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Dynamics of Cell Shape and Forces on Micropatterned Substrates
Predicted by a Cellular Potts Model
Philipp J. Albert and Ulrich S. Schwarz*
Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
ABSTRACT Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation
between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft
elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how
the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model.
The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral
bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model
and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental
data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes
and forces for micropatterns that have not yet been experimentally studied.
INTRODUCTION
During attachment to a substrate, most cell types actively
sense the adhesive geometry and stiffness of their environ-
ment by generating contractile forces in their actin cytoskel-
eton that are transmitted to the substrate through cell-matrix
contacts (1). The resulting traction force then feeds back
into biochemical circuits of the cell by a large range of
different mechanosensitive processes, with dramatic con-
sequences for cell polarization, migration, proliferation,
differentiation, and fate (2). To understand these essential
processes, it is therefore very important to measure or pre-
dict the cellular forces.

One of the biggest challenges in cell experiments is the
inherent variability in their organization, including shape
and traction forces. Cells on a homogeneously adhesive
substrate display a large variety of shapes, and even cells
with similar shapes usually differ in their internal organi-
zation. To overcome this difficulty, micropatterned sub-
strates have emerged as a very useful tool to standardize
cell experiments (3,4). In a pioneering study using micro-
contact printing, it has been shown that cell survival depends
also on the spatial extension of the pattern and not only on
the amount of ligand it contains (5). Many subsequent
studies then used micropatterns to show that many essential
cellular functions depend on shape, including the distribu-
tion of stress fibers (6), the orientation of the mitotic spindle
(7), and endomembrane organization (8).

Cellular sensing of micropattern geometry is closely
related to stiffness sensing, as both depend on cellular forces
being developed in the actin cytoskeleton. To measure
cellular forces on flat elastic substrates, different variants
of traction force microscopy have been developed (9–11).
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This approach is now increasingly combined with micro-
patterning of cell shape, for example, by using microcontact
printing (12) or deep-ultraviolet illumination of polyacryl-
amide substrates (13) or lift-off techniques on silicone rub-
ber substrates (14).

Micropatterning of cell shape is naturally complemented
by quantitative image processing and modeling. Several
types of mathematical model have been developed to predict
cell shape on micropatterns (15). The simplest type is a
contour model. It has been suggested, based on observations
of circular arc features of cells adhering to homogeneous
substrates, that Laplace-type models arise from the com-
petition of tension in the periphery (geometrically a line
tension) and tension in the cell body (geometrically a
surface tension) (16,17). Here, we call this approach the
simple tension model (STM). A quantitative analysis of
cell shape on dot patterns has shown that in the presence
of strong contour reinforcement by peripheral actin bundles,
the STM has to be modified by elastic elements, leading to
the tension-elasticity model (TEM) (18). Both STM and
TEM describe not only cell shape but also cell forces
(19). It was shown recently that the TEM emerges as a
good approximation to a bulk model for contractile cells if
the tension in the periphery dominates the bulk tension
(20,21).

The natural starting point for a bulk model of cell shape
is continuum mechanics, which can be implemented with
the finite-element method (FEM). To represent contractility
in such a framework, one can use isotropic thermoelasticity,
which represents contractility by a negative pressure in
the elastic equations, as it can be induced in passive mate-
rials by lowering temperature. This approach is commonly
used for model contraction in cell monolayers (22–24).
Recently also, such an isotropic thermoelastic model
was used to predict the shape and forces of cells on
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FIGURE 1 (a) Representation of a cell in the cellular Potts model

(CPM). Occupied lattice sites are indicated by the index 1, empty sites

by 0. With a sufficiently large number of spins, the resulting shapes are

smooth and can be compared to other models or experiments. (b) Schematic

representation of a cell (light gray) not fully spread on a crossbow-shaped

micropattern (dark gray). Both the line tension, l, and the surface tension,

s, act on the contour. Free spanning arcs form at concave parts of the

pattern. They are characterized by the spanning distance, d, and arc contour

length, L. In the tension-elasticity model (TEM), the line tension, l, of the

arcs is augmented by an elastic part. For the arc on the right side, the

anchoring points of the contour are indicated by x!1 and x!2 with tangents

t
!

1 and t
!

2. The normals n!1 and n!2 point to the center of the circular arc

with radius R. To see this figure in color, go online.
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micropatterns (25). To represent the anisotropic effect of
stress fibers, the isotropic thermoelastic approach has been
extended by an orientation-dependent order-parameter field
for contractility (26,27). The strength of a stress fiber is
determined by a positive-feedback mechanism regarding
how much force can be built up in a given direction, favor-
ing directions of large effective stiffness. Cell shapes and
forces then can be predicted if the attachment sites are
known, for example, for micropatterns (20,28) and pillar
arrays (29).

FEM-based models for cell shape usually assume linear
elastic or hyperelastic material laws for the mechanical
properties of cells. Indeed, this is often a good assumption,
for example, on the large scale of tissues or for single cells
with conserved volume. However, for cells adhering to a
substrate, the projected area is not a conserved quantity,
and volume can be exchanged with the third dimension. In
this case, the mechanical response is mainly determined
by the actin cytoskeleton, which behaves like an elastic solid
under extension but does not resist compression because
actin filaments under compression can buckle, depoly-
merize, and slide. When modeling cells on an intermediate
length scale, this fundamental asymmetry between tension
and compression can be represented by cable networks
(30,31). If actomyosin contractility is represented not by a
reduced resting length, but rather by a constant pull between
neighboring nodes, one arrives at the model of actively
contracting cable networks (18,21). Because contractile
tension dominates in the bulk and passive elastic tension
in the periphery, the corresponding computer simulations
are described well by the analytical predictions of the
TEM, both for actively contracting cable networks (21)
and for thermoelastic continuum models (20).

All of the above models are relatively static in nature
and assume that the general features of cell shape (in partic-
ular, pinning points to the substrate) are already known.
Here, we aim to develop a model that predicts the dynamics
of cell shape and traction forces on micropatterned sub-
strates without any a priori assumptions regarding the final
shape. Two types of model in particular seem to qualify
for this purpose. Phase-field models (also known as level-
set methods) have recently been used to predict cell shape
in the context of cell migration, because they are particu-
larly suited to represent propagating contours (32–34). To
represent contractility, however, cellular Potts models
(CPMs) seem to be more appropriate. CPMs are lattice-
based and represent a cell by a collection of spins (compare
Fig. 1 a), thus allowing for arbitrary cell shapes. By defining
an energy functional on the spin configuration and exploit-
ing the slow timescale for cell spreading, one can use
Metropolis dynamics to propagate the system. CPMs are
commonly used to model tissues, as reviewed in Anderson
and Rejniak (35). One prominent application is the study
of cell sorting by the differential adhesion hypothesis
(36,37). Besides their applicability to tissue, CPMs have
also been used in systems consisting of only a few cells
(38). Recently, however, a CPM was applied also to predict
the shape of single cells on micropatterned substrates (39).
Moreover, single-keratocyte movement has been modeled
with a CPM by coupling Metropolis dynamics to a model
for actin polymerization (40).

