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ABSTRACT The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has
been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual
molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimen-
tally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here,
we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus
diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We
computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10�6 Ns/m and 104

Ns/m2, respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the
amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined
coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found
to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be
the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including
viscous effects.
INTRODUCTION
Spider silks provided by the major ampullate (MA) glands
are used by the spider to form the web frame and the spider’s
dragline. MA silk has been the most studied silk, as it has
excellent mechanical properties and an unusual combination
of high stiffness, toughness, strength, and extensibility,
which are rarely observed in synthetic high-performance
fibers (1,2). Silk fiber mechanics are ultimately defined by
the nanoscale structure of the fiber. The repetitive segment
of spider dragline silk is dominated by iterations of alanine-
and glycine-rich regions. The alanine motifs are composed
of a polyalanine (A)n or polyalanylglycine segment (GA)n,
where n ranges from 4 to 15 amino acids (3–7). (A)n- and
(GA)n-motifs form b-sheets that stack together and thereby
form rigid crystals (8–10), which are 2–5 nm in length on
a side (11). These constitute 10–25% of the fiber volume
in spider silk (12,13). This glycine-rich sequence motifs
form the amorphous phase, which is predominantly disor-
dered (1,9,14), but also comprise GGX- and GPGXX-
motifs, which have been suggested to form 31 -helices and
b-turns, respectively (15–21).

As first suggested by Termonia (22) and generally
accepted today, the stiff b-sheet crystals furnish silk fibers
with a high stiffness and yield strength, whereas the amor-
phous glycine-rich matrix provides extensibility. However,
how the mechanical properties of these individual constitu-
ents and their interplay give rise to the typical highly
nonlinear stress-strain behavior of silk fibers (12,23,24) is
still largely unknown. We have recently developed a finite
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element model of spider silk fiber in a bottom-up approach
based on molecular dynamics (MD) simulations, and
were able to predict crystallinity-dependent fiber stiffness,
strength, and toughness in agreement with experiments
(25). However, this model relied on a linearly elastic
stress-strain behavior of silk, and thus cannot help to under-
stand or predict the intriguing nonlinearity of silk mechanics
and its time-dependent behavior. Another recently devel-
oped nonlinear model made use of atomistic simulations
for parameterization, but was otherwise based on an
empirical formula to reproduce the particular stress-strain
behavior observed in loading experiments (26), and also
did not take its time-dependency into account.

Thus, correctly assessing plastic and viscous deforma-
tions of the crystalline and amorphous phases, respec-
tively, are required to integrate their nanoscale mechanical
response into a more realistic, purely bottom-up, and there-
fore, predictive macroscopic fiber model. The mechanical
response of the crystalline phase of MA spider silk has
been comparably well studied (25,27–29). The crystal
component of silk largely behaves like an elastoplastic ma-
terial, which undergoes nonreversible rupture in response to
applied forces (30). The second component, the amorphous
phase, in contrast, is much less well characterized. The
large extensibility and viscous behavior as evidenced by
the time-dependency of silk mechanics in tensile loading
experiments (31–34) is likely to originate from the amor-
phous phase due to sliding of peptide chains, that is, internal
molecular friction. Indeed, the amorphous phase can at low
forces reversibly extend, as suggested by the increased
orientation of chains along the fiber axis observed in stretch-
ing experiments (12,35,36). Similarly, the large hysteresis
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mailto:frauke.graeter@h-its.org
http://dx.doi.org/10.1016/j.bpj.2014.04.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.04.033&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.04.033
http://dx.doi.org/10.1016/j.bpj.2014.04.033
http://dx.doi.org/10.1016/j.bpj.2014.04.033
http://dx.doi.org/10.1016/j.bpj.2014.04.033


2512 Patil et al.
(~65%) observed in such loading experiments is thought
to arise from the internal friction in the amorphous phase
(12,34,37).

