
APPENDIX

Notation and Definitions

Consider a longitudinal study of n subjects, with outcome observation times indexed by j, for j =

0, 1, 2, 3, · · · , K+1. Y is defined as an indicator for failure (here death, or cause specific death), L

a vector for time varying covariates, and A is an exposure indicator (1:yes, 0:no). A(k) represents

exposure at time indexed by k where k = 0, 1, 2, 3, · · · , K. Likewise L(k) is the value of covari-

ate L at time k. The assumed chronological order is Y (0), L(0), A(0), Y (1), L(1), A(1), Y (2) etc.

with Y (0) = 0 for every individual in order for them to have at least one person year of observa-

tions. Note that Y (k) = 1 is defined as an individual failing by time k (just before k), provided

that Y (k − 1) = 0. Overbars are used to denote exposure and covariate history, i.e A(k − 1) de-

notes the exposure history up to time point k − 1 (A(0), A(1), A(2), A(k − 1)). We further denote

g = α, where α is any exposure regime α = α(K) = (α(0), α(1), α(2), · · · , α(K)) under a hy-

pothetical intervention and Tg and E[Yg(j)] are the counterfactual survival time and risk of failure

respectively, under the specified exposure regime g.

A counterfactual outcome is an outcome that a participant would have experienced under a hypo-

thetical exposure history, which may differ from the observed exposure history. In our notation

counterfactual exposure histories are represented with lower case letters while observed exposures

are represented with upper case notation (e.g. α(k) as opposed to A(k)), while counterfactual out-

comes are expressed with subscripts of the regime they correspond to (e.g. T0 is the counterfactual

survival time under a never exposed exposure regime).

Standard vs Causal Methods

Standard regression models relying on observational data, in the presence of time-varying con-

founders that are in turn affected by previous exposure, yield biased results. (The structure of this

association and resulting bias can be graphically represented using causal diagrams as described

by Hernán et al39.) Therefore, the inclusion of these types of time varying confounders in standard

models will not result in model parameters with a causal interpretation.
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Causal methods utilizing structural models, i.e models of the distributions of counterfactual out-

comes, can be used to estimate causal parameters of exposure effects from observational data under

specific assumptions. In observational studies where exposure is not randomized we usually rely

on three identifiability assumptions. The first is conditional exchangeability: the assumption that

among those still at risk at time k, given covariates and prior exposure, the counterfactual outcome

at time k + 1 is conditionally independent of the observed exposure, or Yg(k + 1)q A(k)|L(k) =

l(k), A(k − 1) = α(k − 1), Y (k) = 0, for all α(k − 1) and l(k). Under this assumption there is

no unmeasured confounding given measured covariates L(k). It is important to note that this is an

unverifiable assumption since we lack data on counterfactual outcomes.

The other two assumptions are consistency and positivity. Consistency is the assumption that if a

subject with an observed history A(k) = α(k) through k, their observed outcome at j will equal

their counterfactual outcome under regime g = α(k), i.e Y (j) = Yg=α(k)(j). Positivity requires

that the probability of receiving exposure is nonzero for all non-empty combinations of covariates,

or if

fL(k),A(k−1)(l(k), α(k − 1)|Y (k) = 0)Pr[Y (k) = 0] 6= 0,

then Pr[A(k) = α(k)|L(k) = l(k), A(k − 1) = α(k − 1), Y (k) = 0] > 0, for all α(k),

where fL(k),A(k−1)(l(k), α(k − 1)|Y (k) = 0) is the density of exposure and covariate history up

to k. In occupational studies, people who are not actively employed are by definition unexposed;

therefore the positivity assumption is violated. However, because we are imposing a model and as-

suming that the model extrapolates to cover missing information in the exposure-covariate combi-

nations that are not possible, we can identify effect estimates despite the positivity violation.

Structural Nested Cumulative Failure Time model (SNCFTM) (adapted from Picciotto et al.17)

The failure time model considered in the main analysis of this study is a structural nested cumula-

tive failure time model. A cumulative failure time model operates under a rare failure assumption

and can be expressed as
E[Yg=(A(k),0)(j)|L(k)A(k−1),A(k),Y (k)=0]

E[Yg=(A(k−1),0)(j)|L(k)A(k−1),A(k),Y (k)=0]
= exp[γ(j, L(k), A(k−1), A(k);ψ?)] (1)

2



where E[Yg=(A(k),0)(j)|L(k)A(k − 1), A(k), Y (k) = 0] is the counterfactual risk of failure at or

before time j among those alive at time k < j, given their observed exposure and covariate his-

tory up to time k, counterfactual exposure history g = (A(k), 0) denotes an exposure history

where subjects actually have their observed exposure history up to time point k and are unexposed

thereafter and likewise exposure history g = (A(k− 1), 0) denotes an exposure history where sub-

jects only have their observed exposure history up to time point k−1 and are unexposed thereafter.