As in the case of the Ising model, the shapes predicted by
the CPM are dominated by interfacial tension. This gener-
ates a close relation not only to contour models, but also
to vertex models. However, the latter are not lattice-based
but rather define energy functionals for cell shapes with
straight or circular contours (that is, for the solutions of
the Laplace law). They have been used, for example, to
explore the role of mechanical interactions for growth of
the Drosophila wing imaginal disk (41) or to investigate
the influence of cell elasticity, cell-cell interaction, and
cell proliferation on cell sheet-packing geometry (42,43).
However, vertex models cannot be used to model single
cells on micropatterns because they cannot account for arbi-
trary shapes.

To arrive at a flexible and dynamic modeling framework
for cell shape and forces, here we choose to work with a
CPM. To predict not only shape, but also traction forces
of adhering cells, the CPM has to be modified in several
regards. For this purpose, we use insights from the TEM
to derive an energy functional for single cells on micro-
patterned substrates. The energy functional is based on the
different kinds of tension acting in the cell, which are
balanced by the adhesive substrate and manifest as traction
force. From our predicted cell shapes, we can extract the
traction force for any adhesive geometry in a very efficient
manner and in good agreement with experimental results.
Biophysical Journal 106(11) 2340–2352
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CELL-SHAPE MODEL

Energy functional

Single cells on flat micropatterned substrates are effectively
two-dimensional and often form invaginated circular arcs
along free edges (18). The circular shape can be understood
in the context of a Laplace law, where a surface tension, s,
which draws the contour inward, is balanced by a line
tension, l, which wants to draw the contour straight
(16,17). The surface tension results from the combined
action of the plasma membrane wrapped around the cell
body and the actin cortex underlying it (44). In particular,
the actin cortex is contracted by myosin II minifilaments.
The line tension reflects the fact that the plasma membrane
and actin cortex are folded back onto themselves at the cell
periphery and thus lead to a geometrically different contri-
bution than in the bulk. Moreover, it reflects the fact that
actin filament bundles tend to accumulate in these folded
parts at the cell edge. The appearance of circular arcs is
not restricted to cells on a dot pattern; it also occurs on
concave parts of the micropatterned island (3,6), as depicted
for the crossbow shape in Fig. 1 b. Here, the surface tension,
s, pulls the contour inward while the line tension, l, pulls
the contour outward. This is different at the convex parts,
where both surface tension and line tension pull inward.
This pull is balanced by the adhesion sites along the cell
contour. Because the cell periphery is less reinforced by
actin bundles along the convex parts, the line tension there
is expected to be weaker.

The simplest model for the situation depicted in Fig. 1 b is
the STM, which assumes both line tension, ls, and surface
tension, s, to be constant. A Laplace law results that predicts
circular arcs with a constant radius of Rs ¼ ls/s to occur
along free parts of the contour. In experiments, a correlation
of the arc radius, R, and the spanning distance, d, between
two adhesive islands was observed that can be understood
in terms of a TEM (18). In this model, the reinforced actin
edge fibers forming at the free spanning edges contribute
with an elastic line tension le ¼ EA(L � L0)/L0, where
the one-dimensional elastic modulus, EA, accounts for the
rigidity of the contour, and L and L0 are the contour length
and rest length, respectively (see Fig. 1 b). Pinned parts of
the contour are not reinforced, and we assume only the
simple tension, ls, acting there. For the free arcs, one then
has the overall line tension l ¼ ls þ le. Like the STM,
the TEM also leads to a Laplace law. Combining this with
the elastic line tension and the geometrical relation between
arc radius R and spanning distance d, one finds a self-consis-
tent equation for RðdÞ:

R ¼ lf

�
2R

L0

arcsin

�
d

2R

�
� 1

�
þ ls

s
; (1)

where lf ¼ EA=s is a length scale defined by the relative
weight of the one-dimensional elastic modulus and the
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surface tension. Therefore, circular arcs also arise in the
TEM, but with a radius, R, that increases with spanning
distance, d, and with contour reinforcement, lf (18).

Like these contour models, the CPM also centers around
the concept of geometrical tension, but it allows for much
more variable geometries. Our CPM implementation uses
a two-dimensional square lattice where the cell is repre-
sented by occupied lattice sites (see Fig. 1 a). The adhesive
pattern is realized by marking the corresponding lattice sites
as adhesive. Typically a pattern is made from 200 � 200
spins and the cell is represented by 30,000 spins. The length,
l, of the total cell interface is calculated with a modified
marching square algorithm. Because cell spreading is a
relatively slow process (typical timescale 10 min), one can
assume that the system is close to mechanical equilibrium,
and the Metropolis algorithm can be used to propagate
cell shape. During each step, a lattice site at the periphery
of the cell is selected at random and inverted. Then, an
appropriate energy functional is used to calculate the energy
difference DH ¼ Hinvert � Hcurrent. The inversion is accepted
with the probability eDH=kBT if DH>0 and with certainty
otherwise. Here, the effective temperature, T, governs the
contour fluctuation amplitude (typical value 0.2 in dimen-
sionless units). Only lattice sites at the periphery of the cells
are chosen for update attempts, because cells do not form
spontaneous holes in the bulk or nucleate new material far
away from the bulk. For a cell with n lattice sites in its
periphery, a Monte Carlo sweep is defined as n inversion
attempts. A more detailed description of the implementation
can be found in the Supporting Material.

The core of the CPM is defined by the energy functional,
which we choose to be

H ¼ sAþ lslþ
X
arc i

EA

2L0;i

ðLi � L0;iÞ2 � E0

Aref þ Aad

Aad: (2)

The first term accounts for the surface tension, which scales
with the cell area, A, as a conjugated quantity. The second
term is the contribution of the simple line tension, which
scales with the cell perimeter, l. The third term is the sum
over the contribution from each actin edge fiber, and a circle
is fit to the corresponding part of the contour to calculate Li.
All of the previously mentioned tensions contract a convex-
shaped cell and are balanced by the adhesive geometry
accounted for by the fourth term. Cells form adhesive con-
tacts with the substrate, and the bond energy of each contact
lowers the total energy. The number of adhesion molecules
in a cell is finite and the energy gain by covering more
adhesive area therefore saturates with the covered area,
Aad. This choice ensures a linear growth during initial
spreading, which later slows down and plateaus, as observed
for many different cell types (45,46). Strength and satura-
tion of the adhesive energy are controlled by E0 and Aref.