The historic concept for friction encountered when two
materials in contact move, or tend to move, relative to
each other, has become known as the Amontons-Coulomb
model (38,39). This model is stating that friction force is
proportional to normal load but independent of apparent
contact area and sliding velocity. In the presence of adhe-
sive contacts and for low sliding velocities, the crossover
to viscous friction, where friction force becomes propor-
tional to sliding velocity, is described by Schallamach’s
phenomenological model (40,41), which treats the stochas-
tic breakage and rebinding of individual adhesive bonds.
Recent studies started to bridge the considerable concep-
tual gap between models for friction between adhesive
macroscopic bodies and the way friction is invoked in pro-
tein folding studies. Namely, valuable insight was gained
into single-molecule friction by using MD simulations
of adsorbed peptides on surfaces (42,43). Furthermore,
recent work on viscous friction of hydrogen-bonded matter
addressed the issue of peptide friction on polar sur-
faces, and used stochastic theory to extrapolate simulation
data into the experimentally important viscous friction
regime (44).

This work focuses on the rate-dependent behavior of the
amorphous phase of MA silk fibers. We assessed friction
forces between the peptide chains of the amorphous phase
by using MD simulations. This allowed us to deduce a fric-
tion coefficient and coefficient of viscosity at the viscous
limit. We employed the coefficient of viscosity in proof-
of-principle finite element models of the amorphous phase
of silk. Our quantitative analysis of the viscoelasticity of
the amorphous phase presents an important step toward
developing a bottom-up viscoelastoplastic model for MA
silk fibers.
MATERIALS AND METHODS

MD simulations

We modeled the amorphous phase of spider silk from the MA gland of

Araneus diadematus (12). The all-atom model comprises the 24-residue

sequence (GPGGYGPGSQGPSGPGGYGPGGPG, where G, P, Y, S, Q

are glycine, proline, tyrosine, serine, and glutamine, respectively) known

to form the amorphous phase in Araneus diadematus spider silk fibers.

We constructed bundles of 4, 8, and 24 fully stretched peptide chains using

the software visual molecular dynamics (45). For subsequent MD simula-

tion, we used the GROMACS 4.5.3 package (46), and the OPLS-AA force

field (47) for the protein. Simulation boxes of ~18.0 � 4.5 � 4.5, ~18.0 �
6.5 � 6.5, and ~19.0 � 8.7 � 8.5 nm3 for the bundles of 4, 8, and 24 pep-

tide chains were used, respectively. The bundles of the amorphous chains

were subsequently solvated in TIP4P water (48). The solvent included Na

and Cl ions with a concentration of 0.1 mol/liter, resulting in a system size

~0.1 million atoms for the 8 peptide chains bundle, and ~0.06 and ~0.2

million atoms for the bundles of 4 and 24 peptide chains, respectively.

Periodic boundary conditions were employed to remove artificial boundary

effects. We chose a cutoff of 1.0 nm for nonbonded interactions, and the
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particle mesh Ewald method (49) to account for long-range electrostatic

interactions. To increase the simulation time step, we used LINCS (50)

to constrain all bond vibrations. A time step of 0.002 ps was used. Simu-

lations were performed in the NpT (isothermal-isobaric) ensemble with a

temperature of 300 K and a pressure of 1 bar. We used Nosé-Hoover

(51,52) temperature coupling with a coupling time constant 0.1 ps, and

Parrinello-Rahman (53,54) pressure coupling with a coupling time con-

stant of 1 ps.

Each of the three simulation systems were relaxed by energy minimiza-

tion. We then performed 500 ps position-restrained simulations to equili-

brate the solvent, subjecting each protein atom to a harmonic potential

with a force constant of 1660 pN. Finally, all models were fully equilibrated

for 200 ns allowing the silk peptides to adopt relaxed conformations and to

partially entangle within the bundle. The resulting equilibrated simulation

systems served as starting points for force-probe molecular dynamics

(FPMD) simulations (55).

In the FPMD simulations, half of the peptide chains were pulled in one

direction and the other half pulled in the opposite direction, as schemati-

cally shown in Fig. 1, A and B. Force was applied by attaching one-dimen-

sional harmonic springs with a force constant of 830 pN acting at the

center of mass of the alanines at the C- and N-termini. The pulling direc-

tion for each peptide was chosen such that the peptide chains were maxi-

mally surrounded by peptide chains pulled in the opposite direction, as

shown in Fig. 1 B. The springs were moved with constant velocities

ranging between 0.01 and 100 nm/ns. There was no external force exerted

on the peptides perpendicular to the pulling direction. The FPMD simula-

tions were stopped after the amorphous peptide chains separated from each

other.

