
2450 Biophysical Journal Volume 106 June 2014 2450–2457
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ABSTRACT F1-ATPase (or F1), the highly efficient and reversible biochemical engine, has motivated physicists as well as
biologists to imagine the design principles governing machines in the fluctuating world. Recent experiments have clarified yet
another interesting property of F1; the dissipative heat inside the motor is very small, irrespective of the velocity of rotation
and energy transport. Conceptual interest is devoted to the fact that the amount of internal dissipation is not simply determined
by the sequence of equilibrium pictures, but also relies on the rotational-angular dependence of nucleotide affinity, which is a
truly nonequilibrium aspect. We propose that the totally asymmetric allosteric model (TASAM), where adenosine triphosphate
(ATP) binding to F1 is assumed to have low dependence on the angle of the rotating shaft, produces results that are most con-
sistent with the experiments. Theoretical analysis proves the crucial role of two time scales in the model, which explains the uni-
versal mechanism to produce the internal dissipation-free feature. The model reproduces the characteristic torque dependence
of the rotational velocity of F1 and predicts that the internal dissipation upon the ATP synthesis direction rotation becomes large
at the low nucleotide condition.
INTRODUCTION
One of the major advances in modern statistical physics is
the understanding of stochastic thermodynamics, where
behavior of thermodynamic machines in the fluctuating
world is the main target of study (1,2). In sharp contrast to
macroscopic systems, fluctuations play significant roles in
microscopic engines (3,4), as in the cases of biomolecular
motors (5). Recent studies have further clarified the role
of information in thermodynamics (6,7), which provides
new perspectives on the design principle of molecular
motors (8,9). In light of these developments both in
theory and experiments, we are now in the position to reveal
the fundamental rules that govern nonequilibrium molecular
machines.

Among many molecular motors, the detailed energetics
of F1 has attracted special attention because of its important
roles in the metabolic network, and its unique feature of
reversibility (10–13). Rotational motion of F1 in the ATP
hydrolysis direction is roughly explained as follows: the
ab subunits change their conformations following the
events of the binding of ATP, the hydrolysis reaction
ATP / adenosine diphosphate (ADP) þ phosphate (Pi),
and the release of Pi and ADP. These chemical-reaction
coupled conformation changes induce the g subunit (shaft)
to rotate 120� per single ATP input and ADP þ Pi output.
Energetically (Fig. 1 A), in the absence of load, the income
of this motor is the chemical free energy of ATP ðDmÞ, and
the outflow is made either through the g shaft rotation (Qext,
external dissipation) or the switching of conformation in ab
(Qint, internal dissipation).
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Recent precise experiments on F1 have shown that, in the
absence of external load, the chemical energy consumption
is made almost 100% through the rotational motion,
Qext � Dm, meaning that the internal dissipation is almost
zero (14,15),Qint � 0. This highly suggestive result prompts
us to consider the hidden rules that govern molecular
motors. In fact, the established theories in stochastic ther-
modynamics (e.g., the fluctuation theorem (16–18) and the
second law) prove that the total energy dissipation is given
by Dm ¼ Qext þ Qint but cannot explain any restrictions that
rule the individual values of Qext and Qint. One study shows
another surprising aspect of F1; the internal dissipation-free
feature does not depend on the rotational velocity (14). Con-
ceptual interest lies in the fact that these observed data
reflect the truly nonequilibrium character of F1 and include
more information than the equilibrium; the internal dissipa-
tion is a quantity that cannot be determined even if the full
free energy landscape is measured or calculated.

Interestingly, the chemical reactions, which are the main
source of the rotational motion, are themselves controlled
by the rotary position of the g shaft (19,20), which is a
feature known as allosterism. The amount of internal/
external dissipation in a model may be manipulated by
setting various types of g angular dependence of the chem-
ical reactions. In a recent study (21), a load-sharing factor
was introduced as a parameter for this angular dependence.
It was observed that in the case where the load-sharing is
assumed to be largely asymmetric, numerical simulation
produces consistent results with the internal dissipation-
free feature of F1-ATPase (14).