Cells in tissue are often described by CPM or vertex
models with an energy functional including an elastic
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(harmonic) constraint on the cell area (36–39,41,42) In
contrast to tissue, single cells on a substrate are essentially
two-dimensional and can increase their projected surface
area by taking material from the third dimension or by
making use of the excess area stored in the plasma
membrane or nearby vesicles. We therefore do not use an
elastic area constraint in our energy functional. The implica-
tions of an elastic area constraint for the spreading dynamics
and for the dependence of arc radius on spanning distance
are discussed in the Supporting Material. There it is also
shown that the fourth term in Eq. 2 can alternatively be in-
terpreted as a saturation effect in membrane tension.
Parameter estimation

Surface tension has been estimated previously as sz 2 nN/
mm from pillar deflections for endothelial cells (19) and sz
0.7 nN/mm from analysis of the traction forces of epithelial
cell sheets (24). The simple line tension should be of the
order of ls z 10 nN, the typical force acting on a focal
adhesion connected to the actin cytoskeleton (47). The
rest length, L0, of the elastic arc is assumed to be equal to
the spanning distance, d. The ratio lf ¼ EA=s of elastic
rigidity and surface tension describes the degree of arc
reinforcement and, for computational simplicity, is taken
to be constant, although in practice it might vary dynami-
cally during cell spreading. It has been estimated as lf ¼
1300 mm for buffalo rat liver cells on hard substrates with
purely elastic arcs and a rest length of L0 ¼ 1.01d (18). In
our case, this value has to be reduced for several reasons,
namely, that here we consider soft substrates, we have
both simple and elastic tension, and we assume that
L0 ¼ d. For typical arcs with R ¼ 15 mm and d ¼ 12 mm,
the arc tension reached for a ratio of lf ¼ 340 mm is the
same as in the purely elastic case (s z 0.7 nN/mm, ls z
10 nN). For a typical bundle radius of 100 nm, this would
correspond to a Young modulus in the MPa range, as found
experimentally (48).

The two remaining parameters, E0 and Aref, can be
estimated from the adhesive energy density and the average
cell size on homogeneous substrates. For weakly spread
cells, the adhesive energy gain in Eq. 2 becomes W ¼
E0/Aref as the number of adhesive contacts is not yet satu-
rated. This adhesive energy density reflects the amount of
adhesion receptors available to the cell and has been
estimated previously as W ¼ 20 nN/mm (49). Epithelial
MCF10A cells on 3kP gels reach a spread area of A0 z
1700 mm2, with an approximately round shape (50). To
relate these values to our model, we note that there are no
edge bundles on a homogeneous substrate, and the spread
area, A, and adhesive area, Aad, in Eq. 2 are equal. The en-
ergy functional in Eq. 2 depends then only on A and its min-
imum determines the final cell size. From this, we calculate

E0 ¼ WAref ; (3)
s
ffiffiffiffiffi
A

p þ l
ffiffiffi
p

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sWA þ lsW

ffiffiffiffiffiffiffiffi
A p

pp

Aref ¼ A0

0 s 0 0

ðW � sÞ ffiffiffiffiffi
A0

p � ls
ffiffiffi
p

p : (4)

Using these formulae, we obtain typical values for the
adhesion parameters of E0 ¼ 104 nN mm and Aref ¼
530 mm2 (s z 0.7 nN/mm, ls z 10 nN). In experiments,
these values can be varied, for example, by using micro-
patterns with different ligand density or with mixtures of
functional and denatured proteins.
Traction forces

Contractile forces generated in cells are balanced by the ad-
hesive substrate. Both the surface tension, s, and the simple
line tension, ls, pull normally to the contour, but the latter
force depends on the curvature of the contour. For a given
part of the contour with length dl, the force is (19)

d~F ¼ �ðsþ lskÞ~ndl; (5)

where k is the curvature and ~n the normal vector of unit
length pointing outward from the contour. Free spanning
arcs are anchored at their endpoints and exert a force tangen-
tial to the contour (19),

~Farc ¼ le~t; (6)

where~t is the tangent at the endpoints. Note that the edge
bundles only exert a tangential force at their endpoints if
their line tension, ls þ le, is different from the value ls of
the rest of the contour.

Having calculated the curvature and normal (as explained
in the Supporting Material) for each lattice site along the
contour for cell shapes predicted with our CPM, we can
now use Eq. 5 to calculate the traction force acting on the
adhesive part of the pattern beneath the contour. From cir-
cles fitted to the free spanning arcs, the tangent at the
anchoring points, arc length, and spanning distance are esti-
mated, which are then used in Eq. 6 to calculate the force
acting on the anchoring points (represented in the simula-
tions by a single lattice site). Together with the force gener-
ated by the adhesive part this gives the total traction force
resulting from our shape model.

For comparison with experimental results, several issues
have to be taken into account. First, our model predicts
spatially strongly localized forces, whereas in practice
they are typically distributed over a stripe of focal adhesions
along the cell contour (3). We therefore distribute our simu-
lated forces on a stripe 2 mm wide beneath the membrane
using a disk-shaped kernel. Second, our model shows sto-
chastic fluctuations in the cell contour that are expected to
be averaged out in experiments. We therefore average it
over 5 � 105 Monte Carlo sweeps to account for fluctuation
of the contour due to the finite simulation temperature.
Biophysical Journal 106(11) 2340–2352
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Third, traction forces are typically reconstructed in experi-
ments by an inverse procedure that filters out displacement
noise. To obtain traction data that are comparable to exper-
imental results, we use the FEM as implemented in the
deal.II library to calculate the displacement from our
CPM. In our FEM calculations, the forces generated by
the cell are applied to the surface of a linear elastic material
250 mm� 250 mm in area and 100 mm deep with a displace-
ment-free boundary at the bottom and stress-free boundaries
at the sides. The hexahedral mesh is locally refined beneath
the cell. We then apply the Fourier-transform traction
cytometry method (FTTC) (10,11) to obtain a traction
pattern that can be compared directly with experimental
results. A complete cycle of simulated forces, calculated
displacement fields, and reconstructed forces can be found
in Fig. S4 in the Supporting Material.
Momentum conservation and force magnitude

We now show that for our model, the sum of all traction
forces vanishes, as required by momentum conservation.
For a contour of~xðlÞ ¼ ðxðlÞ; yðlÞÞ parameterized by contour
length l, the tangent is normalized and we can use Eq. 5 to
write the sum of the traction forces resulting from the part of
the contour extending from~x1 ¼~xðl1Þ to~x2 ¼~xðl2Þ as

�
Zl2
l1

ðsþ lskÞ~ndl ¼ �
Zl2
l1

 
s
d

dl

 
y

�x

!
� ls

d~t

dl

!
dl

¼ �sM
�
~x2 �~x1

�þ ls
�
~t2 �~t1

�
:

(7)

The minus sign in the second term comes from the normal
pointing outward. M is the matrix for a 90� counter-
clockwise rotation and~t1 and~t2 are the tangents at the end-
points of the contour, as illustrated in Fig. 1 b. For cells
without arcs, the start and end points of the integral are
the same, and thus it vanishes, as required by momentum
conservation.

