SUPPLEMENTARY INFORMATION

Rare and low-frequency coding variants in *CXCR2* and other genes are associated with hematological traits

Paul L. Auer, Alexander Teumer, Ursula Schick, Andrew O'Shaughnessy, Ken Sin Lo, Nathalie Chami, Chris Carlson, Simon de Denus, Marie-Pierre Dubé, Jeff Haessler, Rebecca D. Jackson, Charles Kooperberg, Louis-Philippe Lemieux Perreault, Matthias Nauck, Ulrike Peters, John D. Rioux, Frank Schmidt, Valérie Turcot, Uwe Völker, Henry Völzke, Andreas Greinacher, Li Hsu, Jean-Claude Tardif, George A. Diaz, Alexander P. Reiner, Guillaume Lettre

Supplementary Figures 1-9 Supplementary Tables 1-7 Supplementary Note

Supplementary Figure 1. Quantile-quantile plots of single variant association results. (A) Hematocrit. (B) Hemoglobin. (C) White blood cell count. (D) platelet count.

Supplementary Figure 2. Quantile-quantile plots of gene-based burden T1 results. (A) Hematocrit. (B) Hemoglobin. (C) White blood cell count. (D) Platelet count. For each gene, we only considered missense, nonsense and splice site variants with a minor allele frequency <1%.

Supplementary Figure 3. Quantile-quantile plots of gene-based SKAT results. (A) Hematocrit. (B) Hemoglobin. (C) White blood cell count. (D) Platelet count. For each gene, we only considered missense, nonsense and splice site variants with a minor allele frequency <5%.

Supplementary Figure 4. Impact of mutation p.Asp70Asn in *EPO*. (A) Crystal structure of erythropoietin (EPO, yellow) with two erythropoietin receptor subunits (EPOR, green and red)¹. The white circle indicates the interface between EPO and EPOR magnified in (B) and (C). In (B) and (C), the white circles highlight residue 70 (43 after cleavage of the propeptide). Replacing Asp70 (B) by Asn70 (C) may de-stabilize the EPO loop that interacts with EPOR because it disrupts a hydrogen bound between Asp70 and Thr71.

Supplementary Figure 5. Intensity plots for *JAK2* p.Val617Phe in the Montreal Heart Institute (MHI; left) and the Study of Health in Pomerania (SHIP; right) genotyped on the Illumina HumanExome Beadchip. Density plots for the Women's Health Initiative were not available.

Supplementary Figure 6. Mutations in *SH2B3* may interfere with JAK2 binding. Crystal structure of the SH2-B SH2 domain (beige) with JAK2 phospho-tyrosine peptide (pTyr813, yellow)². JAK2 pTyr813 interacts with arginine residues in the SH2-B BC loop. The glutamate residues identified in our association study (Glu395 and Glu400, green) correspond to Glu558 and Glu563 in the SH2-B sequence. They are directly in the BC loop that interacts with JAK2. Glu563 interacts with Arg578.

Supplementary Figure 7. UCSC ENCODE tracks for the rs1465788 variant near *ZFP36L1*. The rs1465788 variant appears to be in a K562 FAIRE nucleosome depletion peak. The rs1465788 is also in high LD with rs2236263 (r²=0.91 in CEU), rs3742887 (r²=0.99 in CEU), and rs6573857 (r²=1 in CEU) which all lie in an active promoter for *ZFP36L1*.

Supplementary Figure 8. Crystal structure of CXCR1 in a phospholipid bilayer³. CXCR2, like CXCR1 and CXCR4, is a seven transmembrane (TM) domains protein. In purple are the CXCR1 residues that correspond to the missense mutations identified in CXCR2 (two CXCR2 residues, Met6 and Ala37, do not have their CXCR1 equivalent on this structure). In parenthesis are the corresponding CXCR2 residues. CXCR2 Arg289 and Arg294 are in TM domains. The remaining four CXCR2 residues (Arg144, Arg236, Arg248, His332) are in intracellular loops.

CXCR2fs: ...NPLIYAFIGQKFRLDSSRF*

Supplementary Figure 9. Analysis of CXCR2 in Myelokathexis Pedigree. (A) A myelokathexis pedigree with two affected (filled) and two unaffected (open) daughters is shown at left. CXCR2 sequence trace shows a single base deletion corresponding to coding sequence position 968 in individual I-2 (unaffected) compared to an unrelated control (arrow). (B) An *NcoI* recognition site (CCATGG) which gives a 325-bp fragment when a wild type amplicon is digested is destroyed by the 968delA mutation so that the 375-bp undigested amplicon persists. Affected siblings II-2 and II-4 are homozygous for the deletion mutation, parents and sibling II-1 are heterozygous for the mutation, and sibling II-3 is homozygous for the wild type allele. White blood cell counts (WBC) for each family member are shown below. (C) A structural model of CXCR2 with the conserved GPCR motifs (intracellular loop 2 - *purple*, DRY - *dark blue*, NPXXY - *green*), the mutant frameshift peptide (orange), and the truncated wild type tail (red) indicated. The frameshift is located in Helix 8, which is predicted to be parallel to the plasma membrane. The amino acid sequences from the wild type and mutant CXCR2 constructs are shown. The CXCR2fs construct contain a six-amino acid frameshift peptide (LDSSRF). Amino acid colors correspond to those used in the structure model. The black bar over the primary sequence indicates the location of a highly conserved LLKIL dileucine motif that is critical for receptor-mediated chemotaxis⁴.

Supplementary Table 1. Description of the three cohorts analyzed in this study. Summary statistics of the hematological traits and other covariates measured in each study. Values are presented as mean (standard deviation).