Following the approach taken in (21), we reconsider the
features of F1 at the level of the phenomenological model,
where only the rotary degree of freedom of the g shaft
http://dx.doi.org/10.1016/j.bpj.2014.04.034
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FIGURE 1 The totally asymmetric allosteric model (TASAM) explains

the internal dissipation-free feature of F1-ATPase. (A) Summary of the en-

ergy income and outflow of F1 in the ATP hydrolysis rotation in the absence

of external load. Free energy of the chemical fuel ðDmÞ is dissipated through
the rotary motion of the g shaft ðQextÞ, or through the ab complex where the

reactions take place ðQintÞ. (B) Schematic of the TASAM. When the motor

is waiting for the ATP to bind (left), the binding site is free from the control

by the g shaft rotary angle. Conversely, once the ATP is bound to the motor

and the ADP release has proceeded (right), the affinity of the binding sites

to the nucleotides strictly depends on the g shaft angle. To see this figure in

color, go online.
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and the nucletide state of the ab subunits are taken into ac-
count. Specifically, we introduce the totally asymmetric
allosteric model (TASAM, Fig. 1 B) to explain the internal
dissipation-free nature of F1. The key assumption in this
model is that the ATP binding to the motor, which is the
limiting slow process, is allowed with equal probability
over the g shaft angle. The motor thus passively waits and
lets the ATP to bind freely and decides whether or not to
release this ATP depending on the angle of the g shaft. As
we shall see in detail (Fig. 2 C), numerical results in our
model show that Qext is kept close to Dm for a broad range
of rotational velocity. We identify the crucial role of two
time scales in the TASAM, which explains the universal
mechanism in the model to produce the internal dissipa-
tion-free feature. Moreover, we analyze the nucleotide con-
centration dependence on the torque-velocity relation (see
Fig. 5), and we find that a certain asymmetric pattern
observed in experiment is reproduced by the TASAM.

Our stochastic model is based on confirmed properties of
F1, such as the discrete steps (22,23), mechanical potentials
(24), and large stall force (25) with all the real parameters.
However, we do not refer to the microscopic interactions,
for example, at the amino acid residue level, which is typi-
cally required in molecular dynamic simulations. Neverthe-
less, the key feature of the F1 energetics and dynamics seem
to be well reproduced by the simple one-dimensional
description. The existence of such consistent description en-
courages us to consider the fundamental design principle
behind molecular machines, since at this coarse-grained
scale, comparison between different biomotors (including
linear processive motors) and blueprints of future nanoma-
chines is possible.
MATERIALS AND METHODS

Model description

We introduce a simple one-dimensional model based on the Brownian

motion and potential switching scheme. The mechanical potentials UnðxÞ
trap the rotational degree of freedom x of the probe attached to the tip of

the g subunit. Here, n ¼ 0;51;52;. is the amount of ATP consumed

through the rotary motion. Each potential is created by the interaction be-

tween the g subunit and the ab subunits (22,24), and the joint between

the g subunit and the probe bead (26).

Because of the threefold symmetry of the motor (Fig. 1), the potentials are

translationally identicalUnðxÞ ¼ U0ðx � 120� � nÞ. Since the substeps cor-
responding to the hydrolysis/synthesis reactions þ releasing/binding of Pi

are fast (23), the hydrolysis dwell potentials are effectively included in

UnðxÞ, and the ATP binding followed by ADP release is considered as the

rate-limiting step in the full reaction scheme. By assuming that the ATP

binding dwell and the hydrolysis dwell potentials are harmonic with the

same spring constants (19), k, the form of UnðxÞ is estimated as an effective

potential, U0ðxÞ=kBT ¼ kx2=2� log½expð�klxÞ þ expðeDm=kBT þ kl2=2Þ�.
Here, l ¼ 40� is the angle of the substep, and eDm is the free energy difference

between the ATP hydolysis dwell state and the binding dwell state. By

fitting the data in another study (24), we obtained k ¼ 0:0061 deg�2 andeDm ¼ 5:2kBT, which are in good agreement with previous independent

observations (19,23,26). See Supporting Material, Section A for the deriva-

tion of,U0ðxÞ.
The angular position of the probe bead, x, undergoes an overdamped

Brownian motion inside each potential:

G _x ¼ � v

vx
UnðxÞ � Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GkBT

p
xt; (1)

where xt is the Gaussian white noise with unit variance, kB is the Boltzmann

constant, F is the applied external torque, G is the friction coefficient deter-

mined by the size of the probe bead, and T is the temperature of the water

(i.e., the heat bath). The potentials are switched according to chemical-re-

action induced Poissonian transitions (Fig. 2 A). The switching rate in the

forward direction ðn/nþ 1Þ, Rþ
n ðxÞ, corresponds to the ATP binding þ

ADP release reaction, and the rate in the backward ðn/n� 1Þ direction,
R�
n ðxÞ, corresponds to the ADP binding þ ATP release, where we assume