To obtain a shear stress, which then can be converted into a coefficient of

viscosity, we calculated the contact area between the peptide chains, which

is the resistance area against sliding. Microscopic contact areas between a

polymer surface and a crystalline surface as well as between polymer sur-

faces have been previously calculated on a molecular scale to determine

shear stresses (56,57). Here, we used the solvent accessible surface area

as the peptide-peptide contact area. We subtracted the solvent accessible

surface area of the whole bundle from the sum of the areas of only the pep-

tide chains pulled in one and in the other direction, when considered in

isolation, which then, after division by two, gives the interface or contact

area of the peptides between each other. We used a solvent probe of radius

0.14 nm, which is commonly used for water, and is also roughly an average

radius of heavy atoms in proteins, i.e., relevant for peptides in contact with

other peptides.
Finite element model

For the finite element (FE) modeling of the amorphous phase, the commer-

cial solver LS-DYNA (version: ls971s R5.1.1) (Livermore Software Tech-

nology ) was used together with the Pre/Post tool LS-Pre-Post (Livermore

Software Technology). A rectangular cube of the amorphous phase was

modeled by using 8-node hexahedron (brick8) elements. The model of the

rectangular cube was fixed at one end and pulled at another end. See

Fig. 4A, which shows the schematic representation of themodel with bound-

ary conditions. A viscoelastic material model, *MAT_VISCOELASTIC

(*MAT_006) (Livermore Software Technology), was used for these ele-

ments, which is based on the Power Law viscoelastic model. Hereby, the

time-dependent shear modulus, GðtÞ,

GðtÞ ¼ GN þ ðG0 � GNÞexpð�atÞ; (1)

is a function of the long term shear modulus, GN, the short term shear

modulus, G0, and the decay constant, a. The short term shear modulus,

G0 ¼ 1.66 GPa, is dominant near t ¼ 0, although near t ¼ N, the long

term shear modulus, GN, is dominant (see the Supporting Material for

the calculation of G0). The decay constant, a, determines the rate at which

the long term modulus starts dominating the material response. Here, the



FIGURE 1 Setup and results of a representa-

tive FPMD simulation of an 8-chain bundle at

0.01 nm/ns. Schematic representation of the 8-

chain bundle model in front view (A) and side

view (B). For each peptide chain, a harmonic

spring that moves with constant velocity V was

connected to one terminal residue (solid spheres)

and the other terminal residue is free. The friction

force F is acting in the opposite direction to the

applied velocity. In the pulling simulations, 4-pep-

tides (in red color) are pulled in one direction and

the remaining 4-peptides (in blue color) are pulled

in the opposite direction. (C) Friction force of

4-peptide chains in one direction as a function of

time, and (D) displacement of the terminal residue

as a function of time. Snapshots show the sliding of

peptide chains from each other taken at times that

are marked by arrows.
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decay constant was defined as a ¼ G0 /h, where h is the coefficient of vis-

cosity, and was set to h ¼ 1.0 � 104 Ns/m2. This coefficient was obtained

from FPMD simulations as described previously.
RESULTS AND DISCUSSION

To assess the frictional forces within the amorphous phase
of spider silk at atomistic scale, we used atomistic FPMD
simulations. The simulation setup is depicted in Fig. 1, A
and B, showing a front and side view of the 8-chain bundle
model, respectively. In our simulations, we used 24-residue
peptide chains of the amorphous phase of Araneus diadema-
tus spider silk (for details on the model set up and boundary
conditions see Materials and Methods). A harmonic spring
was connected to one terminus of the peptide chain, and
moved at constant velocity, although the other terminus of
the peptide was kept free to move. By pulling half of the
amorphous peptide chains in one direction, and the other
half in the opposite direction, we could measure the force
and displacements upon sliding the amorphous peptide
chains relative to each other within the bundle. Fig. 1 C
shows a typical force profile and related structures of the
8-chain bundle model. The resulting average displacement
of the center of mass of the pulled peptide chains in one
direction is shown in Fig. 1 D.

