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Modeling Description
Our mesoscale oligonucleosome model integrates the following
different coarse-grained descriptions for the nucleosome, histone
tails, linker DNA, linker histones (LHs), and the physiological
environment (see an illustration of themodel components and the
repeating oligonucleosome motif in Fig. S1):

� Nucleosome: The protein histone core (without the 10 pro-
truding histone tails) and the DNA around it are modeled as a
single rigid irregular body. The nucleosome surface is defined
by 300 Debye–Hückel effective charges uniformly distributed
on it. We use the discrete surface charge optimization (DiSCO)
algorithm (1) to optimize the values of the charges so that they
reproduce [typically within <10% error (2) the full atom electric
field at distances >5 Å around the nucleosome core. In addi-
tion, each charge is assigned an effective excluded volume to
account for the excluded volume of the nucleosome core. The
10 histone tails protruding out of each core are modeled as
flexible chains of beads. Each histone tail bead comprises 5 aa
and is positioned on the Cβ atom of the center amino acid.
Each tail bead is assigned a charge that equals the sum of the
charges of its 5 aa multiplied by a scaling factor to account for
salt-dependent screening (3). The first bead of each tail is
rigidly attached to the nucleosome core at locations consistent
with the 1KX5 PDB crystal structure (4). The stretching and
bending flexibility constants of each tail interbead segment are
modeled by harmonic potentials with parameters developed
to mimic their atomistic flexibilities (5).

� Linker DNA: The DNA connecting consecutive nucleosomes
is treated as a chain of spherical beads with a salt-dependent
charge that mimics the electrostatic potential of linear DNA
using the procedure of Stigter (6), and an excluded volume
that prevents overlap with other chromatin components. The
mechanical properties of the linker DNA chains (interbead
stretching, bending, and torsion) are described with a modified
worm-like chain model (7–9). The equilibrium DNA interbead
segment is 3 nm (∼9 bp), thus to model the nucleosome-repeat
lengths (NRLs) of 173, 182, 191, 200, 209, 218, and 227 bp, we
use two to seven DNA beads per linker (three to eight segments),
respectively.

� LHs: These proteins are modeled based on the structure of rat
H1d LH as predicted by Bharath et al. (10, 11) using fold
recognition and molecular modeling. We use three beads, rig-
idly attached to one another, to model the C-terminal domain
(two beads) and the globular domain (one bead) of LH, and
neglect the relatively uncharged N-terminal domain. Each LH
bead is assigned a Debye–Hückel charge, also optimized with
DiSCO, and an excluded volume. The chain of LHs beads is
placed on the dyad axis of each nucleosome.

� Solvent and ions: The water around the oligonucleosome is
treated implicitly as a continuum. The screening of electro-
static interactions due to the presence of monovalent ions in
solution (0.15 M NaCl) is treated using a Debye–Hückel poten-
tial (electrostatic screening length of 1.27 nm−1) (5).

The oligonucleosome chain is formed by attaching to each
nucleosome core an entering and an exiting linker DNA at an
angle of 108°, which corresponds to the 147 DNA base pairs tightly
wound ∼1.7 times around the core. The first core only has an ex-
iting linker DNA. Each of these linker DNA beads and nucleo-
somes has a local coordinate system assigned so that both DNA

and nucleosome beads are able to twist around their axis. The
different chromatin components interact through electrostatic
(Debye–Hückel) and excluded volume (Lennard-Jones) poten-
tials. To sample the ensemble of oligonucleosome conformations
at constant temperature, we use Monte Carlo (MC) simulations
with four different moves, as described below.