	Montreal Heart Institute (MHI) Biobank	Women Health Initiative (WHI)	Study of Health in Pomerania (SHIP/SHIP- TREND)
Number of individuals with phenotype and genotype available	6,796	18,072	6,526
Percent women	37	100	51
Age (years)	63 (11)	66 (7)	53 (15)
Hemoglobin (g/dl)	13.8 (1.7)	13.6 (0.9)	14.0 (1.3)
Hematocrit (%)	40.6 (4.9)	40.4 (2.9)	41.6 (3.4)
White blood cell (x10 ⁹ /l)	7.1 (2.2)	6.1 (1.6)	6.4 (1.8)
Platelet (x10 ⁹ /l)	228.6 (67.1)	245.9 (55.8)	225.4 (53.5)

Supplementary Table 2. Single variant replication results. The direction of the effect sizes (Beta) is for the A1 allele. Effect sizes and standard errors (SE) are in the following units: for hematocrit (%), for hemoglobin (g/dl), for white blood cell count ($\log_{10}(x10^9/l)$) and platelet count ($x10^9/l$). n.d.; not determined because the marker is monomorphic in SHIP.

			Discovery M	HI+WHI (N=	=24,814)	Replica	tion SHIP (N=	6,526)	Com	bined (N=31,3	840)		
Variant	Chr (Pos)	A1/A2	Freq	Beta	Р	Freq	Beta	Р	Beta	Р	Hetero P	Gene	Annotation
Variant		111/112	(A1)	(SE)	-	(A1)	(SE)	1	(SE)	•	neter 0.1	dene	Annotation
HEMATOCRIT				0.405	7.0.10		0.040		1.0(2)		[[
rs146600269	1:89,486,344	T/G	0.0005	-3.125 (0.696)	7.2x10 ⁻ 6	0.0011	-0.213 (0.854)	0.80	-1.962 (0.54)	2.8x10-4	0.0082	GBP3	Missense (p.L21M)
rs61755431	1:155,260,382	T/C	0.0025	-1.228 (0.301)	4.4x10- 5	0.0025	-0.719 (0.506)	0.16	-1.095 (0.259)	2.3x10 ⁻⁵	0.39	PKLR	Missense (p.R538Q, p.R5690)
rs200879349	1:169,438,042	T/G	0.9999	14.83 (3.269)	5.7x10 ⁻ 6	0.9999	0.989 (2.05)	0.63	4.895 (1.737)	0.0048	3.3x10 ⁻⁴	SLC19A2	Missense (p.K355Q)
rs17319721	4:77,368,847	A/G	0.43	0.151 (0.028)	1.1x10 ⁻ 7	0.45	0.047 (0.051)	0.35	0.126 (0.025)	3.5x10 ⁻⁷	0.074	SHROOM3	Intronic
rs201657731	7:80,302,104	T/C	0.0002	5.139 (1.164)	1.0x10- 5	0.0005	-0.062 (1.186)	0.96	2.588 (0.831)	0.0018	0.0018	CD36	Nonsense (Q382X)
rs62483572	7:100,319,633	A/G	0.0045	-1.072 (0.211)	3.5x10 ⁻ 7	0.0041	-1.105 (0.396)	0.0053	-1.079 (0.186)	6.4x10 ⁻⁹	0.94	EPO	Missense (p.D70N)
rs77375493	9:5,073770	T/G	0.0004	3.714 (0.758)	9.5x10 ⁻ 7	0.0041	-0.116 (0.495)	0.81	1.03 (0.415)	0.013	2.3x10 ⁻⁵	JAK2	Missense (p.V617F)
rs33971440	11:5,248,159	T/C	0.0002	-5.723 (1.291)	9.2x10- 6		Monomorphic			n.d.		HBB	5' splice site (exon2:c.92+1G>A)
rs2270416	16:89,261,482	A/C	0.035	0.345 (0.077)	7.0x10- 6	0.032	0.14 (0.143)	0.33	0.299 (0.068)	9.6x10 ⁻⁶	0.21	CDH15	Nonsense (Y788X)
HEMOGLOBIN											•	•	
rs61755431	1:155,260,382	T/C	0.0025	-0.434 (0.102)	1.9x10 ⁻ 5	0.0025	-0.417 (0.179)	0.020	-0.43 (0.088)	1.1x10 ⁻⁶	0.93	PKLR	Missense (p.R538Q, p.R569Q)
rs200879349	1:169,438,042	T/G	0.9999	5.144 (1.134)	5.7x10 ⁻ 6	0.9999	0.397 (0.723)	0.58	1.77 (0.61)	0.0037	4.2x10 ⁻⁴	SLC19A2	Missense (p.K355Q)
rs28664715	4:87,809,025	T/C	0.91	-0.077 (0.016)	2.6x10 ⁻ 6	0.92	-0.03 (0.033)	0.36	-0.068 (0.015)	4.1x10 ⁻⁶	0.20	C4orf36	Missense (p.Y81C)
rs139178017	7:100,225,847	T/C	0.0042	0.31 (0.075)	3.2x10 ⁻ 5	0.0025	0.385 (0.181)	0.033	0.321 (0.069)	3.3x10 ⁻⁶	0.70	TRF2	Synonymous (p.E491E) and 5' donor splice site
rs62483572	7:100,319,633	A/G	0.0045	-0.347 (0.071)	9.5x10 ⁻ 7	0.0041	-0.354 (0.14)	0.011	-0.348 (0.063)	3.4x10 ⁻⁸	0.96	EPO	Missense (p.D70N)
rs33971440	11:5,248,159	T/C	0.0002	-2.41 (0.438)	3.7x10 ⁻ 8		Monomorphic			n.d.		HBB	5' splice site (exon2:c.92+1G>A)
WHITE BLOOD CI	ELL												
rs1260326	2:27,730,940	T/C	0.43	0.005 (0.001)	3.8x10 ⁻ 6	0.40	0.005 (0.002)	0.017	0.005 (0.001)	8.5x10-8	0.97	GCKR	Missense (p.L446P)
PLATELETS													
rs150282282	1:1,226,312	T/C	0.0001	286.8 (62.538)	4.5x10- 6	0.0005	-18.06 (19.154)	0.35	8.084 (18.314)	0.66	3.2x10 ⁻⁶	SCNN1D	Missense (p.P652L)
rs144362185	1:62,579,918	A/G	0.0001	282.9 (62.464)	5.9x10 ⁻ 6	0.0002	-31.3 (35.67)	0.38	45.962 (30.975)	0.14	1.3x10 ⁻⁵	INADL	Missense (p.R1552Q)
		C/G	0.88	-3.878 (0.801)	1.3x10- 6	0.84	-2.446 (1.216)	0.044	-3.444 (0.669)	2.6x10-7	0.33	PPARG	Missense (p.P12A)
rs149507188	3:99,513,493	A/G	0.0001	124.5 (24.874)	5.6x10 7		Monomorphic			n.d.		COL8A1	Missense (p.A250T)