After an initial phase of local adhesive bond breaking
between peptide-peptide and bond rotation, which occurred
mostly near the point of load application (until 100 ns), we
observed a number of stick-slip events involving collective
adhesive bond breaking of the initially relaxed and en-
tangled peptide bundle (horizontal bars in Fig. 1, C and
D). Slipping of chains within the bundle is reflected by a
sudden increase in the displacement of terminal residues
(Fig. 1 D) along with a significant decrease in force
(Fig. 1 C). At the peak force, a maximum number of adhe-
sive bond breaking between peptide-peptide occurred in
the amorphous phase, resulting in a sudden drop of interac-
tions between chains, and the peptide chains continue
to slide from each other with low resistance. Finally, four
chains were detached from the 8-chain bundle (around
700 ns), and the remaining low frictional force was solely
caused by dragging the bundles through water.

The obtained peak frictional force of ~1450 pN comprises
both peptide-peptide and peptide-solvent friction, as previ-
ously shown for a similar system (44). We next separated
the frictional forces within the silk peptide bundle from
Biophysical Journal 106(11) 2511–2518
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frictional forces with water. To this end, we compared the
peak forces obtained for the 8-chain bundle from FPMD
simulations as described previously to the peak force
required to pull a 4-peptide chain bundle with the same pull-
ing velocity through water, as observed in additional FPMD
simulations with all chains pulled in the same direction.
Fig. 2 shows the frictional force per residue for dissociating
the bundle (red), for dragging through water (green), and
their difference, i.e., the peptide-peptide friction (black).
Data was obtained at different pulling velocities, and aver-
ages and standard errors over four independent FPMD sim-
ulations are given. Note that the friction force corresponds
to an effective mean force, i.e., we assume that force is on
average equally shared by all residues.

For low velocities (<4 nm/ns), total friction forces and
peptide friction forces are of similar magnitude, i.e., water
gives rise to an only minimal resistance on the peptide chain
sliding. For velocities beyond 4 nm/ns, peptide-water fric-
tion substantially contributes to the total frictional force.
We note that we did not observe water molecules within
the peptide bundle, so that friction with water is effectively
restricted to the outer peptide surface in our simulation sys-
tem, i.e., peptide-peptide friction is dry. Fig. 2 shows that
the water friction force grows nearly linearly with applied
velocity. A straight line would follow the linear viscous
law, Fw =N ¼ g0 � V (44), where, Fw is the water friction
force, N the number of residues, and V the applied constant
velocity. From the simulations, the per residue friction coef-
ficient, g0, with water is � 0:8� 10�12 Ns/m, which is very
close to the experimental value of bulk water of 1� 10�12

Ns/m (60,61).
To assess the dependency of the computed forces on

the size of the bundle, we repeated the FPMD simulations
with two different amorphous peptide chain systems,
namely a 4-chain bundle (with 2 chains pulled in each direc-
tion), and a 24-chain bundle (with 12 chains in each direc-
FIGURE 2 Friction force per residue ðF=NÞ as a function of pulling

velocity (V) for the 8-chain bundle. Both peptide-peptide and peptide-water

friction contribute to the total friction.
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tion). We obtained similar results (within the error) for
the total friction force per residue versus pulling velocity
for the two systems, namely an 8- and 24-chain bundle
(see Fig. S1), suggesting the frictional forces to be indepen-
dent from the simulation system size beyond the 8-chain
bundle. In the following, results for the 8-chain bundle are
presented.
Viscous friction coefficient

In the presence of adhesive contacts and for low sliding ve-
locities, the crossover to viscous friction is described by the
general Schallamach’s phenomenological model (62,63).
For large velocities, the linear viscous law describes the fric-
tion coefficient, and allows a rough estimate of the friction
coefficient in the viscous regime. However, it does not
describe the crossover from large and intermediate veloc-
ities to the regime of linear friction at small velocities. In
the experiments, such as force spectroscopy experiments
or when biological molecular motors are active, the applied
external force causes molecular motions in the mm/s range.
Thus, we are experimentally always in the viscous linear
response regime, where friction forces are proportional to
velocities. To extract the viscous friction coefficient from
the sliding of silk peptide chains in our simulations, we
have to extrapolate our data to the viscous regime.