Modeling Validation and Limitations
As reviewed recently (12), several innovative coarse-grained models
to treat oligonucleosome systems have emerged in the past years.
With the enhanced computer power and the development of
novel algorithms for sampling phase space, these techniques have
allowed us to study the time and length scales of the chromatin
system beyond what would be feasible with traditional all-atom
simulations. However, despite continuous efforts to use ever-more
rigorous parameterizations, coarse-graining entails multiple ap-
proximations. Our mesoscale model can simulate moderate oli-
gonucleosome systems (up to ∼48-mer fibers) taking into account
important chemical and physical information, such as the charged
and contoured nucleosome surface, the flexibility of histone tails,
and the presence of LHs. Extensive experimental validation of our
model supports its accuracy and the relevance of its predictions.
Agreement with experiments includes (i) salt-dependent com-
paction measurements (sedimentation coefficients and packing
ratios) of 12-mer chicken erythrocyte chromatin over a broad
range of monovalent salt concentrations, with/without magnesium
ions and with/without LHs (5); (ii) the diffusion and salt-dependent
behavior of mononucleosomes, dinucleosomes, and trinucleosomes
(13); (iii) the salt-dependent extension of histone tails (13); (iv) the
irregular zigzag topologies of chromatin fibers (3, 14) and their
enhanced compaction upon LH binding (5, 14); (v) linker crossing
orientations (5); (vi) internucleosome interaction patterns con-
sistent with cross-linking and electron microscopy experiments
(14, 15); and (vii) the force extension behavior of 173- and 209-bp
fibers (16, 17).
Our model does not include specific protein–protein interac-

tions and desolvation effects, but these are expected to be rela-
tively weak compared with the strong electrostatic interactions
among chromatin components. The Debye–Hückel treatment omits
ion–ion correlation effects. Although charge correlation effects
are important for modeling systems with highly charged surfaces
and multivalent counterions, an accurate modeling of these effects
is unfeasible for the large oligonucleosome systems we study here,
as it would require explicit treatment of ions and solvent. Overall,
the model makes reasonable approximations to allow adequate
sampling of large fiber systems and address global structural and
thermodynamic questions. Detailed all-atom molecular dynamics
studies are only possible for much smaller systems.

MC Algorithm
We sample oligonucleosome conformations through the following
MC moves:

� Pivot, translation, and rotation chain moves: The global pivot
move is implemented by randomly choosing one linker DNA
bead or nucleosome core and a random axis passing through the
chosen component. The shorter part of the oligonucleosome
is rotated around this axis by an angle chosen from a uniform
distribution. The local translation and rotation moves also
randomly select an oligonucleosome chain component (linker
DNA bead or core) and rotate or translate only that compo-
nent by a randomly selected axis passing through it. All three
MC moves are accepted or rejected based on the Metropolis
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criterion (18). The angles and distances for the rotations and
translations are sampled from uniform distributions with
ranges adjusted so that the acceptance ratios remain close
to 0.30 in each condition.

� Tail regrowth move: The tail regrowth move is implemented to
sample histone tail conformations based on the configurational
bias MC method (19, 20). It randomly selects a histone tail
chain and regrows it bead by bead using the Rosenbluth scheme
(21). To prevent histone tail beads from penetrating the nucle-
osome core, the volume enclosed within the nucleosome surface
is discretized, and any trial configurations that place the beads
within this volume are rejected automatically.

The pivot, translation, rotation, and tail regrowth moves are
attempted with probabilities of 0.2, 0.1, 0.1, and 0.6, respectively.

Mesoscale Model Chromatin Energy
The total potential energy of our oligonucleosomes is a sum of
the twisting, stretching, and bending energy of the linker DNA,
stretching, and intramolecular bending of histone tails, total elec-
trostatic energy, and excluded volume contributions:

E=ET +ES +EB +EtS +EtB +EC +EV : [S1]

The first term in Eq. S1 is the twisting energy of the DNA:

ET =
s
2l0

XN−1

i=1

�
αi + γi −ϕNS

�2
; [S2]

where s is the twisting rigidity of DNA, l0 is the equilibrium
separation distance between beads of relaxed DNA, N is the
number of beads in the oligonucleosome chain, ϕNs

is the twist
deviation penalty term per segment, and the sum αi + γi gives the
linker DNA twist at each bead location. The values of the twist
penalty term per segment are determined by the NRL and are
obtained as described in ref. 14.
The next two terms denote the stretching,