rs149618433	4:3,318,625	T/C	0.0006	101.3 (22.103)	4.6x10- 6	0.0001	-35.26 (50.472)	0.48	79.325 (20.247)	8.9x10 ⁻⁵	0.013	RGS12	Missense (p.T243M)
rs202125938	6:151,917,687	A/G	0.9999	-295.1 (62.482)	2.3x10- 6	0.9999	36.37 (50.423)	0.47	-94.362 (39.239)	0.016	3.7x10-6	C6orf97	Missense (p.K562R)
rs201367949	8:124,796,805	A/C	0.9999	-278 (62.472)	8.6x10- 6		Monomorphic			n.d.		FAM91A1	Missense (p.N267H)
rs77375493	9:5,073,770	T/G	0.0005	124.092 (12.827)	3.9x10 ⁻ 22	0.0041	16.41 (8.61)	0.057	49.857 (7.149)	3.1x10 ⁻¹²	3.2x10 ⁻¹²	JAK2	Missense (p.V617F)
rs146836226	11:8,947,080	C/G	0.9999	-286.8 (62.538)	4.5x10 ⁻ 6	0.9999	57.22 (50.459)	0.26	-78.429 (39.27)	0.046	1.9x10 ⁻⁵	C11orf16	Missense (p.Q378H)
rs3888798	11:88,027,209	T/C	0.96	-5.623 (1.341)	2.7x10 ⁻ 5	0.95	-4.122 (1.946)	0.034	-5.14 (1.104)	3.2x10 ⁻⁶	0.53	CTSC	Missense (p.I453V)
rs72650673	12: 111,885,310	A/G	0.0014	37.261 (6.724)	3.0x10 ⁻ 8	0.0007	7.727 (18.254)	0.67	33.732 (6.310)	9.0x10 ⁻⁸	0.13	SH2B3	Missense (p.E400K)
rs41300592	13:25,459,805	T/C	0.9998	-118 (22.68)	2.0x10 ⁻ 7	0.9998	-40.94 (29.139)	0.16	-88.928 (17.897)	6.7x10 ⁻⁷	0.037	CENPJ	Missense (p.N1102S)
rs1465788	14:69,263,599	T/C	0.27	-2.745 (0.578)	2.1x10- 6	0.27	-3.063 (1.011)	0.0024	-2.823 (0.502)	1.9x10 ⁻⁸	0.78	ZFP36L1	Intergenic
rs139734678	14:74,969,470	T/C	0.0001	278 (62.472)	8.6x10- 6	0.0002	4.954 (29.124)	0.87	53.702 (26.397)	0.042	7.5x10 ⁻⁵	LTBP2	Missense (p.V1686I)
rs148159407	15:40,477,419	A/G	0.9995	-64.166 (15.371)	3.0x10- 5	0.9998	15.46 (35.704)	0.67	-51.716 (14.118)	2.5x10 ⁻⁴	0.041	BUB1B	Missense (p.N269D)
rs150934316	16:1,555,571	A/G	0.0001	282.1 (62.495)	6.4x10- 6		Monomorphic			n.d.		TELO2	Missense (p.R668Q)
rs76931703	19:43,237,080	T/C	0.9999	-120.2 (24.862)	1.3x10 ⁻ 6	0.9998	-40.14 (35.68)	0.26	-94.032 (20.399)	4.0x10 ⁻⁶	0.066	PSG3	Missense (p.M189V)
rs41303899	20:57,598,808	A/G	0.0016	-27.696 (6.717)	3.7x10- 5	0.0024	-42.63 (9.07)	2.7x10 ⁻⁶	-32.986 (5.398)	9.9x10 ⁻¹⁰	0.19	TUBB1	Missense (p.G109E)
rs73393075	22:29,537,940	A/G	0.0001	116.199 (25.406)	4.8x10- 6	0.0002	-23.08 (29.123)	0.43	56.01 (19.145)	0.0034	3.1x10-4	KREMEN1	Missense (p.R406H, p.R423H)
rs738409	22:44,324,727	C/G	0.77	2.941 (0.612)	1.6x10- 6	0.78	0.755 (1.065)	0.48	2.398 (0.531)	6.3x10 ⁻⁶	0.075	PNPLA3	Missense (p.I148M)

Supplementary Table 3. Association results with blood cell phenotypes for SNPs previously identified by genome-wide association studies (GWAS). We only report results from the meta-analysis MHI+WHI (N=24,814) for SNPs present on the Illumina ExomeChip array (or proxies in linkage disequilibrium based on data from the 1000 Genomes Project's European populations). We obtained the list of associated SNPs from the largest meta-analyses published to date: hemoglobin and hematocrit levels⁵, white blood cell count⁶ and platelet count⁷. Effect sizes and standard errors (SE) are in the following units: for hematocrit (%), for hemoglobin (g/dl), for white blood cell count ($\log_{10}(x10^9/l)$) and platelet count ($x10^9/l$).

