. The y

axis in this figure is the signed area as described in Materials and
Methods. The x axis measures changes in A that are being ma-
nipulated in the simulation. This quantity controls the proba-
bility weight of two individuals marrying. The scale factor is
based on computations involving the distribution of either pair
relatedness or educational differences. In particular, it is the
value of the ratio of the probability weight at one SD above the
mean of this distribution to the value at the mean. When this
value is unity, there is no assortative mating (e.g., the random
mating hypothesis is true). Note that in both the kinship and
education versions of the simulation (gray and black) a value of
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unity corresponds to essentially no area between the assortative
mating curve and the 45° line. This indicates that the method-
ology can identify situations in which mating is random. Fur-
thermore, as the scale factor deviates from unity we are able to
detect increasing GAM and EAM (signed areas deviate from 0).
The estimated EAM coefficient from Fig. S4 (dashed black

line) is consistent with a scale factor of roughly 0.5. This in-
dicates that, according to the assumptions in our calculation, a 1-
SD increase (from the mean) in squared educational differences
corresponds to a probability weight that is 50% as large as the
one used at the mean squared education difference. The result for
GAM (dashed gray line) is weaker. A 1-SD increase from the
mean relatedness corresponds, under the assumptions of our
simulation, to a 15% increase in the probability weight of two
individuals marrying. These results provide intuition regarding
the probability of marriage that is consistent with the homophily
observed via the signed areas. However, they must be in-
terpreted with care because they are dependent on the as-
sumptions used in this simulation.

S6. Description of Framingham Data
The study sample for this project was derived from the Framingham
SNP Health Association Resource (SHARe, Version 6) as avail-
able through the National Center for Biotechnology Information
Database of Phenotypes and Genotypes dbGaP (3). The original
cohort of the study was first assessed in 1948; nearly 25 y later, the
respondents’ children (the G2 sample, n = 3,548) and many of
their spouses participated in this study of the offspring cohort.
Then, in 2002, roughly 4,000 adults who had at least one parent in
the offspring cohort took part in the third generation (G3) cohort
study. The analysis for our research focused on 1,624 individuals
from the G2 sample of the Framingham Heart Study. We use

genetic data for 260,402 SNPs, details on the quality control
process used to select these SNPs can be found elsewhere (4).
Using 685 spousal pairs drawn from the sample of 1,624 in-
dividuals, we calculated a GAM value of 0.025 (0.005, 0.046).

S7. Sensitivity of Genome-Wide Complex Trait Analysis
Estimates to Population Stratification
We considered two measures of genetic relatedness. The first (5)
assumes a common allele frequency. These estimates, which we
refer to as “GCTA” (genome-wide complex trait analysis) esti-
mates based on the software used to generate them, are likely to
be biased in the presence of population stratification. To dem-
onstrate this, we computed GCTA estimates as well as kinship
estimates (6) for all spouses in the HRS cohort (2,163 individuals
in 1,093 spousal pairs). Of the individuals in this sample, 8%
identified as black/African-American and 3% identified as other.
Fig. S5 compares GCTA and kinship estimates for the two in-
dividuals. Note the large estimates for couples that consist of two
black individuals (represented as “5” in the figure). In contrast,
pairs that consist of white couples have reasonable GCTA esti-
mates; the interquartile range was between 0.01 and 0.015. Be-
cause the GCTA estimates were based on a primarily white
sample, we inaccurately conclude that two nonwhite individuals
are genetically quite similar. The median black spousal pair has
a GCTA estimate approach of 0.39. This approaches the esti-
mated genetic relatedness of full siblings from other studies
(especially figure 1 of ref. 7). This is clearly a problem. In con-
trast, the kinship estimates never exceed 0.05, which is to be
expected given that these are unrelated people. Some pairs have
large negative values, but these are typically between couples
with different racial backgrounds and would thus be excluded
from our analyses.
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Fig. S1. EAM estimate as a function of the SD of the added noise.
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Fig. S2. Matrix scatterplot of the first four genome-wide PC values. All data comes from the HRS (n = 1,716) (1). Red dots identify respondents with PC 1 >
−0.003. This is a more genetically homogeneous subgroup that is the focus of additional analyses.
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Fig. S3. Geographic clustering in the first two PCs. All data comes from HRS (1). The vertical line indicates the threshold for identification of the homogeneous
subgroup (the red dots in Fig. S2). Divisions 3–8 are largely overlapping showing genetic similarity, at least with respect to the first two PCs, in these census
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Fig. S4. Simulation results: Polygons show 10th and 90th percentile of the homogamy estimates for 150 iterations at specified values of the scale factor.
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Fig. S5. Comparison of GCTA and kinship estimates of genetic similarity in the HRS (1).

Table S1. GAM estimates after controlling for PCs, both squared
differences and absolute values

Controls Squared differences Absolute values

PC 1 0.011 0.008
PCs 1–2 0.012 0.008
PCs 1–3 0.013 0.005
PCs 1–4 0.009 0.006
PCs 1–5 0.009 0.006

Table S2. Results obtained after removal of SNPs associated
with population stratification

Threshold No. of SNPs GAM Adjusted GAM

None 1,707,214 0.045 0.033
5E-08 1,516,889 0.043 0.030
5E-06 1,431,983 0.043 0.029
5E-04 1,201,518 0.040 0.030
5E-03 934,430 0.036 0.026
5E-02 457,201 0.026 0.020
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