For cells with a single arc, we can apply this calculation
only to the complementary part of the contour. Moreover,
we now have to account for the elastic line tension in the
arc according to Eq. 6. Because the arc is circular, the
contour endpoints and circle normals are related by
~x2 �~x1 ¼ �Rð~n2 �~n1Þ. Combining this with Eqs. 6 and 7,
the total force becomes

Zl2
l1

d~Fþ~Farc ¼ sRMð~n2 �~n1Þ þ ðls þ leÞ
�
~t2 �~t1

�
: (8)

Rewriting the arc radius in terms of tension,
R ¼ ðle þ lsÞ=s, and rotating the normals with the matrix,
M, shows that the net force vanishes. This also ensures
momentum conservation in the STM, as this simply corre-
Biophysical Journal 106(11) 2340–2352
sponds to setting the elastic tension, le, to zero. For
cells with more than one arc, the same result follows by
recursion.

We finally comment on the magnitude of the total traction
force. For cells on a homogeneous substrate, this is simplyZ ��ðsþ lskÞ~n

��dl ¼ slþ 2pls: (9)

Thus, the total traction force scales linearly with cell perim-
eter l as previously described for cell colonies (24). Both
shape and size of the cell change the perimeter l and there-
fore influence the total force through the surface tension, s.
Larger cells or cells that deviate from a round shape exert
a higher total force on the substrate than round cells with
the same area, as was found experimentally for rectangular
micropatterns (12).
RESULTS

Equilibrium shapes and cell spreading

We first discuss the steady-state shape of cells on micro-
patterns. In Fig. 2, we compare experimental and simulated
shapes for HeLa cells plated on three fibronectin-coated
patterns commonly used for cell normalization, namely,
the crossbow, Y, and H patterns. The pattern width is equal
to 30 mm and the CPM simulation uses a lattice constant of
0.15 mm/pixel. One can see that our model predicts very
well the typical sequence of convex and concave parts along
the cell contour. Moreover, the arc reinforcement modeled
by the TEM is clearly visible in all three actin images.
Note that here, the same parameter set (ls z 10 nN, s z
0.7 nN/mm, lf ¼ 340 mm, A0 ¼ 1200 mm2, E0 ¼ 7800
nN mm, and Aref ¼ 390 mm2) is used for all three cases,
because they have been realized on the same chip with the
same cell type and the same culture conditions.

The steady-state shapes shown in Fig. 2 result from a
dynamical spreading process that cannot be easily described
by standard models for cell shape. We now show that the
CPM also describes this process very well. In our simula-
tions, we start with a small spreading area of ~10 mm in
diameter at an arbitrary location on the pattern and then
let the cell spread. Here, we choose the V-shaped pattern
used in previous experimental studies (6). For the RPE1
cells used in this study, the steady-state arcs have an unusual
small curvature, indicating that these cells have a weak bulk
contractility or very strong arc reinforcement. For both STM
and TEM, we first fix the model parameters such that this
final steady-state shape is achieved. We use a relatively
small surface tension of s ¼ 0.6 nN/mm. In the STM, this
surface tension requires a simple line tension of ls z 36.6
nN to reach the final arc radius of 61 mm. Then, adhesive en-
ergies of W ¼ 60 nN/mm, several times larger than previous
estimates (49), are required to allow spreading. For the



FIGURE 2 The top row shows experimental

images for crossbow, Y, and H patterns coated

with fibronectin. Scale bar, 10 mm. The middle

row shows HeLa-cells stained for actin on those

patterns. The bottom row shows shape predictions

by the CPM with circles fitted to the free spanning

arcs. Experimental images were kindly provided

by Gintar _e Garben�ci�ut _e and Vytaute Starkuviene-

Erfle. To see this figure in color, go online.
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TEM, the simple line tension can be reduced to ls z 10 nN,
because the final arc radius is also determined by the elastic
contribution to the line tension. The elastic tension of EA ¼
2000 nN required to match the final arc radius is similar to
values reported previously for stiff substrates (18). In this
case, an adhesive energy of W ¼ 10 nN/mm is sufficient to
allow spreading.

With these parameters in place, we now can simulate the
spreading dynamics as shown in Fig. 3 a (for a clearer illus-
tration of spreading, see Movies S1 and S2 in the Supporting
Material). When the cells bridge the nonadhesive gap of the
V-shaped pattern, an actin edge bundle is formed, as indi-
cated by the green circle. After a main spreading phase,
during which the cell covers the complete adhesive area of
the pattern, the free spanning edge continues to move
outward, thereby increasing the spanning distance and the
radius of the edge bundle. The same two-step process is
seen in experiments (6). The STM and TEM models differ
strongly in the timescale of spreading. Fig. 3 b shows the
radius of the circles fitted to the edge bundles averaged
over 104 cells spreading on a V-shaped pattern. Cells
described by the TEM spread faster than cells described
by the STM. The reason lies in the increased simple line
tension of the STM needed to reach the same final radius
as the TEM. The inset of Fig. 3 b compares the curves for
the initial spreading phase with experimental data (6).
TEM cells cover the whole adhesive area of the pattern after
80 Monte Carlo sweeps, whereas STM cells take up to 300
Monte Carlo sweeps. During this phase, the curves of the
two models are qualitatively similar. However, only the
TEM data can be fit well to the experimentally measured
data. This implies an important role of arc reinforcement
for the spreading process and sets the timescale to 30 min
for the 80 Monte Carlo sweeps. One can understand the
TEM as a mechanism that allows the cell to pull its contour
outward above nonadhesive parts of the substrate without
sacrificing any spreading potential above adhesive parts.
Spreading within the STM on the V-shaped pattern with
moderate choices for the simple tension and adhesive en-
ergy would only be possible with a reduced surface tension.