GWAS SNP	CHR	BP	ExomeChip SNP	CHR	BP	r ² with GWAS SNP	Allele1	Allele2	Freq (Allele 1)	BETA	SE	P-value	Locus
HEMATOCRIT	7												
rs857684	1	158575729	rs863362	1	158549492	0.36	t	С	0.4657	0.0735	0.028	0.008771	OR10X1
rs4953318	2	46355051	rs10495928	2	46353166	0.8	а	g	0.6602	0.2235	0.0296	4.79E-14	PRKCE
rs218238	4	55395024	rs218237	4	55394172	0.53	t	С	0.1296	-0.19	0.0419	5.67E-06	
rs13152701	4	122751061	rs1507995	4	122748308	0.31	а	g	0.2911	0.2149	0.0863	0.01281	BBS7
rs1408272	6	25842951	rs1408272	6	25842951	1	t	g	0.9364	-0.2949	0.0582	4.02E-07	HFE
rs9349204	6	41914378	rs3218097	6	41905275	0.91	а	g	0.2509	0.0675	0.0325	0.03786	CCND3
rs9369427	6	43811430	rs9472138	6	43811762	0.98	t	С	0.2837	-0.101	0.031	0.001141	
rs9389269	6	135427159	rs7776054	6	135418916	0.91	а	g	0.7425	0.2606	0.0321	5.05E-16	HBS1L-MYB
rs2075672	7	100240296	rs7385804	7	100235970	0.99	а	С	0.6298	-0.0931	0.0291	0.001349	TFR2
rs10480300	7	151406005	rs10224002	7	151415041	0.86	а	g	0.7028	0.178	0.0308	7.66E-09	PRKAG2
rs4737009	8	41630405	rs4737009	8	41630405	1	а	g	0.2339	0.0781	0.0382	0.04104	ANK1
rs579459	9	136154168	rs635634	9	136155000	0.83	t	С	0.1998	-0.1856	0.0352	1.30E-07	ABO
rs2302264	11	67207426	rs1695	11	67352689	0.35	а	g	0.6615	-0.062	0.0296	0.03625	GSTP1
rs10849023	12	4332478	rs11611647	12	4333919	1	t	С	0.7902	0.1083	0.0344	0.001656	
rs3184504	12	111884608	rs3184504	12	111884608	1	t	С	0.4964	0.1775	0.0282	3.13E-10	SH2B3
rs2271294	16	67902326	rs12449157	16	67708897	0.88	а	g	0.8435	-0.0846	0.0388	0.02923	GFOD2
rs4969184	17	76393413	rs2292642	17	76395430	0.64	t	С	0.6096	-0.0632	0.0289	0.02896	PGS1
rs741702	19	13024250	rs11085824	19	13001547	0.85	а	g	0.6375	0.068	0.0292	0.01998	GCDH
rs855791	22	37462936	rs855791	22	37462936	1	а	g	0.4371	-0.1882	0.0285	3.81E-11	TMPRSS6
HEMOGLOBIN	Ι												
rs4953318	2	46355051	rs10495928	2	46353166	0.8	а	g	0.6602	0.075	0.01	5.13E-14	PRKCE
rs218238	4	55395024	rs218237	4	55394172	0.53	t	С	0.1295	-0.048	0.0141	0.0006523	
rs13152701	4	122751061	rs1507995	4	122748308	0.31	а	g	0.2911	0.0769	0.0299	0.01017	BBS7
rs1408272	6	25842951	rs1408272	6	25842951	1	t	g	0.9364	-0.1474	0.0195	4.50E-14	HFE
rs9349204	6	41914378	rs3218097	6	41905275	0.91	а	g	0.2509	0.0242	0.0109	0.02666	CCND3
rs9369427	6	43811430	rs881858	6	43806609	0.87	а	g	0.7011	0.0378	0.0103	0.0002283	
rs9389269	6	135427159	rs7776054	6	135418916	0.91	а	g	0.7423	0.0675	0.0108	4.23E-10	HBS1L-MYB
rs590856	6	139844429	rs643381	6	139839423	0.88	а	С	0.5218	-0.0204	0.0095	0.03157	
rs2075672	7	100240296	rs7385804	7	100235970	0.99	а	С	0.6297	-0.0196	0.0098	0.04489	TFR2
rs10480300	7	151406005	rs10224002	7	151415041	0.86	а	g	0.7028	0.0606	0.0104	4.98E-09	PRKAG2
rs579459	9	136154168	rs507666	9	136149399	0.83	а	g	0.1996	-0.0732	0.0118	5.93E-10	ABO
rs10159477	10	71099888	rs7072268	10	71099913	0.10	t	С	0.50	-0.048	0.009	3.8E-7	HK1
rs2302264	11	67207426	rs2276118	11	67288594	0.75	t	С	0.5683	0.0198	0.0095	0.03707	CABP2
rs10849023	12	4332478	rs11611647	12	4333919	1	t	С	0.7903	0.036	0.0116	0.001849	
rs3184504	12	111884608	rs3184504	12	111884608	1	t	с	0.4965	0.0693	0.0095	2.74E-13	SH2B3