To this end, we used a stochastic model that describes the
full velocity dependence of the friction force per residue (44).
The steady-state friction coefficient is obtained from the Fok-
ker-Planck equation in the presence of an external force and a
corrugated periodic potential. The model considers a single
particle moving in a one-dimensional corrugated potential
of the form of UðxÞ ¼ mUbondðcos½2px=a� � 1Þ=2, with a
lattice constant, a, the cooperativity of bonds, m, and a
bond strength, Ubond. In the Fokker-Planck equation, bond
refers to a peptide-peptide adhesive bond. As proposed
earlier (44), the modified equation of the friction coefficient
per residue can be written as

gresi ¼ g0 þ
g0

m
J

�
maFamorph

kBTN
;
mUbond

kBT

�
: (2)

The first term on the right describes the friction in the
high-velocity limit, which in all our fits we approximated
by the friction coefficient in bulk water per residue,
g0 ¼ 0:8� 10�12 Ns/m. The second term describes the fric-
tion due to the corrugated potential. It is proportional to the
scaling function J that describes the friction coefficient,
subject to the driving force, Famorph=N and diffusing in the
sinusoidal potential, UðxÞ, which follows from the closed-
form solution of the Fokker-Planck equation. Note that we
here again assume the friction force Famorph to be equally
distributed on all residues.

The stochastic model is used to fit the simulation data set
by varying the bond cooperativity, the strength of bonds, or
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the lattice constant. Fig. 3 A shows different fits of the
stochastic model to our simulations data. When fixing
the strength of individual residue bonds to the value
mUbond=kBT ¼ 17.6, and treating the periodicity a as fitting
parameter, which controls the lateral position of the scaling
function (red lines in Fig. 3 A), we obtained a value ma of
3:150:7, which covers the range of the simulation data.
Fixing the parameter ma to 3.15 and varying the strength
of individual residue bonds (red solid and black lines in
Fig. 3 A) yields a strength of mUbond=kBT ¼ 17:650:7.

Using these fit parameters, for high velocities, individual
residues experience the dominant resistance from water,
therefore, the friction coefficient obtained from simulations
is � 0:8� 10�12 Ns/m, which is very close to the experi-
mental value of bulk water of 1� 10�12 Ns/m (60,61).
FIGURE 3 Comparison of the simulation data set with the solution of the

Fokker-Planck equation. (A) Peptide friction coefficient per residue as a

function of peptide friction force per residue. Red and black lines present

from fits of the stochastic model to the simulation data with varying ma

and mUbond=kBT, respectively. The solid red line shows the best fit to the

data. (B) Simulated coefficient of viscosity per residue as a function of shear

stress � dx=N. Black lines present from fits of the stochastic model to the

simulation data with varying mUbond=kBT. The most suitable fitting scheme

is the solid black line.
The extrapolation to low velocities gives a friction coeffi-
cient per residue for the amorphous phase of spider silk of
3:551:0� 10�6 Ns/m.

On this basis, we next extracted the primary quantity of
interest, the coefficient of viscosity h for the amorphous
phase of spider silk, from our MD simulations. h is defined
by Newton’s law of shear viscosity, with t ¼ h� dv=dx,
where t is the shear stress, and dv=dx is the shear velocity
or velocity gradient. The calculation of the velocity gradient
is detailed in the SI. The shear stress t, causing a shear
deformation of the material by relative sliding, is defined
as the sliding frictional force per unit contact area. We
here calculated the peptide-peptide contact area from the
solvent accessible area of the peptides. Fig. 3 B shows the
coefficient of viscosity per residue, h ¼ t � dx=ðVNÞ from
the solution of the Fokker-Planck equation, as a function
of t � dx=N. Fits with varying potential heights are given,
with mUbond=kBT of 18.71 and ma of 1.15 representing the
data best (solid line), especially in the regime of the steep
increase of the coefficient of viscosity. From the simulation
results at high velocity, the coefficient of viscosity or
dynamic viscosity per residue with water is ~0.8 �10�3

Ns/m2, which is very close to the experimental value of
the dynamic viscosity of water 1� 10�3 Ns/m2 (64,65).