R5
n ðxÞ ¼ R5

0 ðx � 120� � nÞ. The switching rate functions satisfy the local

detailed balance condition (Fig. 2 A):

Rþ
n ðxÞ

R�
nþ1ðxÞ

¼ exp

�
1

kBT
½UnðxÞ � Unþ1ðxÞ þ Dm�

�
; (2)

where we used the free energy difference between a single molecule ATP

and ADP þ Pi, Dm ¼ Dm0 þ kBT logð½ATP�½H2O�=½ADP�½Pi�Þ. The finite

free energy input Dm in Eq. 2 allows the motion of x to show a finite

steady-state current in the plus direction, whereas at Dm ¼ 0 the rotational

motion stalls and the dynamics is in equilibrium. The condition in Eq. 2 also
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FIGURE 2 External heat dissipation defined in the molecular motor model and its dependence on transport velocity. (A) Potential switching model and

schematic of the heat dissipation for the hydrolysis-driven rotation of F1 in the absence of applied external torque (F ¼ 0). The black circle represents the

angular position of the probe bead attached to the g subunit. The kinetics of x is described by an overdamped Brownian motion inside each potential.

Potentials are switched according to the angular position dependent rates R5
n ðxÞ. (B) Effective potential in the high ATP concentration limit. Since the

switching dynamics is fast, the independent potentials become invisible, and the dynamics follows the tilted periodic potential description, irrespective

of the form of R5
n ðxÞ. In this limit, the external dissipation Qext becomes equal to Dm. (C) Rotational velocity v versus the external heat dissipation

per step Qext. The red line is the case of the TASAM (q ¼ 0), and the other lines correspond to various qs0 models introduced by Eq. 5. Experimental

data were obtained from Toyabe et al. (14). (Errorbars: standard error of mean). The black circle indicates the high ATP concentration limit. To see this figure

in color, go online.
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guarantees that the rotational motion would stall when the external torque

F ¼ Dm=L is applied to the motor, and would rotate backward (i.e., the ATP

synthesis rotation) when F>Dm=L, corresponding to the tight-coupling

feature of F1 confirmed in the experiment (25).

Here we note on the requirement to introduce our potential switching

model. Although it has been clarified that the discrete position of the

gamma subunit (0�, 80�, 120� .) is coupled strongly to the nucleotide state

and conformation of the alpha-beta subunits (11,22,23), what occurs in

between these discrete angles has yet to be explained. In fact, it has been

clarified in previous experiments (19,20) that the chemical reactions do

not necessarily occur precisely at a certain angle of the g shaft, meaning

that the timing of chemical reaction is indeed a stochastic phenomena

with respect to the angular position. Furthermore, it was shown in another

study (24). that there exist separate potentials corresponding to the discrete

positions with a certain extent of overlap. Taking these facts together, it is

required to adopt the model depicted in Fig. 2 A to reproduce the experi-

mentally observed kinetics and energetics of the F1 motor.

In the stochastic dynamics of our model, there are two paths for the

motor to exchange energy with the surrounding water (Fig. 2 A). One path

is through the change of rotational position,which corresponds to the external

dissipation, since this energy flows out from the g shaft. The other path is

through the change of mechanical potential, which is the internal dissipation

corresponding to the energy used to change the conformation of ab. To

characterize these quantities, we introduce the probability density function

Pss
n ðxÞ, which describes the steady-state probability of x under the condition

that the trapping potential is UnðxÞ. Note that Pss
n ðxÞ ¼ Pss

0 ðx � 120� � nÞ
because of the translational symmetry. We further define LnðxÞ :¼ Pss

n ðxÞ
Rþ
n ðxÞ � Pss

nþ1ðxÞR�
nþ1ðxÞ, which is the steady-state switching rate that char-

acterizes the switching position. The first term in the right-hand side corre-

sponds to the probability density of the position at which the forward
Biophysical Journal 106(11) 2450–2457
switching ðn/nþ 1Þ occurs, and the second term corresponds to that of

the backward switching ðnþ 1/nÞ. By integrating LnðxÞ, we obtain the

net transport rate from potential n to nþ 1, v :¼ RN
�N dx LnðxÞ=3, which is

the steady-state rotational velocity.