rs2271294	16	67902326	rs12449157	16	67708897	0.88	э	σ	0.8437	-0.031	0.013	0.01741	GFOD2
rs888424	10	19985427	rs2120282	10	20209474	0.00	a t	<u></u>	0.5876	-0.031	0.015	0.01741	SPECC1
rc4060194	17	76202412	rs2202642	17	76205420	0.64	ι +	C C	0.5070	-0.0213	0.0090	0.02394	
rc722716	10	/0393413	rc1127000	10	10595450	0.04	t +	ι c	0.0097	-0.0274	0.0097	0.004910	
18/32/10	19	4300219	15112/000	19	4454005	0.05	l	C	0.2009	-0.0245	0.0107	0.02295	UDAINO
		\$7402930 \$	18055791	22	57402930	1	a	g	0.4371	-0.0070	0.0096	4.27E-20	TMPR350
will E BLOO		3	maE46920	4	74056272	1	2	+	0.2010	0.0067	0.001	6 04E 12	CVCL2
15540029	4	74930372	15540029	4	74930372	1	a	L +	0.3019	0.0067	0.001	0.94E-12	
152044303	7	02409270	152044505	7	02400270	1	d +	ι c	0.4017	0.0003	0.001	7 20E 11	
15445	/	92400370	15445	/	92400370	1	L +	C	0.1112	-0.0094	0.0014	7.30E-11	
rc2104E04	9 12	111004600	15379439	9 12	111004600	1	t +	ι c	0.7700	0.0001	0.0011	1.42E-00	ADU CU2D2
153104304	12	20156712	exil105/425	12	20156712	1	L +	C	0.4905	0.0050	0.0009	4.20E-10	<u>ЗП2Д3</u> DCMD2
DIATELETS	17	30130/12	154794022	17	30130/12	1	l	C	0.3003	0.011	0.001	5.09E-30	PSMDS
FLATELETS	1	205227127	ma1((0072	1	205225000	0.04	-	~	0.257	2 1 4 7 9	0 5 2 5 6		TMCCO
1510000/1 re7EE0019	1	20525/15/	151000075	1	205255990	0.94	a	g	0.337	2.14/0	0.5550	0.00E-05	
18/350910	1	24/0/3339	1856045070	1	24//19/09	0.25	a	g	0.0721	-0./020	0.9990	1.34E-11	GUSAML
rs1200320	2	27730940	rs/80094	2	42510077	0.9	t	C	0.415	2.2441	0.5218	1./UE-U5	
151/030845	2	4308/8/9	1935/20/01	2	43519977	0.00	l	C	0.1235	-2.3061	0.7815	0.00317	
rs/616006	3	1220/048	rs1801282	3	12393125	0.07	C	g	0.88	-3.878	0.801	1.3X10-0	ADUCEE2
151354034	3	56849749	1512485738	3	50805770	0.69	a	g	0.3805	-4.8208	0.527	5.28E-20	AKHGEF3
rs1/568628	5	76046939	rs34592828	5	75996909	0.94	a	g	0.0383	-6.5492	1.3427	1.08E-06	IQGAP2
rs2070729	5	131819921	rs2188962	5	131//0805	0.29	t	С	0.421	-1.438/	0.521	0.005754	LSOFJS6
rs441460	6	25548288	rs/42132	6	2560/5/1	0.54	a	g	0.7008	1./683	0.567	0.001815	LRRC16A
rs3819299	6	31322367	rs3819299	6	31322367	1	t	g	0.9436	-5.2144	1.1219	3.35E-06	HLA-B
rs399604	6	329/5014	rs399604	6	329/5014	1	t	С	0.5769	-2.2387	0.5226	1.84E-05	HLA-DUA
rs210134	6	33540209	rs210139	6	33543409	0.25	а	C	0.6099	-4.4329	0.528	4.66E-17	BAKI
rs9399137	6	135419018	rs4895441	6	1354265/3	0.91	а	g	0.7345	-5.5051	0.5818	2.99E-21	HB21L-MYB
rs342275	/	106359216	rs342293	/	106372219	0.95	С	g	0.54/3	3.5766	0.5151	3.83E-12	7001/0
rs6993770	8	106581528	rs2343596	8	106593207	0.73	a	C	0.3145	-2.8276	0.5549	3.4/E-0/	ZFPM2
rs6995402	8	145005561	rs11136344	8	145059425	0.22	t	C	0.5673	-2.2594	0.5156	1.18E-05	PARPIO
rs409801	9	4/44/43	rs385893	9	4/631/6	0.46	t	С	0.4913	-5.3356	0.5128	2.36E-25	DCI 4
rs13300663	9	4814948	rs10/58658	9	48568//	0.52	а	g	0.1861	4.5309	0.6601	6./1E-12	RCLI
rs10/61/31	10	65027610	rs12355784	10	65121565	0.8	а	C	0.4893	3.7401	0.5149	3./5E-13	JMJDIC
rs505404	11	243268	rs11602954	11	202856	0.95	a	g	0.2078	4.9545	0.6359	6.66E-15	BEIIL
rs4246215	11	61564299	rs1/4546	11	61569830	0.9	t	C	0.3338	1./442	0.5445	0.001359	FADSI
rs4938642	11	119099906	rs2239896	11	118983434	0.57	t	C	0.0574	4.0048	1.1123	0.0003177	C2CD2L
rs941207	12	5/023284	rs2958154	12	5/065/13	0.62	t	C	0.6533	-1.329	0.5384	0.01357	PIGES3
rs3184504	12	111884608	rs3184504	12	111884608	1	t	C	0.4952	4.5008	0.5154	2.49E-18	SH2B3
rs1/824620	12	113100994	rs233/16	12	113039943	0.26	t	C	0.5793	-2.5585	0.5259	1.15E-06	
rs7961894	12	122365583	rs7961894	12	122365583	1	t	C	0.1088	-4.5736	0.8213	2.56E-08	WDR66
rs7149242	14	101159416	rs12883126	14	101134008	0.32	t	C	0.769	1.2747	0.6098	0.03658	LINC00523
rs2297067	14	103566785	rs2297067	14	103566785	1	t	C	0.2455	1.7078	0.5977	0.004273	EXOC3L4
rs6065	17	4836381	rs6065	17	4836381	1	t	C	0.0838	3.3587	0.9335	0.0003205	GP1BA
rs397969	17	19804247	rs203462	17	19812541	0.99	t	C	0.6196	-1.2437	0.5271	0.01831	AKAP10
rs559972	17	27814496	rs2138852	17	27703349	0.98	t	C	0.521	-3.2703	0.5096	1.38E-10	
rs10512472	17	33884804	rs10512472	17	33884804	1	t	С	0.818	-3.2465	0.6698	1.25E-06	SLFN14
rs11082304	18	20720973	rs11082304	18	20720973	1	t	g	0.5018	-3.4896	0.5124	9.78E-12	CABLES1
rs4812048	20	55587771	rs6070697	20	57599402	1	а	g	0.1767	2.0876	0.6746	0.001969	TUBB1

Supplementary Table 4. Gene-based association results. We analyzed association between rare non-synonymous (missense, nonsense) and splice site variants and blood cell traits using the Burden T1 and SKAT gene-based tests. Markers with minor allele frequency <1% and <5% were considered for the Burden T1 and SKAT tests, respectively. We selected from the MHI+WHI analysis 19 genes with P<1x10⁻⁴ and attempted to replicate them in SHIP.