In contrast to elastic continuum models, the CPM also
finds equilibrium shapes on adhesive islands that are too
large to be fully covered by the cell. This is demonstrated
in Fig. 3 c. Here, a tradeoff must be found between the
adhesive energy gain, which favors a large cell, the line
tension, which favors a small round cell, and circular arcs,
which should be as flat as possible to minimize the energy.
The result is a cell shape without sharp kinks and arcs
ending as parallel as possible to the pattern contour with a
large radius. In Fig. 3 d, the same adhesive shape is used
as in Fig. 3 c, but with open diamond shapes. Now, the
cell is able to cover the whole island because the reduction
Biophysical Journal 106(11) 2340–2352



FIGURE 3 Cell shapes predicted by the CPMwith surface tension s¼ 0.6 nN/mm, simple tension ls¼ 10 nN, arc rigidity EA¼ 2000 nN, adhesive energy

density W ¼ 60 nN/mm, and cell target area A0 ¼ 1700 mm2. (a) Cell spreading on a V-shaped pattern. The arms have an length of 46 mm and the final

spanning distance and radius are dz 33 mm, and Rz 61 nN/mm. A circle is fitted to the edge bundle. (b) Radius of the circle fitted to the edge as a function

of Monte Carlo sweeps for cells described by the STM and TEM. The radius is averaged over 104 cells all starting to spread at the same position as in the

previous figure. Here, each Monte Carlo sweep consists of 2 � 104 attempts to invert one of the boundary lattice sites. For the simulation of the STM cells, a

simple line tension of ls ¼ 36.6 nN was used, resulting in the same final radius as for the TEM cells. (Inset) Initial spread phase and data taken from Théry

et al. (6). (c) Final cell shape on an adhesive pattern that cannot be fully covered by the cell. Pattern has a width of 40 mm and a height of 96 mm. (d) Same as d,

but with a hollow adhesive geometry. To see this figure in color, go online.
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in adhesive surface leads to a less saturated adhesive energy
gain in Eq. 2. In addition, arcs form inside the diamonds
while the cell is spreading giving the cell an overall concave
shape with reduced area, as compared to the partly convex
cell on the solid diamond pattern in Fig. 3 c.
Prediction of elastic substrate displacements

Although our final aim is to predict traction force patterns
for different micropatterns, we start our discussion of trac-
tion patterns with displacement fields, because these are
the immediate outcome of experiments. Thus, we use the
FEM to calculate from our simulated forces the displace-
ment fields for an elastic substrate. We then compare these
results to experimental data and fit our three main model
parameters, namely, surface tension, s, simple line tension,
ls, and elastic line tension EA. In Fig. 4, we compare our
results (upper row) to experimental data (lower row) (13).
The parameters responsible for the adhesive energy gain,
Biophysical Journal 106(11) 2340–2352
E0 and Aref, are found to be unimportant for the fit quality.
Due to the small number of cells on the pacman pattern,
we exclude it from the fit.

Both the pacman and circular-disc patterns show the
localization of displacements at the cell contour, as pre-
dicted by our model. For the circular disc, which only has
continuously adhesive edges, the displacements are directed
radially inward everywhere. This is different in the case of
the pacman pattern, where in both the simulation and the
experiment displacements deviate from the radial symmetry
at the tips of the wedge. The displacements there point
inward because of the actin edge bundle forming across
the wedge. Cells described by the STM would have dis-
placements pointing slightly away from the wedge because
of the curvature of the cell contour there. The fit of our
model parameters is dominated by the larger adhesive parts
of the contour for those patterns. The STM and TEM predict
similar magnitudes, which makes it difficult to distinguish
between the two. Displacements for the crossbow are



FIGURE 4 Calculated displacements (upper) and experimental displacements (lower) for MCF10A-cells on fibronectin patterns on a polyacrylamide sub-

strate with a Young modulus of 5 kPa (13). Graphs below and to the right of the experimental displacements are vertical and horizontal one-dimensional slices

of the displacement data. The slices always go through the center of the pattern except in the case of the pacman shape, where the horizontal slice goes

through the tips. The number of averaged cells is indicated by n for each pattern. Experimental data were kindly provided by Martial Balland. To see

this figure in color, go online.
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dominated more strongly by the two actin edge bundles and
are largest at the extremities of the pattern due to the high
curvature and bundles originating there. The experimental
displacements in both arms of the crossbow are directed
more upward than expected from the model. This might
indicate the effect of internal actin fibers connecting from
the tips to the top of the micropattern. On the other hand,
displacements of the circular pattern and circular part of
the crossbow pattern are very similar in magnitude and
direction, indicating that polarized internal fibers only
play a minor role in this case.

To quantify the quality of the fit we use the norm
L2 ¼

P ðuexp;i � usim;iÞ2=
P

u2exp;i, which is the squared
and normalized distance between the experimental and
simulated displacement fields. For the STM, the fit yields
a simple line tension of ls z 5.53 nN, surface tension of
s z 0.56 nN/mm and a L2 value of 0.16. For the TEM the
fit yields ls z 2.30 nN, s z 0.83 nN/mm, EA ¼ 40 nN
and a L2 value of 0.15. The TEM fits the data better, but
the difference is small, since both the disc and crossbow
are dominated by large convex parts where actin edge bun-
dles are unimportant.

The TEM decreases the simple line tension while
increasing the surface tension. As discussed above for
spreading on the V-shaped pattern, the TEM allows the
cell to pull its contour outward above nonadhesive parts of
the substrate with a reduced simple tension. The increased
surface tension in the TEM compensates for the reduced
simple tension, but the contribution of the surface tension
is curvature-independent. Thus, the TEM allows smaller
forces in regions of high curvature while keeping forces in
small-curvature regions the same as in the STM.