From the extrapolation to low velocities, we obtained a
coefficient of viscosity of the amorphous phase of spider
dragline silk of 150:5� 104 Ns/m2, which is in the range
of polymer melts (103 to 105Ns=m2) (66,67).
FEM to the amorphous phase

We next determined the rate-dependent behavior of the
amorphous phase by finite element modeling, using the co-
efficient of viscosity determined from MD simulations as
described previously. Viscoelasticity is the property of ma-
terials that exhibit both viscous (dashpot-like) and elastic
(spring-like) characteristics when undergoing deformation.

In our previous work, the amorphous phase was studied as
an elastic material with a Young’s modulus of 2.7 GPa and a
Poisson’s ratio to 0.33, and the elastic parameters were
determined by MD studies (25). In this work, we assessed
the time-dependent stress-strain behavior of a representative
rectangular box (Fig. 4 A) of the amorphous phase in terms
of three typical mechanical properties, namely stress relax-
ation (Fig. S3, A and B), creep (Fig. S3, C and D), and hys-
teresis. Hysteresis, the dissipation of mechanical energy
under cyclic loading of a material, is a common feature of
viscoelastic spider silks. Hysteresis is defined as the area un-
der the stress-strain curve of one loading-unloading cycle.
We considered strain rates between 100 and 0.01 s�1,
which is the range commonly applied to spider silk fibers
in experiments (12,68–70). In loading-unloading tests, the
amorphous phase sample was loaded to a strain of 0.2
and unloaded to zero strain. Fig. 4 B shows the stress-strain
curves for the loading of the viscoelastic amorphous
Biophysical Journal 106(11) 2511–2518



FIGURE 4 FE modeling of the amorphous phase. (A) Schematic picture

of the FE model with boundary conditions. (B) Stress-strain curves for the

amorphous phase of spider silk for the different constant strain rate loading

and unloading. The area inside the hysteresis loop is the energy dissipated

due to internal friction.
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material with different constant strain rates. As expected,
stress-strain curves are dependent on the rate of straining,
that is, the faster the stretching, the larger the stress required.
We observed for most of the strain rates a significant hyster-
esis. Load cycle experiments by Gosline (12) gave a hyster-
esis for MA silks of ~65% for a constant strain rate in the
range of 20–50 s�1. In close agreement, our studies suggest
a hysteresis of ~70% in this range of constant strain rates.

We note that our model only includes the amorphous
phase, which supposedly is the major player in the visco-
elastic response of silk, but it is also likely to be altered in
its mechanical response by the incorporation with crystals.
CONCLUSION

Here, we have quantified the viscous friction inherent to the
amorphous phase of Araneus diadematus silk using MD
simulations. The friction coefficient of the amorphous phase
is in the order of 10�6 Ns/m, which is similar to the one
derived for other protein bundles (71), and a coefficient of
viscosity in the order of 104 Ns/m2, which is similar to poly-
mer melts. According to a finite element analysis of only the
Biophysical Journal 106(11) 2511–2518
amorphous phase, this magnitude of the coefficient of vis-
cosity can account for the strain-rate-dependent hysteresis
commonly observed in loading-unloading tests of silk fi-
bers. This suggests the amorphous matrix, i.e., the disor-
dered sequences in spidroins, to be the major determinant
of the viscosity of spider silk. Crystals, instead, can be pri-
marily considered as elastoplastic materials.

Our analysis thus paves the way for a finite element model
of silk fibers as a viscoelastoplasticmaterial, which combines
elastoplastic crystals and a viscoelastic amorphous matrix, to
assess the determinants of its outstanding toughness.

Dragline silks are generally composed of two major pro-
tein components, which are spidroin type I and II proteins.
Dragline of Araneus diadematus, which is the silk investi-
gated here, consists of ADF-3 and ADF-4 (Araneus diade-
matus fibroin), and it remains unclear whether additional
proteins play a significant role in silk assembly and the final
silk structure (5,72). It is assumed that, based on amino acid
composition, within the dragline fiber the molecular ratio
between ADF-4 and ADF-3 is ~3–2 (5,72). In the amor-
phous matrix, GPGXX and GGX motifs in ADF-3 are likely
to form b-turn spirals and 31-helices, respectively, whereas
ADF-4 features only the GPGXX motif with a propensity
to form b-turn spirals (73). Our study has been restricted
to ADF-4, for which we did not impose any particular sec-
ondary structure content, resulting in a largely disordered
bundle to represent the amorphous phase. Although the
order of magnitude of the forces for rupture, and thus of
the newly determined coefficient of viscosity, are likely to
remain unaffected by details of the sequence and secondary
structure, it remains to be investigated what the effect of
mixing two different spidroins and of including particular
secondary structure motifs might be on the internal molec-
ular friction.
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Effect of the system size on friction forces