				MHI	+WHI	SHI	2	MHI+WH	II+SHIP
				Number		Number		Number	
Phenotype	Test	Gene	Complete list of variants	of	Р	of	Р	of	Р
				variants		variants		variants	
НСТ	Burden	C7orf72	rs182523159,chr7:50143943,rs149326344,rs61754912	4	2.32E-05	3	0.91	4	1.1E-4
НСТ	SKAT	EPO	rs62483572, rs137953994, rs11976235, rs149431976, rs73409075	5	4.6x10 ⁻⁵	4	0.033	5	1.4x10 ⁻⁶
НСТ	SKAT	SLC35B3	rs184068804,rs143437815,rs190725185,rs143539087,rs141256356,rs138204292,r	8	8.41E-05	5	0.84	8	0.0033
			\$34950970,1\$142703777				1		
НСТ	SKAT	TUBGCP4	chr15:43668300,chr15:43668384,rs188822226,rs191224065,chr15:43678503,rs18 3013671,chr15:43693969,chr15:43693987	8	8.53E-05	4	0.61	8	0.0029
НСТ	SKAT	RUFY3	chr4:71634272,rs182772740,chr4:71639274,rs140962303,chr4:71659504,rs14910 7016,chr4:71659621,chr4:71665919,chr4:71672317,rs114009356	9	9.91E-05	8	1	10	0.024
HGB	Burden	HBB	rs33946267, rs33947415, rs1135071, rs33971440, rs33974228	4	9.2x10-5	2	0.23	5	4.3x10-5
HGB	Burden	SAMD9L	chr7:92760773,rs139478067,chr7:92761203,rs141306896,chr7:92762757,chr7:927 62855,rs147903234,chr7:92763351,rs73710963,rs142436298,rs143593856,chr7:92 763736,rs140536419,rs150070697,rs151204118,rs141294380,chr7:92764714,rs14 4605831,rs149275726,rs148147724,rs60838691	17	5.33E-05	13	0.92	21	0.0036
HGB	SKAT	EPO	rs62483572, rs137953994, rs11976235, rs149431976, rs73409075	5	7.8x10 ⁻⁵	4	0.072	5	4.0x10 ⁻⁶
HGB	SKAT	RUFY3	chr4:71634272,rs182772740,chr4:71639274,rs140962303,chr4:71659504,rs14910 7016.chr4:71659621.chr4:71665919.chr4:71672317.rs114009356	9	3.86E-05	8	0.96	10	0.022
HGB	SKAT	ADAP1	rs145174713.chr7:944803.rs147172089.rs139497517.rs145788459.rs141244581	5	6.92E-05	4	0.22	6	5.72E-05
HGB	SKAT	TUBGCP4	chr15:43668300,chr15:43668384,rs188822226,rs191224065,chr15:43678503,rs18 3013671,chr15:43693969,chr15:43693987	8	9.28E-05	4	0.45	8	0.012
WBC	Burden	CXCR2	rs139809702, rs75759064, rs55799208, rs10201766, rs61733609, rs200726461, rs2228413, rs199632317	8	1.6x10 ⁻⁶	6	8.3x10	8	2.6x10 ⁻¹³
WBC	Burden	S1PR4	rs150230356,rs147876709,rs3826936,rs3746072,chr19:3179931	5	2.76E-06	5	0.20	5	0.013
WBC	Burden	RANGAP1	chr22:41647049,rs139571477,rs114673061,rs143560227,rs143866878,chr22:4166 0673,rs116510625	7	2.72E-05	5	0.95	7	0.0010
WBC	Burden	IGFL1	rs147938784,chr19:46733532,rs187146043,rs190483911	4	5.17E-05	2	0.30	4	0.0018
WBC	SKAT	KRT35	chr17:39635117,chr17:39635169,rs143386151,rs192328036,rs185963879,chr17:3 9636962,chr17:39636983,chr17:39637145,rs139838007,chr17:39637271,chr17:39 637328	11	2.33E-05	9	0.67	11	4.3E-04
WBC	SKAT	S1PR4	rs150230356,rs147876709,rs3826936,rs3746072,chr19:3179931	5	3.94E-05	5	0.14	5	0.016
WBC	SKAT	MFAP5	rs148770543,rs139330366	2	8.80E-05	2	0.57	2	8.89E-05
PLT	Burden	RBM46	chr4:155719287,rs139756307,rs145321511,chr4:155720617,rs141427057,chr4:15 5749134.rs147971341	6	2.75E-05	5	0.57	7	4.8E-04
PLT	Burden	FZD3	rs140115204.rs139570173.chr8:28413272.rs146950723.rs147574227	5	8.55E-05	2	0.84	5	3.2E-04
	Buruen	1200	rs183913232, rs147341899, rs149554298, rs140042617, rs147318193.	5	0.001 00	_	0.01	0	
PLT	SKAT	SH2B3	rs148636776, rs181879167, rs72650673, rs200907236, rs200567433, rs74163669, rs20089302, rs140649197, rs72650662, rs148791142, rs199803113	14	2.2x10 ⁻⁷	8	2.9x10 -4	14	6.7x10 ⁻¹⁰
PLT	SKAT	TUBB1	rs145280665, rs144337011, rs415064, rs150551805, rs41303899, rs200931731, rs202177647, rs146846923, rs62639975, rs192115302, rs62639974, rs115253190, chr20:57599645, rs138642232	13	2.2x10 ⁻⁵	8	2.9x10 -4	14	6.7x10 ⁻¹⁰
PLT	SKAT	CTSC	rs3888798,rs146182103,chr11:88027277,chr11:88027365,rs142378484	5	2.70E-05	1	0.61	5	3.55E-06

Supplementary Table 5. Clinical characteristics of 19 participants from the MHI Biobank and WHI study that carry *JAK2* p.Val617Phe alleles based on whole blood DNA genotyped on the exome array.