ES =
h
2

XN−1

i=1

ðli − l0Þ2; [S3]

and bending energy of the linker DNA,

EB =
g
2

"XN
i=1

ðβiÞ2 +
XN
i=i∈IC

�
β+i

�2#
: [S4]

Here h and g are the stretching and bending rigidities of DNA,
li = jri+1 − rij is the separation between consecutive DNA beads,
IC denotes a nucleosome particle within the oligonucleosome
chain, and βi and β+i are bending angles. Further details on the
geometric description of the oligonucleosome chain are provided
in refs. 2, 5, and 14.
The fourth term, EtS, represents the total stretching energy of

the histone tails:

EtS =
Xn
i∈IC

XNT

j=1

XNbj−1

k=1

kbjk
2

�
lijk − ljk0

�2 + htc
2

XN
i∈IC

XNT

j=1

��tij − tij0
��2: [S5]

Here NT = 10NC is the total number of histone tails, Nbj is the
number of beads in the jth tail, and kbjk is the stretching constant
of the bond between the kth and k+ 1 th beads of the jth histone
tail. lijk and ljk0 represent the distance between tail beads k and
k+ 1, and their equilibrium separation distance, respectively. In
the second term, htc is the stretching bond constant of the spring
attaching the histone tail to the nucleosome core, tij is the position

vector of the first tail bead in the coordinate system of its parent
nucleosome, and tij0 is the position vector of the attachment site to
the nucleosome core.
The fifth term, EtB, represents the intramolecular bending

contribution to the histone tail energies:

EtB =
XN
i∈IC

XNT

j=1

XNbj−2

k=1

kθjk
2
�
θijk − θjk0

�2
; [S6]

where θijk and θjk0 represent the angle between three consecutive
tail beads (k, k+ 1, and k+ 2) and their equilibrium angle, re-
spectively, and kθjk is the corresponding bending force constant.
The total electrostatic interaction energy of the oligonucleo-

some is given by EC. These include nine types of Debye–Hückel
interactions: nucleosome–nucleosome, nucleosome–linker DNA,
nucleosome–tail, linker DNA–tail, linker DNA–linker DNA,
linker DNA–nonparent LH, tail–tail, tail–LH, and LH–LH:

EC =
X
i

X
j≠i

qiqj
4π««0rij

exp
�
−κrij

�
; [S7]

where qi and qj are the effective charges separated by a dis-
tance rij in a medium with a dielectric constant of « and a salt-
concentration dependent inverse Debye length of κ, «0 is the
electric permittivity of vacuum. Within an individual linker DNA
chain or histone tail chain, the beads belonging to the same chain
do not interact electrostatically with each other as their interactions
are already accounted for through the intramolecular force field
(harmonic spring). Finally, linker DNA beads, LH beads, and histone
tail beads directly attached to the nucleosome do not interact elec-
trostatically with their parental nucleosomal pseudocharges. This is
required to ensure that the attachment tail and linker DNA beads
remain as close as possible to their equilibrium locations.
The last term, EV , represents the total excluded volume in-

teraction energy of the oligonucleosome. The excluded volume
interactions are modeled using the Lennard-Jones potential and
the total energy is given by

EV =
X
i

X
j≠i

kij

"�
σij
rij

�12

−
�
σij
rij

�6
#
; [S8]

where σij is the effective diameter of the two interacting beads and
kij is an energy parameter that controls the steepness of the ex-
cluded volume potential. These parameters are taken from relevant
models of the components as described and given in refs. 5 and 14.