γ(j, L(k), A(k−1), A(k);ψ) is a function of exposure and covariate history including an unknown

parameter ψ with a true value of ψ = ψ?.

The model in (1) compares the conditional risk of failure at time j under two exposure histories

that can only differ at time k. Function γ(j, L(k), A(k − 1), A(k);ψ) is also referred to as a blip

function because the CFT model described models the effect for only a final blip of exposure at

time k. One possible function is exp[γ(j, L(k), A(k − 1), A(k);ψ)] = exp[ψA(k)]. A possibly

more realistic function is

exp[γ(j, L(k), A(k− 1), A(k);ψ)] = 1 + exp[ψA(k)]−1
j−k (2)

where the effect of A(k) is the same as the one above for j = k + 1, but declines as j increases

with respect to k. The function defined in (2) is actually equivalent to an AFT model similar to

the one described later in the appendix under specific assumptions38. Function (2) will be the one

used for g-estimation of the SNCFTM in this study.

G-estimation For the G-estimation process of the SNCFTM consider the function:

H(k, j, ψ) = Y (j)exp{−
j−1∑
m=k

γ(m, j(L(m), A(m− 1), A(m);ψ))} if Y (k) = 0

= 1 if Y (k) = 1

where the mean of this quantity is the same as E[Yg=(A(k−1),0)(j)], conditional on covariate history

when ψ = ψ?, based on the assumptions of consistency and conditional exchangeability from

above.

We estimate E[A(k)|L(k), A(k − 1), Y (k) = 0] using a pooled logistic model for the exposure:

logitPr[A(k) = 1|L(k), A(k−1), Y (k) = 0] = β0(k)+β1A(k−1)+β2L(k) (3)
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The estimator ψ̂ solving the estimating equation U(ψ) = 0 is the g-estimate for this method and a

consistent estimate of ψ?, where:

U(ψ) = 1
n

∑n
i=1

K∑
k=0

(1− Yi(k))× {Ai(k)−

E[A(k)|L(k), A(k−1), Y (k) = 0]}×
j=k+1∑
K+1

H(k, j, ψ) (4)

In order to obtain this estimate we use the Newton-Raphson optimization method on a quadratic

form of U(ψ), after an initial grid-search of ψ values to determine the initial value for the optimiza-

tion procedure. The procedure was repeated in 200 bootstrap samples to obtain a 95% confidence

interval for the g-estimate ψ̂.

We then go on to calculate marginal (unconditional) risks under certain exposure regimes. The

function used in (2) satisfies the assumption of no exposure-time varying confounder interaction

on the multiplicative failure scale required for this step17. We chose to estimate risks for ‘never

exposed’: g = 0 and ‘always exposed’: g = 1 and compare these to the risks under the natural

course of exposure in the observed data.

To obtain marginal risks under different interventions we use the ψ̂ estimate from above to generate

the different counterfactual risks as described in detail by Picciotto et al17.

Hazard Ratio approximation: The counterfactual conditional risk ratio in equation (1) can approx-

imate the conditional HR(t|L(k), A(k)) =
λT

(A(k),0)
(t|L(k),A(k))

λT
(A(k),0)

(t|L(k),A(k)) at the time t ∈ (k, k + 1], under

the assumptions that the probability of failure is small and that the HR is constant in the interval

(k, k + 1]17,38.

Structural Nested Accelerated Failure Time model (SNAFTM) (adapted from Chevrier et al.16

and Hernán et al.39)

AFT model: Unlike the Cox proportional hazards model, which measures effect on the hazard ratio

scale, the accelerated failure time (AFT) model measures effect on the survival time ratio scale.

The structural AFT used in our analysis is Tα = T0exp[−ψ?α] where the causal parameter −ψ?

can be expressed as exp[−ψ?] = Tα=1

Tα=0
, where Tα=1

Tα=0
is the ratio of median survival times measuring

4



the effect of exposure A on mortality.

We rearrange the above model in the form :

T0 = Tαexp[ψ
?α]

which assumes that each subject’s counterfactual unexposed survival time T0 = Tα=0 is a simple

function of Tα=1 and ψ?. In order to account for time varying exposures, the above model can be

extended to:

T0 =

∫ Tα

0

exp[ψ?α(t)]dt

where now [exp(−ψ?)] is the expansion or contraction in survival time comparing continuous

exposure to no exposure, or [exp(−ψ?)] =
T1
T0

. Under the assumption of consistency we substitute

counterfactual (and unobserved) variables for observed variables and the expression becomes:

T0 =

∫ T

0

exp[ψ?A(t)]dt

with observed exposure A(t) at time t replacing counterfactual exposure α(t) and the observed

survival time T replacing the counterfactual survival time Tα under counterfactual exposure history

α. The values of T0 and ψ? remain unknown.