		Baseline				Year 3 (follow	/-up)						Number of
ID	Hematocrit (%)	Hemoglobin (g/dl)	Platelet (10º/l)	White blood cell (10 ⁹ /l)	Hematocrit (%)	Hemoglobin (g/dl)	Platelet (10 ⁹ /l)	White blood cell (10 ⁹ /l)	Coronary heart disease	Stroke	Leukemia	Cause of death	<i>JAK2</i> p.Val617Phe alleles
1	46	15.9	658	9	50.6	16.8	662	12.7	No	No	No	NA	1
2	40	12.5	502	5.9	NA	NA	NA	NA	No	Yes	No	Other Cancer	1
3	46	13	796	23.4	54	15.4	647	67.5	No	Yes	No	Cerebrovascular	2
4	40.7	12.9	482	10.7	NA	NA	NA	NA	No	Yes	Yes	NA	1
5	41.1	14	437	3.9	NA	NA	NA	NA	Yes	Yes	No	NA	1
6	46.6	16.1	310	8.3	47.2	15.4	259	11.5	No	Yes	No	NA	1
7	48	15.9	357	6.9	NA	NA	NA	NA	No	No	No	NA	1
8	45.4	14.8	411	8.6	NA	NA	NA	NA	Yes	No	No	Other Known Cause	1
9	39.9	13.5	227	5.4	NA	NA	NA	NA	No	Yes	No	NA	1
10	43.8	14.8	365	5.8	NA	NA	NA	NA	Yes	No	No	NA	1
11	42.5	14.7	279	5.8	NA	NA	NA	NA	Yes	No	No	NA	1
12	49.5	16.5	529	7.3	NA	NA	NA	NA	No	No	No	NA	1
13	42.5	14.2	411	7	NA	NA	NA	NA	No	No	No	NA	1
14	49.3	16.7	266	9.1	NA	NA	NA	NA	No	No	No	NA	1
15	49.4	16.4	697	8	NA	NA	NA	NA	Yes	No	No	NA	1
16	45.1	14.2	412	9.5	NA	NA	NA	NA	No	Yes	No	NA	1
17	37.5	13.1	239	11.4	NA	NA	NA	NA	Yes	No	No	NA	1
18	42.9	14.4	201	11.7	NA	NA	NA	NA	Yes	Yes	No	NA	1
19	42.3	14.6	291	14.5	NA	NA	NA	NA	Yes	No	No	NA	1

Supplementary Table 6. Missense variants in *CXCR2* and white blood cell count. For each variant by study, we list allele count and frequency, white blood cell mean (s.d.) and association P-value using the score test implemented in raremetal (see above). The mean (s.d.) white blood cell count in each study is (x10⁹/l): MHI 7.1 (2.2), WHI 6.1 (1.7), SHIP 6.4 (1.8).

	MH	II (N=6,796)		V	VHI (N=18,018)		SHI	SHIP (N=6,526)			
CVCP2 variant	Allele count	Allele	WBC	Allele count	Allele	WBC	Allele count	Allele	WBC	Association	
	(het/homo)	frequency	(x10 ⁹ /l)	(het/homo)	frequency	(x10 ⁹ /l)	(het/homo)	frequency	$(x10^{9}/l)$	P-value	
rs139809702 (p.M6R)	M	onomorphic		1 (1/0)	2.8x10 ⁻⁵	6.2 (NA)	M	onomorphic		0.91	
rs75759064 (p.A37T)	2 (2/0)	1.5x10-4	6.6 (1.7)	5 (5/0)	1.4x10-4	6.3 (1.4)	3 (3/0)	2.3x10-4	6.3 (1.2)	0.63	
rs55799208 (p.R153H)	28 (28/0)	0.0021	6.4 (1.5)	99 (99/0)	0.0027	5.6 (1.8)	50 (50/0)	0.0038	5.7 (1.7)	2.5x10-6	
rs10201766 (p.R236C)	7 (7/0)	5.2x10 ⁻⁴	7.3 (1.6)	58 (58/0)	0.0016	5.8 (1.5)	66 (66/0)	0.0051	5.9 (1.7)	0.0036	
rs61733609 (p.R248Q)	26 (26/0)	0.0019	6.3 (1.3)	47 (47/0)	0.0013	5.3 (1.4)	51 (51/0)	0.0039	5.4 (1.6)	2.2x10 ⁻⁹	
rs200726461	М	onomorphic		7 (7/0)	1.0×10^{-4}	62(0.9)	2 (2 (0)	1 Ev 10.4	$F_{1}(16)$	0.05	
(p.R289C)	IVI	onomorphic		7 (770)	1.9X10	0.2 (0.0)	2 (2/0)	1.5X10 .	5.1 (1.0)	0.93	
rs2228413 (p.R294Q)	24 (22/1)	0.0017	7.0 (2.1)	4 (4/0)	1.1x10-4	5.8 (1.9)	2 (2/0)	1.5x10-4	6.4 (0.7)	0.87	
rs199632317(p.H332R)	M	onomorphic		3 (3/0)	8.3x10 ⁻⁵	5.0 (2.1)	M	onomorphic		0.15	

Supplementary Table 7. Association of *CXCR2* missense variants with white blood cell subtypes in the MHI Biobank (N=6,796) and a subset of SHIP (N=3,438). WBC subtypes are not available for WHI. We present burden T1 results for the *CXCR2* missense variants listed in **Table 2** of the main text (rs139809702, rs75759064, rs55799208, rs10201766, rs61733609, rs200726461, rs2228413, rs199632317). The effect size is calculated using a meta-analysis of the single variant results and the direction of the effect is for the rare alleles. For basophils and eosinophils, the units are standard deviations of counts. For lymphocytes, monocytes and neutrophils, the units are $log_{10}(x10^9/l)$.