Analysis Measurements
Internucleosome Interactions. The matrices of internucleosome in-
teractions I′ði; jÞ describe the fraction of MC iterations that cores i
and j are in contact with one another. Each matrix element is
defined as

I′ði; jÞ=mean
�
δi; jðMÞ�; [S9]

where M is the MC configurational frame, and the mean is calcu-
lated over converged MC frames used for statistical analysis, where

δi; jðMÞ=
	
1 if cores i and j are in contact at the MC frame M;
0 otherwise:

[S10]

At a given MC step M, we consider nucleosomes i and j to be in
contact if the shortest distance between the tail beads directly
attached to i and the tail beads or core charges of core j is
smaller than the tail–tail ðσttÞ- or tail–core ðσttÞ-excluded volume
distance, respectively (3). In our computations we use this cutoff
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value of 1.8 nm. Fig. S3 shows a typical 2D map ½I′ði; jÞ� of the
frequency of histone tail mediated interactions for a zigzag
fiber.
These matrices can be projected into normalized 1D maps

IðkÞ=
PNC

i=1I′ði; i± kÞPNC
j=1Ið jÞ

[S11]

that depict the fraction of configurations that nucleosomes sepa-
rated by k linker DNAs interact with each other (i.e., are closer
than their van der Waals radii) through all contacts involving a
histone tail and any other component (i.e., linker DNA, nucleo-
some surface, or histone tail). These maps reveal the pattern of
internucleosome interactions (dominant, moderate, weak) in a chro-
matin fiber, providing key insights into structural organization.
To characterize near-neighbor contacts, we use these inter-

nucleosome interaction patterns, I(k). For an ideal solenoid fiber,
I(k) would show dominant i ± 1 interactions, whereas ideal zigzags
would display dominant i ± 2 interactions.
The more diverse far-nucleosome interactions are assessed by

the percentage of fibers in the ensemble that exhibit one or more
interactions between neighbors separated by nine or more linker
DNAs, a cutoff value much larger than the number of nucleosomes
per turn. For perfectly straight and regular zigzag or solenoid
fibers, the occurrence of long-range far-neighbor interactions is
small (<10%; see Fig. 3B).

Tail Interactions.To calculate the interactions of tails with different
nucleosome components we follow a similar procedure to that
described above. Namely, wemeasure the fraction of the time that
tails of a specific kind t (t = H2A1, H2A2, H2B, H3, and H4) in
a chromatin chain are in contact with a specific component c of
the chromatin chain (c = its parent nucleosome, a nonparental
nucleosome, parent DNA linkers, or nonparental DNA linkers)
by constructing 2D matrices with the following elements:

T′ðt; cÞ=mean

"
1

NCN

X
i∈IC

XN
j=1

δt;ci; jðMÞ
#
; [S12]

where the mean is calculated using the converged MC configura-
tions and

δt;ci; jðMÞ=
1 if j is a c‐type component in contact with a tail

of kind t of nucleosome i at frame M;
0 otherwise:

8<
:

[S13]

For a given frame M, we consider a specific t-kind tail of core i to
be either free or in contact with only one of the N-chromatin
components of the oligonucleosome chain. The t tail is in contact
with a component of type c if the shortest distance between its
beads and the beads or core charges of c is smaller than the
shortest distance to any other type of component and also smaller
than the relevant tail component-excluded volume distance. The
resulting normalized patterns of interactions provide crucial in-
formation into the frequency by which different tails mediate
chromatin interactions.

Bending Angles. The local bending angle between consecutive
nucleosomes is defined as in ref. 5 as the angle formed between
the vector exiting one nucleosome and the vector entering the next
nucleosome. The former connects the centers of the first two linker
DNA beads and the latter those of the last two linker DNA beads.

Calculation of Sedimentation Coefficients. As done before (14), we
calculate the sedimentation coefficient of a given oligonucleosome

array conformation from the intercore distances. The sedimenta-
tion coefficient S20;w is approximated from SNC , where

SNC

S1
=1+

R1

NC

X
i

X
j

1
Rij

: [S14]

Here, SNC represents S20;w for a rigid structure consisting of NC
nucleosomes of radius R1, Rij is the distance between the centers
of two nucleosomes, and S1 is S20;w for a mononucleosome. We
use R1 = 5.5 nm and S1 = 11.1 Svedberg (1 S = 10−13 s), as done
previously (14).