Fig. S1 shows the total friction forces per residue between the peptide chains of the amorphous phase
at different pulling velocities. We have considered three simulation systems of bundles composed of 4,
8 and 24 chains to assess the system size dependency of friction forces. For the 4-chain bundle, the
total friction forces per residue were low compared to the other two simulation systems, because in
this simulation system only two chains were pulled in each direction, so that they were only minimally
surrounded by chains pulled in opposite direction. For the 8-chain and 24-chain bundles, the total friction
forces per residue were within the range of standard error. Therefore, friction forces can be considered
to be independent beyond an 8-chain bundle, and thus, all our simulations were carried out for the 8-
chain bundle simulation system, which was computationally more feasible than the 24-chain bundle, in
particular at low pulling velocities.

Calculation of the velocity gradient parameter

We calculated the coefficient of viscosity η for the amorphous phase of dragline silk from our MD simu-
lations data by using Newton’s law of shear viscosity. τ = η × dv/dx, where τ is the shear stress, and
dv/dx is the shear velocity or velocity gradient. To calculate dx, the velocity gradient parameter, we
have considered our simulation data for the fastest velocity, which was 100 m/s. The computed dynamic
viscosity of water ∼0.8×10−3 Ns/m2 was considered for the calculation. The shear stress (τ) is defined
as, τ = F/A, where F is the friction force, and A is the contact area. From the analysis of the simulation
data, with F = 6921 pN, A = 6.3 nm2, and η = 0.8×10−3 Ns/m2, we obtained an effective length of dx
= 10 nm.

Calculation of shear modulus

We considered two options to calculate the shear modulus (G) of the amorphous phase. The first option
was by assuming the chain bundle to be a cylinder, and tensile forces to be applied on it. The maximum
force that the cylinder can withstand without failure is the peak force, 6840 pN for 100 m/s pulling
velocity. The cross-section area of the cylinder was 10.12 nm2, with a radius of 3.18 nm. The strain in
the cylinder at the peak load was 0.141 by considering the shift in the center-of-mass along the pulling
direction. Therefore, the Young’s modulus of the cylindrical chain bundle was E = peak force/(cross-
section area × strain) = 4.79 GPa, G = E/(2 × (1 + ν)) = 1.66 GPa, where ν is the Poisson’s ratio.
Thus, the shear modulus for our viscoelastic amorphous phase was 1.66 GPa.

As the second option, we estimated the shear modulus from the ratio of shear stress and strain, where
shear stress is the force per unit area for the relative sliding of the peptide chains. Fig. S3 shows the
shear stress-strain behavior for the 8-chain bundle pulled at 10 m/s. We considered the initial slope of
the shear stress-strain curve and obtained a G of ∼1.7 GPa in agreement with the other estimate above.
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Supporting figure legends

Supporting Figure S1. Total friction force per residue (F/N) as a function of pulling velocity (V ) for
three simulation systems, a 4-chain, an 8-chain and a 24-chain bundle. There is no significant difference
in the F/N for the 8-chain and 24-chain bundle.
.
Supporting Figure S2. A shear stress-strain curve for the 8-chain bundle from the amorphous phase
of spider silk for 10 m/s pulling velocity with error bar (gray). In the initial portion of the curve (till
0.07), the shear stress varies linearly with the shear strain. The linear dotted line shows the slope of the
initial portion of the curve.
.
Supporting Figure S3. General behavior of the amorphous phase under constant strain and stress
loading from FEM. (A) A rectangular box of the amorphous material loaded to a constant strain of
0.1. (B) The developed stress relaxes from 75 MPa to negligible values within a few ms. (C) In a creep
test, a constant stress of 0.14 MPa was applied to the material, (D) resulting in an instantaneous elastic
straining, followed by a creep in strain up to the equilibrium value of 4.5%.
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Figure S1.



4

Figure S2.
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Figure S3.
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