
Appendix S1: Excitation rate of fixed molecules  

Let’s consider a fluorophore of fixed orientation defined by spherical angles θ and ϕ. We 

ask what is the rate of excitation of that molecule by a circularly or linearly polarized laser. Let's 

assume that the excitation rate of a rapidly tumbling molecule is k.  

We start with a linearly polarized laser, of coordinates 
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. The sinus of the angle φ between the laser and the fluorophore dipole 

is given by the vectorial product. 
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Therefore: ϕθϕθθφ 222222 coscossincossin1cos =−−=  

The rate of excitation of the chromophore is given by: 
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knowing that kk =ϕθ ,   
(because the average over a population of randomly oriented 

fixed molecules is equivalent to a single tumbling molecule). Now: 

( ) ϕθϕθϕθϕθ ddpkk ∫= ,,,  with ( ) 1, =∫ ϕθϕθ ddp  

So now comes the question of what is ( )ϕθ ,p  for a random distribution of molecules 

over half a sphere: 
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Hence: πα 2/1= and ( ) ( )θπϕθ cos2/1, ×=p  

Therefore, in order to calculate k’ we have:  

( ) ( ) ( ) ϕθθϕθπϕθ ddkkk ∫×== coscoscos'2/1 22
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( ) ( ) ( ) ϕϕθθθπ ddkk ∫∫×= 22 coscoscos'2/1  

The first integral is equal to: 
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The second integral is equal to: 
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Overall: 3/'3/2'2/1 kkk =×××= ππ  

Thus in the case of a linearly polarized laser: 
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In the case of a circularly polarized laser, we have to average over the angle ϕ, and  
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