The overall agreement of our model with the experi-
mental displacements demonstrated in Fig. 4 is quite
good. However, the experimental displacements decay
more slowly than the simulated ones, for several possible
reasons. First, the 2-mm-wide stripe beneath the membrane
where we apply forces to the substrate might be too narrow,
and the size of the adhesions might vary with force (47,51).
The agreement with the experimental data can be improved
by increasing the stripe width to 4 mm, but this does not
appear to be reasonable given the actual size of the adhe-
sions and the feature size of the micropattern. It is therefore
more likely that the disagreement arises from the limited
resolution of bead tracking and from the registration and
averaging procedures, both of which blur the displacement
fields. Variations in the pattern shapes from manufacturing
or by deformation from the cells also widen the force spots
and make pattern registration more difficult. Because these
experimental limitations might be improved in the future,
Biophysical Journal 106(11) 2340–2352
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for our theoretical predictions here we keep the 2 mm scale
for the adhesion width.
Prediction of traction forces

Given the displacement data discussed above, one can now
reconstruct traction forces that resemble those obtained
from experimental data. For this purpose, we use FTTC
with regularization (10,11). In the top row of Fig. 5, we
show the traction force reconstructed from the simulations
shown in Fig. 4. A comparison with the experimental data
(Fig. 5, lower row) (13) shows that our procedure predicts
most of the experimental features. The only exception
seems to be the additional localization of experimental
traction forces in the upper part of the crossbow pattern,
which might be due to the occasional presence of internal
stress fibers along the long side of this pattern.

The influence of cell shape on force generation is best
seen by gradually changing the adhesive geometry. Both
curvature and spanning distance of the free arcs are varied
in Fig. 6 as the T-shaped pattern is transformed into a
crossbow for cells described by the TEM. For all shapes,
the forces are localized to the extremities of the patterns,
but increasing the curvature relocalizes them from the end
points to the adhesive edge of the contour, and at the same
time the force direction in the prominent force spots changes
from being aligned with the edge bundles to a more radial
orientation. Both observations, the force increase in the
adhesive contour and the orientation change, have been
FIGURE 5 (Upper row) Reconstructed traction forces for the TEM with the be

row) Traction forces reconstructed from experimental data for MCF10A-cells o

reproduced from Tseng et al. (13) with permission of The Royal Society of Ch
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observed for RPE1 cells (52). The increase of forces with
higher curvature at the adhesive contour is a consequence
of the simple line tension acting in the contour (compare
Eq. 5). The prominent force spots in the extremities are
due to the larger curvature and the edge bundles being
anchored there. Changing the curvature of the top bar also
decreases the spanning distance, and therefore the force in
the bundles, from 7.75 nN in the T-shaped pattern to
4.33 nN in the final crossbow, which explains the decrease
of forces in the prominent spots and also the directional
change, since arc forces become less important. The force
spot at the bottom of the T-shaped pattern is less localized
compared to that in the final crossbow, because the edge
bundles do not always attach to the outermost part of this
pattern.

The STM yields similar results for the total force, but
forces are always pointing radially inward. The decrease
of the total force in the STM is a consequence of the rounder
shape of the cells on the crossbow pattern as stated by Eq. 9
(the pattern dimensions are chosen to ensure the same cell
area on all patterns, but their perimeter decreases linearly).
For cells described by the TEM, the total force is also
influenced by the decreased bundle tension, as reflected by
the steeper slope in the lower right panel in Fig. 6, which
shows the total force as a function of curvature. In Fig. 7,
we show a gallery of additional shape and traction pre-
dictions for micropatterns for which no traction force fields
have yet been reported in the experimental literature.
Because these simulations are computationally very cheap,
st-fit parameters (ls ¼ 2.30 nN, s¼ 0.83 nN/mm, and EA¼ 40 nN). (Lower

n fibronectin patterns on a polyacrylamide substrate. Experimental data are

emistry. To see this figure in color, go online.



FIGURE 6 Reconstructed traction force for a T-shaped pattern, where the curvature of the top bar is changed into a crossbow-shaped pattern. Cells are

modeled with the TEM with s ¼ 0.65 nN/mm, lf ¼ 184 mm, and ls ¼ 2.7 nN. The graph shows the total force for the different curvatures for both TEM

and STM cells with s ¼ 0.65 nN/mm and ls ¼ 6.5 nN. The pattern widths are T ¼ 32 mm, C1 ¼ 30.8 mm, C2 ¼ 29.34 mm, C3 ¼ 27.49 mm, and C4 ¼
25 mm and ensure the same cell area on all patterns. To see this figure in color, go online.
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the CPM approach is a very helpful exploratory tool
for quickly assessing the effect of a newly designed
micropattern.
DISCUSSION

In summary, the CPM is a versatile tool for robust prediction
of cell shapes and forces on any micropattern of interest.
The underlying reason is that it actually models the dynamic
process of shape determination. Thus, it also makes predic-
tions on spreading dynamics and does not require any a
priori knowledge of the final shape. As shown above, all
of our predictions agree quite well with published experi-
mental data.

To adapt the CPM for the prediction of shapes and forces
of single cells on two-dimensional micropatterns, we have
made several modifications to the original formulation of
the CPM model for cell shape in tissue. Despite its large
contribution to the current understanding of cell sorting
and cell shapes in tissue (35), the CPM has been used before
only a few times to describe single cells (39,40). To further
advance this approach, we have added two essential
elements to the conventional CPM formulation. Motivated
by the TEM, we have added an elastic line tension to
describe the effect of contour reinforcement of edge bun-
dles. Moreover, we have added an adhesion term to the
energy functional that does not constrain cell area but acts
like a reservoir for additional area that can be used if suffi-
cient ligand is present. The good agreement of our model
with experimental data, demonstrated here, confirms that
our energy functional describes the main features of this sys-
tem. One of the biggest advantages of our approach is that it
is computationally inexpensive (typical runtime is on the
subsecond timescale), thus making it an ideal exploratory
tool for quickly establishing typical cell behavior on micro-
patterns without any a priori knowledge of the final shape.

Our model reveals that the TEM model allows for faster
cell spreading within a reasonable parameter range and
that elastic arcs act to relieve tension from adhesive parts
of the contour while maintaining the same cell shape. The
TEM makes spreading above nonadhesive parts easier and
at the same time allows the cell to generate traction forces
more by bulk than by contour tension. Our CPM assumes
that spreading is limited mainly by the availability of adhe-
sion receptors, thus leading to saturation in adhesive area.
This approach neglects other potential limitations of
spreading, most notably the effect of increased membrane
tension (53). As shown in the Supporting Material, to first
order the energy functional of Eq. 2 does not make a funda-
mental distinction between these two limitations for
spreading. However, appropriately designed micropatterns
might in fact be an appealing way to investigate these
important questions in the future, both in experiments and
in the framework of the CPM.