The heat dissipationsQint and Qext in the model are defined as the steady-

state average of the internal and external heat dissipation per 120� step,

respectively (Fig. 2 A). Qint, the energy dissipation accompanying the

switching of n, is calculated by the following:

Qint :¼ 1

3v

Z
dx LnðxÞ½UnðxÞ � Unþ1ðxÞ þ Dm�; (3)

where UnðxÞ � Unþ1ðxÞ þ Dm corresponds to the total energy shift upon

the potential switching n/nþ 1 at position x, and the average is taken

with respect to the probability distribution of the switching position. Qext,

the dissipation through the spatial motion of x, is the difference between

the total dissipation and the internal one:

Qext :¼ jDm� FLj � Qint: (4)

Here, FL is the work performed by the motor against the external torque per

forward step, and therefore jDm� FLj corresponds to the total dissipation

per step. We take the absolute value since the average stepping direction

changes its sign at FL ¼ Dm.

Since direct measurement of Qext is technically challenging, it has been

estimated through indirect measurement in previous experiments (14,15).

The key idea in these experiments is that Qext is related to the extent of

the violation of the fluctuation response relation (27), and thus may be
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quantified through the measurement of the angular velocity fluctuation and

the response to small perturbative torque. Using this method, Qext has been

obtained without referring to Dm or the detail of the mechanical potential

(14,15).

Data of rotational velocity and external heat dissipation (Figs. 2 and 5) and

the switching position probability densities (Fig. 3) were obtained by

numerically solving the Fokker-Planck equation corresponding to the model

(Eqs. 1 and 5). We used the diffusion constant kBT=gL
2 ¼ 3:3 sec�1 that
FIGURE 3 Switching position distribution of the TASAM. (A) Distribu-

tion of the switching angular position at the slow rotation rate condition.

Numerically obtained switching position distribution in the q ¼ 0 (red),

0.5 (pink), and 1 (light blue) models, compared for the same rotational

rate v¼ 2 Hz (low velocity). The vertical axis is arbitrarily scaled. Although

the steady-state distribution of the q ¼ 0 model (black dotted line) has

a peak at the minimum point of UnðxÞ, the switching position density

clearly has a peak around the intersection point, which is consistent

with experiment (24). (B) Mechanism behind the internal dissipation-free

feature of the TASAM. The potential switching may occur at any angle

in the TASAM (brown arrows), whereas the backward switching of the

potential follows instantaneously if the energy required for the forward

switching was too large (blue arrows). Suppression of switching at high

energy difference positions lets the switching to occur only around the po-

tential intersection point, leading to the Qint � 0 feature. To see this figure

in color, go online.
was noted previously (24). Dm was set as 18.3 kBT in Figs. 2 and 5, and

16.5 kBT in Fig. 3, corresponding to earlier experiments (14), (15), and

(24), respectively.
RESULTS

First, we consider the case where ½ATP� and ½ADP� are set
high under a fixed ratio ½ATP�½H2O�=½ADP�½Pi�. We show
in the model that the steady-state rotation rate v converges
to a finite maximum velocity vmax, and the external dissipa-
tion Qext converges to Dm. To illustrate this, we write
R5
n ðxÞ ¼ Wf5n ðxÞ, where W is the rate characterizing the

chemical reaction, and f5n ðxÞ are dimension-less functions
that do not explicitly depend on ½ATP�, ½ADP�, or ½Pi� but
only depend on the ratio ½ATP�½H2O�=½ADP�½Pi� through
Dm. Note that the nucleotide concentration condition set
by ½ATP� and ½ADP�may be described using the two param-
eters, W and Dm.

Under a fixed Dm, a high ½ATP� and ½ADP� situation is
represented by large W. When W is sufficiently large (see
Supporting Material, Section A), we can prove that the dy-
namics becomes independent of the form of f5n ðxÞ, and the
motion of the probe is then described by the one-dimen-
sional Brownian motion in an effective tilted periodic poten-
tial (Fig. 2 B). This means that the switching of mechanical
potentials becomes too fast to be observed as distinct steps.
vmax, which is the steady-state velocity for W/N under
fixed Dm, may be calculated using this effective potential.
Velocity saturation at high ATP concentration is a well-
known property in molecular motors, which has been
phenomenologically understood through the Michaelis-
Menten curve (5). Because in this limit the potential switch-
ing dynamics is sufficiently fast and reaches equilibrium,
the energy dissipation accounting for the ab conformation
change is balanced and becomes zero, Qint ¼ 0. Therefore,
the dissipation through the rotational motion equals the
free energy input Qext ¼ Dm, in the absence of torque.
This result is also consistent with the observation in the pre-
vious experiment (15), where the external force dependence
of Qext was measured under the condition of high nucleotide
concentrations (see also Fig. 5 B).