Calculation of the Fiber-Packing Ratio and Fiber Axis Curvature. To
calculate the fiber-packing ratio (number of nucleosomes per
11 nm of fiber length), we compute the length of the fiber axis
passing through a chromatin fiber core. We define the fiber axis
as a 3D parametric curve raxðiÞ= ðrax1 ðiÞ; rax2 ðiÞ; rax3 ðiÞÞ, where raxj ðiÞ
( j= 1, 2, and 3) are three functions that return the center positions
of the ith nucleosome (ri1, ri2, and ri3) in the x, y, or z direction
respectively. We approximate these functions with polynomials
of the form

raxj ðiÞ≈PjðiÞ= p1; ji2 + p2; ji+ p3; j; [S15]

by fitting the datasets ½rij� by a least-squares procedure. Due to
the highly nonlinear fiber axis curves of bent ladder arrays, we
use sixth-order order polynomials to approximate their fiber axes.
We determine the coefficients of the polynomial PjðiÞ by min-
imizing the sum of the squares of the residuals lj

lj =
XNC

i=1

�
rij −PjðiÞ

�2
; [S16]

which account for the differences between a proposed polynomial
fit and the observed nucleosome positions. After determining the
polynomial coefficients, we use Eq. S15 to produce NC points per
spatial dimension and compute the fiber length Lfiber as follows:

Lfiber =
XðNC−1Þ=2

i=1

��raxð2i− 1Þ− raxð2i+ 1Þ��; [S17]

where the distances are between every two consecutive nucleosome
centers. The packing ratio (number of cores per 11 nm) is then cal-
culated as the number of cores multiplied by 11  nm=Lfiber. From
the fiber axis, we define the local fiber radius for a given nu-
cleosome core to be the perpendicular distance between a nu-
cleosome core center and its closest linear fiber axis segment
plus the nucleosome radius ðRcore = 5:5  nmÞ. We then average
over all local fiber radii in a given fiber to obtain the fiber radius
at each simulation frame. Finally, we repeat this procedure for
each simulation frame and average the value to obtain a mean
fiber radius. The fiber width, Dfiber, is twice that value. Addition-
ally, from the parametric definition of the fiber axis, we identify
the mean curvature of the chromatin fiber at each simulation
frame as

κfiber =
1
NC

XNC

i=1

_raxðiÞ×€rax

_raxðiÞ ; [S18]

where _raxðiÞ≈ ð2p1;1i+ p2;1; 2p1;2i+ p2;2; 2p1;3i+ p2;3Þ, and €raxðiÞ≈
2ðp1;1; p1;2; p1;3Þ.
Role of Histone Tails
The tails of all four histones contribute to chromatin conden-
sation (22). Intrafiber and interfiber interactions are established
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between the positively charged and flexible histone tails of one
nucleosome with the charged and contoured surfaces of a neigh-
boring core (tail–nucleosome), the linker DNAs entering/exiting
their parent core (parent linker DNA), and the linker DNAs
joined to other cores (nonparent linker DNA).
For the different nonuniform NRL fibers, Fig. S5 shows the

fraction of configurations for which the different histone tails are
in contact (as defined above) with a specific chromatin compo-
nent (its parent nucleosome, a nonparental nucleosome, parent
DNA linkers, or nonparental DNA linkers). We compare these
patterns of interactions to those in uniform NRL fibers (14).
Bent ladders have a low frequency of tail–nucleosome inter-

actions, especially with H4 tails, which reflects their ladder-like
organization with less frequent face-to-face contacts. For fibers
with medium-to-long NRLs, tail–nucleosome interactions are
mostly mediated by the H3 tail due to its length, and the H4 tail
due to its position on the nucleosome surface. The intensity of
H4 tail–nucleosome interactions is larger for canonical and poly-
morphic fibers with medium average NRLs (between 195.5 and
209 bp), whereas that of H3 tails is stronger for canonical fibers
with average NRLs smaller than 191 bp.
The H4 and H3 tails are known to have a strong impact in

chromatin compaction (5, 14), and to be involved in both in-
trafiber and interfiber contacts with the DNA and other nucle-
osome surfaces (23–26). In agreement with these observed roles,
interactions with nonparental DNA are also mostly mediated by
H3 and H4 tails. The intensity of these interactions is strong for