The model is rewritten as:

H(ψ) =

∫ T

0

exp[ψ?A(t)]dt (5)

where ψ can take any value andH(ψ) = T0 only when ψ = ψ?. We apply g-estimation to equation

(5) to estimate the true value ψ?.

G-estimation: The g-estimation process models the probability of exposure at each time point k,

conditional on previous exposure and covariate history where H(ψ) for different values of ψ from

equation (5) is also entered in the model. The fitted model is as follows:

logitPr[A(k) = 1|A(k − 1), L(k), T > u(k), H(ψ)] =

β0(k)+β1A(k−1)+β2L(k)+β3H(ψ) (6)

Given the assumption of conditional exchangeability discussed earlier, the probability of receiving

treatment is independent of any counterfactual survival times once we control for exposure and
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covariate history. Therefore under the true value of ψ = ψ?, the parameter β3 will be 0 as H(ψ?)

is not a predictor of the probability of exposure. Equation (6) is fitted for a grid of ψ and H(ψ)

values. Using the Wald test for the parameter β3 the true value ψ = ψ? is estimated as the one with

β3 closest to 0 (and consequently a p-value for the Wald test closest to 1). 95% confidence intervals

for ψ? can also be estimated from this process, using the values of ψ on either side of ψ? for which

the Wald test p-value is closest to 0.05 as the bounds for the 95% confidence interval.

Administrative Censoring: Equation (6) applies when all individuals are followed until failure.

However, administrative censoring is present because not all participants are actually followed

until failure. There is a right-censoring of those people who have not yet failed, and they are

censored at the end of follow up with their true survival time T having never been observed. If

we simply include all individuals with observed survival times we induce a form of selection bias.

This is because if exchangeability holds at the beginning of follow up, certain individuals who are

exchangeable at baseline but have different exposure histories will be differentially included in the

analysis based on administrative censoring.

In order to avoid this, we must somehow account in the analysis if an individual’s survival times

would have been observed under all possible interventions. We thus alter the variable H(ψ) in

equation (6) to a variable ∆(ψ) where ∆(ψ) is a function of H(ψ) and the maximum length of

follow up K for each individual given the administrative end of follow-up.

While any function ofH(ψ), K can be used in equation (6,) we use the function ∆(ψ) = min(H(ψ), K)

for ψ ≥ 0 and ∆(ψ) = min(H(ψ), exp(ψK)) for ψ < 012. The pooled logistic model of the ex-

posure used in g-estimation thus becomes:

logitPr[A(k) = 1|A(k − 1), L(k), T > u(k),∆(ψ)] =

β0(k)+β1A(k−1)+β2L(k)+β3∆(ψ)+β4K (7)

with ∆(ψ) replacing H(ψ) and K entered into the model as it is part of the revised conditional

exchangeability assumption

∆(ψ?)q A(k)|L(k) = l(k), A(k − 1) = α(k − 1), T > u(k), K for all α(k − 1) and l(k).
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In our analysis we rearrange equation (8) to

logitPr[A(k) = 1|A(k − 1), L(k), T > u(k), Emp = 1,∆(ψ)] =

β0(k)+β1A(k−1)+β2L(k)+β3∆(ψ)+β4K (8)

thus restricting to those who are actively employed (Emp=1), as the probability of exposure among

those not actively employed is by definition equal to zero. We fit equation (8) for various ψ and

∆(ψ) values to obtain an estimate ψ̂ and and 95% confidence intervals for the true value ψ? using

a Wald test for parameter β3 as described above. As in the CFT model described above, an esti-

mate ψ̂ for ψ? can be obtained using an estimating equation but because such an equation is not

differentiable on ψ, a grid search or non-gradient based optimizers have to be used as opposed to

standard optimization methods38. We did not use such an estimating function for the AFT model

in our analysis.

Hazard Ratio approximation: Under the assumption that survival time follows a Weibull distribu-

tion, we can adjust the AFT model parameter estimate ψ̂ to the equivalent of the parameter from

a marginal structural Cox model θ̂, where exp(θ̂) is the hazard had all subjects been continuously

exposed divided by the hazard had all subjects been never exposed. Under the Weibull distribution

assumption, θ = φψ? where φ is the is the shape parameter of the Weibull distribution of survival

time T0 obtained by the AFT model39.
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