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I. PROPERTIES OF MODIFIED ODES

Our extended version of ODES is based on the fol-
lowing lemma. In this lemma and proof, we have used
the same notation as in the ODES paper [1] for the con-
venience of the reader. In a connected graph, we define
a cut vertex to be a vertex whose removal disconnects
the graph into two or more connected components.

Lemma 1 Let G be a connected edge-weighted graph
where every edge has a positive weight that is at most
1. If G contains three or more nodes and has density
den(G) ≥ 1/2, then G contains at least one noncut
vertex w whose removal from G does not decrease the
density of G.

Proof: The proof is trivial if there is no cut vertex
in G. Let us assume that v is a cut vertex in G. Let S be
the smallest connected component of G−v and let A be
the subgraph of G induced by the union of nodes in S
and v. Let G have n vertices. We use E(G) to denote the
set of edges in G. Since v is not a cut vertex of A, there
exists at least another such non-cut vertex (say, w) in A.
Since w is not a cut vertex of A, it is not a cut vertex
of G either. Moreover, w has the same neighbors in A
and G. Therefore, the weighted degree d(w) of w (in A
as well as in G) is at the most the number of vertices in
S, which is at most n− 1/2. Since the density of G is
at least 0.5, we have

den(G) =
2

n(n− 1)

∑
e∈E(G)

w(e) ≥ 1

2

Ahsanur Rahman is with the Department of Computer Science,
Virginia Tech, Blacksburg, VA, USA.
E-mail: ahsanur@vt.edu

Christopher L. Poirel is with the Department of Computer Science,
Virginia Tech, Blacksburg, VA, USA.
E-mail: poirel@vt.edu

David J. Badger is with the Department of Computer Science,
Virginia Tech, Blacksburg, VA, USA.
E-mail: dbadger@vt.edu

Craig Estep is with the Department of Computer Science, Virginia
Tech, Blacksburg, VA, USA.
E-mail: craigy@vt.edu

T. M. Murali is with the Department of Computer Science and the
ICTAS Center for Systems Biology of Engineered Tissues, Virginia
Tech, Blacksburg, VA, USA.
E-mail: murali@cs.vt.edu

Rearranging terms and combining with the bound on
d(w), we obtain

d(w) =
n− 1

2
≤ 2

n

∑
e∈E(G)

w(e)

Cross-multiplying and subtracting both sides of the in-
equality from n times the total weight of the edges in
G, we get

n

 ∑
e∈E(G)

w(e)− d(w)

 ≥ (n− 2)
∑

e∈E(G)

w(e)

Dividing each side by (n− 2)(n− 1)n, we get
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 ∑
e∈E(G)

w(e)− d(w)


(n− 1)(n− 2)

≥

2
∑

e∈E(G)

w(e)

n(n− 1)

By definition, the left and right hand sides of this
inequality are the density of G−w and G, respectively,
i.e.,

den(G− w) ≥ den(G)

Since the removal of the non-cut vertex w from G cannot
decrease the density of G, we have completed the proof.
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