the 191- to 218- and 191- to 227-bp fibers, which are the most
compact fibers in our study. In addition, more intense inter-
actions of the five tails with nonparental DNAs are noted in direct
connection to our observation of increased interfiber interactions
in bent fiber forms. That is, in interdigitated structures (i.e.,
predominant in 173- to 209-bp, 173- to 227-bp, and polymorphic
systems) tail–nonparent DNA interactions are stronger compared
with noninterdigitated uniform NRL systems. The only exception
are the H3 interactions in bent ladders; although such arrays
are interdigitated, DNA stems cannot form with LH, making it
easier for the H3 tails to strongly interact with the more imme-
diate parent DNAs.
In fact, due to their proximity with the nucleosome dyad, theH3

and H2A2 (C termini of the H2A) tails mediate the majority of
parent linker DNA interactions for all fibers. Tail–parent DNA
interactions screen the electrostatic repulsion among entering
and exiting DNAs, facilitating DNA stem formation and fiber
condensation. The intensity of these interactions becomes stronger
as the average NRL increases and the patterns for uniform and
nonuniform NRL fibers lie very close.
Although H2A1 (N termini of the H2A) and H2B tails spend

most of the time interacting with their parent cores, the H2B
tail–nucleosome interactions are maximum for fibers with the
highest occurrence of far-neighbor contacts (fibers 9, 11, and 13).
This suggests that H2B are involved in lateral interfiber in-
teractions due to their ideal positions for interdigitation on the
nucleosome periphery and their length.
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Fig. S1. Summary of the mesoscale modeling. (1) Brief description of the separate coarse-grained treatments used for A. The nucleosome core (with DNA
wrapped around) representation results in a reduction from ∼25,000 atoms to 300 charges, (B) the histone tails (which consist of ∼4,000 atoms) are interpreted
with 50 tail beads, (C) the linker DNA description models ∼800 atoms per DNA twist with one bead per twist, and (D) the globular and C-terminal domains of
LH (which consists of ∼2,500 atoms) are modeled with three beads. (2) Representation of the integrated coarse-grained model including A. Basic coarse-grained
repeating motif, and (B) assembly of the oligonucleosome chain where the nucleosome (in purple, with selected tails shown in blue and green and the LH in
turquoise) and linker DNA beads (in red) are numbered/indexed in the direction of the oligonucleosome chain starting from i = 1 for the first nucleosome core
to N for the last linker DNA bead.

Collepardo-Guevara and Schlick www.pnas.org/cgi/content/short/1315872111 5 of 12

www.pnas.org/cgi/content/short/1315872111


173 182 191 200 209 218 227

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Average NRL (bp)

C
ur

va
tu

re
 (

nm
−

1 )
4 6

7 8

9
11

13

12

2

3

5

10 14
1

A

0

5

10

15

20

25

NRL (bp)

B
en

t D
N

A
 li

nk
er

s 
(%

)