Combining the CPM with a contour model allowed us to
interpret the energy terms in the CPM energy functional as
Biophysical Journal 106(11) 2340–2352



FIGURE 7 Predicted shapes and traction forces for further adhesive geometries for both STM and TEM. All patterns have a width of 25 mm. The param-

eters are taken from the best fit to the displacement data from Fig. 4. Parameters for STM are s¼ 0.56 nN/mm, EA¼ 0, and ls ¼ 5.53 nN, and those for TEM

are s ¼ 0.83 nN/mm, EA ¼ 40 nN, and ls ¼ 2.3 nN. To see this figure in color, go online.
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tensions and provided an easy way to predict traction forces.
The contour model also connects our three model para-
meters, namely, simple line tension, elastic line tension,
and surface tension, to the cell geometry via the relation
between spanning distance and arc radius (Eq. 1). For
each cell type of interest, our model parameters can be fitted
to the experimentally observed cell shape on a reference
pattern and then used to predict cell shape and forces on
other patterns. As more information becomes available for
the detailed molecular structure of actin cortex and periph-
eral fibers, our model can be modified to include such infor-
mation, e.g., by replacing the TEM term in the energy
functional of Eq. 2 with a more detailed expression.

There are two important aspects of cell adhesion to
micropatterns that are not addressed in this study. First,
our model does not describe the effect of internal structures
like nonperipheral stress fibers. We expect that this is a good
approximation, as long as several cells are averaged to
obtain a generic result that averages out individual inhomo-
geneities. Otherwise, more detailed models are required that
also include internal stress fibers (54). Such extensions
might profit from recent advances in our understanding of
the internal structure and dynamics of different kinds of
stress fibers (55,56). Second, our model does not explicitly
describe the effect of the mechanical feedback between
elastic substrate and cell adhesion, which allows the cell
Biophysical Journal 106(11) 2340–2352
to sense the rigidity of its environment (1,2,57). To include
this important aspect in our model, it had to be extended by
models of the mechanosensitive organization of the adhe-
sion structure and the actin cytoskeleton (58). At the current
stage, the effect of stiffness is incorporated by fitting the
model parameters to experimental reference data and calcu-
lating displacement fields with the correct rigidity values of
the substrate.

Here, we have focused on spreading dynamics and
steady-state properties of sessile cells. In this case, the
Metropolis approach is expected to work well, because the
cell is essentially relaxing to local mechanical equilibrium.
When combined with a model for actin polymerization (40),
our model can be extended in the future to study also persis-
tent cell movement on single micropatterns or on networks
of micropatterns.
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Dynamics of Cell Shape and Forces on Micropatterned Substrates

Predicted by a Cellular Potts Model
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A. Radius Spanning Distance Relation with Elastic Area Constraint

Many cellular Potts models (CPM) (1–3) or vertex models (4–6) for cells in tissue use an elastic

(harmonic) constraint for the cell area or volume in combination with a simple line tension

mediating cell-cell interaction. In addition, some models also include an elastic line tension

(5, 6). For a single cell the simplest energy functional combines a simple line tension with the

elastic area constraint.

E = λsl + k(A−A0)
2, (S1)

where the first term accounts for the simple line tension λs which scales with the cell perimeter

l and the second term describes the area elasticity with elastic coefficient k and target area A0.

As in the tension-elasticity model (TEM), the dependence of the arc radius R on the spanning

distance d can be found by a force balance. First we define surface tension σ = ∂E/∂A and line

tension λs = ∂E/∂l. The surface tension pulls inwards perpendicular to the contour and the

line tension exerts a force depending on the curvature of the contour. The force balance then

reads

σ~n = λs
d~t

dl
= λs

1

R
~n, (S2)

where the contour is parameterized by its length l, and ~n and ~t are the normal and the tangent

to the contour, respectively. Calculating the derivative of Eq. (S1), Eq. (S2) becomes

2R(A−A0)−
λs

k
= 0. (S3)

This shows that the cell area A and the arc radius R are not independent of each other. In

contrast to the TEM or simple-tension model (STM), the arc radius now is not controlled locally,
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Figure S1 (a) Cell with area A confined to a U-shaped micropattern with a single circular
arc. (b) R(d) dependence calculated from Eq. (S4) with Vel = λs/k increasing from 500 µm−3

(bottom curve) to 2500 µm−3 (top curve) and a target area of A0 = 0.65d2. (c) R(d) depen-
dence for a target area increasing from A0 = 0 (bottom curve) to A0 = 0.8d2 (top curve) and
Vel = 2370 µm−3. The blue dashed curves are the same in both figures with Vel = 2370 µm−3

and A0 = 0.65d2 both taken from (3).

but depends on the overall cell shape. Area changes at one end of the cell can influence the arc

radius at the other end. For a cell on a U-shaped micropattern as depicted in Figure S1a, the

implicit equation for the arc radius is found from Eq. (S3) as

2R

(
d

4

√

4R2
− d2 −R2 arcsin

(
1

2

d

R

)

+ dy −A0

)

−

λs

k
= 0. (S4)

As in the TEM the arc radius depends on the spanning distance d, but in addition also the

height y of the U-shaped pattern influences the radius. In the following only the case of quadratic

shapes with y = d is considered.

There are two modes of controlling the cell shape, either by changing the target area A0 or by

changing the ratio of simple tension and the strength of the area constraint Vel = λs/k. Figure

S1b shows R(d) for different values of Vel = λs/k. The monotonously increasing relation between

arc radius and spanning distance observed in experiments (7) can be achieved by shifting Vel to

very small values. However, this brings the radius very close to the minimal possible radius of

R = d/2 and such strongly invaginated cells are usually not observed experimentally. In Figure

S1c the target area A0 is changed. For small target areas Eq. (S4) does not have a solution for

all spanning distances and the R(d) curve ends at the minimal radius condition. Cells would

collapse in such geometries. Figure S1b and S1c also show R(d) (blue curves) for parameters

used previously (3). Neither changing the strength Vel = λs/k nor changing the target area

A0 can achieve a monotonously increasing relation between arc radius and spanning distance

without yielding strongly invaginated cells. The addition of an elastic line tension as in the

TEM to the energy functional (S1) does not change this outcome.
2
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Figure S2 Cell radius during spreading as function of Monte Carlo sweeps for an elastic
area constraint (see Eq. (S1)) and an saturation of the number of adhesion molecules (see
Eq. (2) in the main text). The simulations are carried out with a simple line tension of
λs = 10 nN, elastic rigidity as stated in the legend, target area A0 = 1700 µm2. For the
model with saturation of adhesive energy the same parameters as for Figure 3 of the main
text where used (σ = 0.6 nN, W = 60 nN/µm, one Monte Carlo sweep consists of 2 × 104

inversion attempts).
B. Spreading Dynamics

The spreading dynamics of a cell with an elastic area constraint as in Eq. (S1) and a cell with

a saturation of the number of adhesion molecules as in Eq. 2 of the main text is expected to be

different. For the former the quadratic area constraint yields a large contribution throughout

the spreading process as long as cell area A and target area A0 do not match. For the latter the

energy gain from forming new adhesion contacts stays within the same order throughout the

whole spreading process. This is reflected by the simulated cell area as function of Monte Carlo

sweeps shown in Figure S2. For an elastic area constraint the linear area growth stops only

shortly before the target area is reached. Within the Metropolis dynamics all steps increasing

the cell size are accepted due to the large contribution of the area term. The growth cannot be

faster than linear since only single lattice sites are inverted during each step. In a model where

the cell spreads against a viscous force the area would initially grow stronger than linear. With

a saturation of the adhesive energy the growth gradually slows down similar to what is seen in

experiments (8, 9). Reducing the strength k of the elastic area constraint makes the transition

to the steady state less abrupt, but it also results in larger fluctuations around the target area.