Phenotype	MHI Bu	rden T1	SHIP Burden T1 P-value			
	Effect size	P-value	Effect size	<i>P</i> -value		
Basophils	0.004	0.97	-0.268	0.012		
Eosinophils	-0.165	0.12	-0.204	0.056		
Lymphocytes	0.526	0.44	-1.533	0.061		
Monocytes	-1.222	0.087	-3.490	1.2x10 ⁻⁵		
Neutrophils	-1.697	0.013	-3.493	6.7x10 ⁻⁷		

SUPPLEMENTARY NOTE

Coding variants associated with hematological traits identified by GWAS or within candidate genes

The single variant meta-analyses of association results for MHI and WHI confirmed many single nucleotide polymorphisms (SNPs) previously associated with blood cell traits by GWAS (**Supplementary Fig. 1** and **Supplementary Table 3**). Although most GWAS SNPs are non-coding, we found three examples where a coding or splice site variant in linkage disequilibrium (LD) with a sentinel SNP could explain a platelet GWAS signal: a 5' donor splice variant in *GCSAML* (rs56043070, minor allele frequency (MAF)=7%, *P*=1.3x10⁻¹¹), a missense variant in *TUBB1* (rs6070697, p.Arg307His, MAF=18%, *P*=0.002), and the *PPARG* p.Pro12Ala missense variant also associated with type 2 diabetes (rs1801282, MAF=12%, *P*=1.3x10⁻⁶)(**Supplementary Table 3**). Mutations in *TUBB1* (which encodes a megakarocyte lineage-specific isoform of beta-tubulin) are linked to low platelet counts in mouse models, and cause autosomal dominant macrothrombocytopenia in humans (MIM 612901) and Cavalier King Charles Spaniel dogs⁸. *PPARG* is highly expressed in platelets⁹ and thiazolidinediones, PPARγ agonists that are used to treat type 2 diabetes, also improve platelet function and coagulation^{10,11}.

To identify coding variants associated with blood cell traits that lie outside of known GWAS loci, we selected 42 markers with $P < 1 \times 10^{-5}$ (along with $P < 1 \times 10^{-4}$ for coding variants in *PKLR*, *BUB1B* and *TUBB1*, three strong candidate genes) in the MHI+WHI discovery sample for validation in SHIP (**Supplementary Table 2**). We identified six new genetic associations with hematocrit, hemoglobin and platelet traits that met our predetermined statistical threshold of *P*<6.8x10⁻⁸ (discussed in the main text). There are also several coding variants in strong candidate genes that did not reach our stringent statistical threshold (**Supplementary Table 2**). This includes a rare missense variant in *PKLR* (rs61755431, p.Arg538Gln or p.Arg569Gln, MAF=0.3%) associated with hematocrit $(P=2.3 \times 10^{-5})$ and hemoglobin $(P=1.1 \times 10^{-6})$ levels. *PKLR* encodes a pyruvate kinase present in red blood cells and rare familial mutations in this gene cause hemolytic anemia (MIM 609712). We found an association between a common missense variant (rs1260326, p.Leu446Pro, MAF=43%) in the glucokinase regulator (GCKR) gene and WBC count $(P=8.5 \times 10^{-8})$: although the same SNP has been associated with many human traits by GWAS, including metabolic¹², lipid¹³ and platelet⁷ traits, this is the first report of an association with WBC.

We can increase power to find associations between complex traits and rare variants by combining them into functional units (*e.g.* genes)¹⁴. We used two tests to detect association between rare/low-frequency variants and hematological traits: a burden (T1) test and the sequence kernel association test (SKAT), and a *P*<3.9x10⁻⁷ threshold to declare significance. We only considered nonsense, missense and splice site variants, and used a minor allele frequency inclusion cutoff of 1% and 5% for the T1 test and SKAT, respectively. Using this strategy, we prioritized from the MHI+WHI meta-analysis 23 genephenotype pairs for replication in SHIP (**Supplementary Table 4** and **Supplementary Figs. 2-3**). Of the top five genes, four were already highlighted by our analysis of rare/low-

frequency variants (*EPO*, *HBB*, *SH2B3* and *TUBB1*) and when we excluded the top associated rare/low-frequency variant, the gene-based signal disappeared (**Table 2**).

References

- 1. Syed, R.S. *et al.* Efficiency of signalling through cytokine receptors depends critically on receptor orientation. *Nature* **395**, 511-6 (1998).
- 2. Hu, J. & Hubbard, S.R. Structural basis for phosphotyrosine recognition by the Src homology-2 domains of the adapter proteins SH2-B and APS. *J Mol Biol* **361**, 69-79 (2006).
- 3. Park, S.H. *et al.* Structure of the chemokine receptor CXCR1 in phospholipid bilayers. *Nature* **491**, 779-83 (2012).
- 4. Fan, G.H., Yang, W., Wang, X.J., Qian, Q. & Richmond, A. Identification of a motif in the carboxyl terminus of CXCR2 that is involved in adaptin 2 binding and receptor internalization. *Biochemistry* **40**, 791-800 (2001).
- 5. Goldstein, J.I. *et al.* zCall: a rare variant caller for array-based genotyping: genetics and population analysis. *Bioinformatics* **28**, 2543-5 (2012).
- 6. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. *Am J Hum Genet* **88**, 76-82 (2011).
- 7. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. *Methods Mol Biol* **1019**, 215-36 (2013).
- 8. Forand, A. *et al.* EKLF-driven PIT1 expression is critical for mouse erythroid maturation in vivo and in vitro. *Blood* **121**, 666-78 (2013).
- 9. Wu, C. *et al.* BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. *Genome Biol* **10**, R130 (2009).
- 10. van der Harst, P. *et al.* Seventy-five genetic loci influencing the human red blood cell. *Nature* **492**, 369-75 (2012).
- 11. Thurman, R.E. *et al.* The accessible chromatin landscape of the human genome. *Nature* **489**, 75-82 (2012).
- 12. Du, P. *et al.* Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. *BMC Bioinformatics* **11**, 587 (2010).
- 13. Teslovich, T.M. *et al.* Biological, clinical and population relevance of 95 loci for blood lipids. *Nature* **466**, 707-13 (2010).
- 14. Bansal, V., Libiger, O., Torkamani, A. & Schork, N.J. Statistical analysis strategies for association studies involving rare variants. *Nat Rev Genet* **11**, 773-85 (2010).