17
3−

18
2

17
3−

20
9

17
3−

22
7

18
2−

19
1

18
2−

20
0

19
1−

20
0

19
1−

20
9

20
0−

20
9

20
9−

21
8

19
1−

21
8

20
0−

21
8

19
1−

22
7

20
0−

22
7

21
8−

22
7

173182191200209218227
0

5

10

15

20

25 Bent ladders
Canonical
Polymorphic

Uniform NRL

B

Uniform NRL

Bent ladders

Canonical

Polymorphic

Fig. S2. Fiber axis bending and DNA linker bending. (A) Curvature (ensemble average and SD) of the fiber axis versus the average NRL across the fiber; and (B)
fraction of DNA linkers in the ensemble with a bending angle >60°; we use this threshold as it lies between the expected average bending angles for ideal
zigzag (0°) and solenoid (120°) fibers. As detailed in Table 1, data for nonuniform NRL fibers have been separated into three types according to their structural
behavior: bent ladder (purple), canonical (green), and polymorphic (orange). The black dashed curves (A) and gray bars (B, Inset) show the results obtained with
our previous uniform NRL simulations (14). The numbers next to the nonuniform NRL data points (A) indicate the fiber number as given in Table 1.
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Fig. S3. Fiber compaction and geometry as a function of the average NRL across the fiber, from equilibrium ensemble averages and SD: (A) sedimentation
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classified into three types and 14 NRL combinations (Table 1): bent ladder (purple), canonical (green), and polymorphic (orange). The black dashed lines
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Fig. S6. (A) Illustration of the histone tails within the nucleosome particle and (B–F) frequency analyses (ensemble averages and SD) of different tail inter-
actions in nonuniform NRL fibers [triangles represent bent ladders and squares represent “others” (canonical and polymorphic)] versus uniform NRL fibers
(black circles and dashed lines). B–F are for H4, H3, H2B, H2A1 (N-terminal), and H2A2 (C-terminal) tails, respectively. In B–F the curves measure the interactions
of tails (1) between nucleosomes, (2) with parent linker DNA, (3) with nonparent DNA linkers, and (4) with parent nucleosome. H2A1 and H2A2 denote N
termini and C termini, respectively, of the H2A tails.
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B Nonuniform NRL from double nucleosome removal

A Nonuniform NRL from single nucleosome removal
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200 bp

226 bp

167 bp

Fig. S7. Representative snapshots obtained after removing one or two nucleosomes from 48-core oligonucleosomes with uniform NRLs. (A) Removal of one
nucleosome at position 24 (center nucleosome) in 167-, 200-, and 226-bp fibers causes higher bending of the fiber axis as the NRL increases. (B) Removal of two
nucleosomes at positions 16 and 32 in 200- and 226-bp fibers causes a wide range of chromatin fiber forms. Sites where nucleosomes have been removed are
indicated by arrows. After nucleosome removal, the length of the linker DNA connecting the two immediate neighbors of the removed core increases by 147
bp; thus, the resulting chromatin fibers have nonuniform NRLs with a large NRL variation.
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Fig. S8. Effect of altering the chromatin potential energy. To determine the factors that trigger chromatin fiber polymorphism, we have performed addi-
tional simulations to compare how the structures of two fibers (nonuniform: 191–209 bp, and uniform: 209 bp) are altered when the electrostatic or me-
chanical potential energy is modified. The total potential energy is given in Eq. S1. Changes to the potential correspond to the following cases: (i) no
electrostatic energy, e0 (EC = 0, where EC is the total electrostatic potential energy)—this is nonbonded energy only; (ii) weak electrostatic energy, e0.5
ðEC = 0:5ECÞ; (iii) strong electrostatic energy, e2 ðEC = 2ECÞ; (iv) weak mechanical resistance, m0.5 (EM = 0:5EM , where EM = EB + ES + ET is the total mechanical
energy and is the sum of EB (the total bending energy), ES (the total stretching energy), and ET (the total twisting energy); (v) strong mechanical resistance, m2
ðEM = 2EMÞ; (vi) no bending resistance, b0 ðEB = 0Þ; and (vii) no torsional resistance, t0 ðET = 0Þ. “Full” in the histogram plots indicates results for the original
oligonucleosome potential energy. (A) Effect of modifying the potential energy in the fiber structure. (B) Selected simulation snapshots for the different cases.
NU, nonuniform case; U, uniform case. We see that chromatin architecture is extremely sensitive to the strength of the electrostatic interactions. For both the
nonuniform and uniform fibers, softening the electrostatic energy (e0 and e0.5) decreases fiber compaction and extent of polymorphism (average fiber axes
straightened and occurrence of far-neighbor contacts reduced). Doubling the strength of the electrostatic energy (e2) transforms the nonuniform fiber into
a more regular and highly compact zigzag fiber. Altering the mechanical potential (m0.5, m2, b0, and t0) does not have a significant effect on chromatin
polymorphism.
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Fig. S9. Ensemble average and SD of total energy, packing ratio, and triplet angle for three selected nonuniform fibers versus MC steps for simulations started
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equilibrium values before 60 million MC steps, showing convergence and independence of results from initial state.
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