We also note that the limitation in adhesive area used here is similar to a limitation in

membrane tension. For a cell on a homogeneously adhesive substrate the cell area and adhesive

area are equal A = Aad and no actin edge bundles exist. With the adhesive energy density
3
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Figure S3 Cell represented on a lattice. Sites inside the cell are gray, sites in the border
layer of the cell are red and sites not being occupied by the cell but in the neighborhood of
border sites are green. The cell periphery is indicated by the black line. (a) Representation of
a whole cell. (b) Update of a single lattice site.(c) Circular mask applied to the cell boundary
to define the normal.

W = E0/Aref the energy functional Eq. (2) of the main text becomes

E = λsl + σA−

E0

Aref +A
A

= λsl + σA−

E0

Aref +A
A−WA+WA

= λsl +

[

σ +
WA

Aref +A

]

︸ ︷︷ ︸

σ′

A−WA (S5)

where σ′ now takes the role of the surface tension. It increases with the cell area which can be

interpreted as an increase due to a finite amount of membrane area. Since the energy functional

stays essentially the same, the spreading dynamics and the force measurements are not directly
affected by the different interpretations of the energy functional.

C. Implementation

In the lattice-based CPMs a cell is represented by a set of occupied lattice sites as illustrated

in Figure S3a. Under normal conditions it is very unlikely that cells form spontaneous holes

or that new part of the cell nucleate without contact to the bulk. We therefore use a modified

Metropolis algorithm (2) which only allows to invert sites at the cell boundary.

The red sites in Figure S3a are occupied by the cell and form the outermost border layer of

the cell. They are surrounded by the outside layer of sites (green) not occupied by the cell but

being adjacent to one of the border sites. Updates by the Metropolis algorithm only happen
4



in these two layers. The gray lattice sites belonging to the cell bulk are passive (no holes are

formed), as are the white medium sites (no nucleation away from the bulk). Occupied lattice

sites can get isolated from the bulk of the cell when the cell retracts.

To define the cell boundary we use the marching square algorithm, a two-dimensional variant

of the marching cube algorithm (10). Given four lattice sites the marching square algorithm

defines the orientation and length of the boundary between those four sites. To calculate the

contribution of a single lattice site to the cell perimeter the occupation of its eight surrounding

sites needs to be known. The marching square algorithm allows only boundary orientations of

0◦, 45◦, 90◦, . . . , which results in a high lattice anisotropy. The anisotropy can be reduced by

allowing more possibilities for the boundary orientation and length by taking a larger neighbor-

hood. Each occupied lattice sites gets a value assigned increasing with the number of occupied

neighbors. A higher value pushes the boundary further away from this site. Similar methods

to refine the marching square algorithm have been used in image processing (11). We use a

square of 4x4 lattice sites to define length and orientation of the boundary between the four

central sites. The boundary contribution of a single site is then defined by its 24 neighbors.

The resulting cell outline is shown in Figure S3a as black line. The length of this line is used

as the cell perimeter in the energy functional Eq. (2) of the main text. The cell area is defined

by the number of occupied lattice sites.

Figure S3b illustrates the inversion of a lattice site. A new site is added to the green outside

layer in this case. The changes required by the inversion in the red border and green outside layer

are stored in a lookup table which requires knowledge about the identity of the four surrounding

sites. The change in circumference calculated by the refined marching square method is also

stored in a lookup table requiring the occupation values of the 24 surrounding sites.

The orientation of the normal to the cell border is found by applying a circular mask to the

lattice as illustrated in Figure S3c. The vector connecting the geometrical center (cross) of

the occupied lattice sites within the circle (black sites) and the circle center defines the normal

direction ~n at the circle center. With this normal the boundary segments left and right of the

original segment and their normal orientations φl and φr can be identified. The curvature is

then approximated by

κ =
1

2

φl − φr

l
, (S6)

where l is the length of the boundary segment. The factor 1/2 arises from two boundary

segments sharing one kink in the boundary.

D. Reconstruction of Traction Force from Simulated Force Fields

As described in the main text, the simulated traction force is used to calculate a displacement

field from which the traction can be reconstructed with the Fourier-transform traction cytometry

method (12) to make it comparable to experimental results. First, the cell shape is obtained

as shown in Figure S4a. Due to the finite simulation temperature the membrane fluctuates
5
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Figure S4 Different stages of the reconstruction of traction forces from the CPM.

and the traction force in the cell contour is obtained by averaging over 2 × 105 Monte Carlo

sweeps. The traction force is distributed over a 2 µm wide stripe beneath the membrane. To

be more precise, we apply a disk shaped kernel with a radius of 2 µm to each lattice site

distributing the forces to the surrounding sites. In combinations with a pattern-shaped kernel

it is ensured that traction forces are only applied to adhesive parts of the patterns and that

forces from membrane fluctuation above non-adhesive parts are propagated to the pattern. Both

magnitude and vector field of the traction force are shown in Figure S4b. Figure S4c shows

the displacement field found by our finite element method for the traction field in Figure S4b

on a substrate with Young modulus of 5 kPa. From the displacement field the traction force

is reconstructed with the Fourier-transform traction cytometry method with a regularization

parameter of 3× 10−8
µm2/Pa2 arriving at the final result shown in Figure S4d. Our choice of

the regularization parameter yields the same total traction before and after reconstruction.
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3. Vianay, B., J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, 2010. Single Cells

Spreading on a Protein Lattice Adopt an Energy Minimizing Shape. Phys. Rev. Lett. 105:3–

6.

4. Hufnagel, L., A. a. Teleman, H. Rouault, S. M. Cohen, and B. I. Shraiman, 2007. On the

mechanism of wing size determination in fly development. Proc. Natl. Acad. Sci. U. S. A.

104:3835–40.
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