The previous torque-free experiment (14) shows that even
when (ATP) is low enough and v<vmax, the external dissipa-
tion Qext is still close to Dm (Fig. 2 C, crosses). Although we
have shown that the feature where Qext � Dm is achieved for
any switching rate function when v � vmax, the external
dissipation has a strong dependence on the functional
form of f5n ðxÞ in the low velocity regime, since the value
of Qint (and consequently, Qext) is determined by the typical
position x at which the switching occurs (Fig. 2 A). The
experimental observation is striking, since the individual
functional forms of f5n ðxÞ are arbitrary as long as the
detailed balance condition Eq. 2 is satisfied; there is no
general reason for Qext to become close to Dm in the low
velocity regime.
Biophysical Journal 106(11) 2450–2457
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To see the significance of the experimental result for
lower velocities, and to demonstrate the uniqueness and
validity of the TASAM (Fig. 1 B), we parameterize the
switching rate functions by introducing a parameter q
ð0%q%1Þ as follows:

f þn ðxÞ ¼ exp

�
q

kBT
½UnðxÞ � Unþ1ðxÞ þ Dm�

�
;

f �nþ1ðxÞ ¼ exp

�
q� 1

kBT
½UnðxÞ � Unþ1ðxÞ þ Dm�

�
:

(5)

This q determines the asymmetry in the x-dependence of the
forward and backward switching rates, while respecting the
A

B

FIGURE 4 Property of the potential switching model under application

of external force. (A) Schematic of the torque F dependence of the poten-

tial switching model. When the mechanical potential is harmonic, the

model becomes symmetrical about the change ðF; q; xÞ/ð2Dm=L� F;
1� q;�xÞ. (B) In the case of q ¼ 0.5, the absolute velocity and the balance

between the internal/external dissipations become equivalent in the two

cases, F ¼ f and 2Dm=L� f . To see this figure in color, go online.
detailed balance condition. The TASAM is the case where
the switching rate in the forward direction (ATP binding
rate) has no dependence on the g angle, and therefore, cor-
responds to q ¼ 0. The case of q ¼ 1 corresponds to another
type of totally asymmetric model that is opposite to the
TASAM, where the ATP binding event is strictly controlled
by the g angle, whereas the reverse reaction (ADP binding)
is instead independent of the angle. In this manner, q de-
scribes the asymmetry in the extent of coordination between
the angle of g subunit and the ATP binding site.

Fig. 2 C shows the numerically obtained relation between
v and Qext for various values of q. The TASAM produces the
internal dissipation-free feature ðQext � DmÞ, which indeed
has low dependence on the rotational velocity in the broad
range tested in the experiment (Fig. 2 C, red). This feature
of the model is preserved for the larger Dm case (Fig. S9
in Supporting Material). Note that under a fixed functional
form of UnðxÞ, the maximum velocity vmax does not depend
on q, which is why we may compare Qext between various
models for the same v=vmax. Although all models produce
Qext ¼ Dm for v ¼ vmax (black circle), the values of Qext

for the cases of q>0:1 deviate from Dm significantly at lower
v. Thus, we propose that the internal dissipation-free motor
is obtained only by assuming low coordination ðq � 0Þ in
the ATP free state and high coordination in the ATP bound
state.

As seen in Eq. 3, the value of Qint is determined by
the typical switching position. We compare LnðxÞ for the
various models in the low velocity regime in Fig. 3 A.
Although the steady-state distribution of the g angle
ðPss

n ðxÞÞ has a peak at the potential minimum point in this
low velocity regime (Fig. 3 A, black circle), the peak of
LnðxÞ in the q ¼ 0 model is positioned close to the point
x ¼ xc;n where Unþ1ðxc;nÞ � Unðxc;nÞ � Dm ¼ 0, which we
shall refer to as the potential intersection point. The mech-
anism that produces this behavior is that, although the
ATPs most likely approach the motor when the g angle is
around the potential minimum point, the bound ATP is
almost always kicked out instantaneously, because of the
large energy difference required to switch the potential at
such points, Unþ1ðxÞ � UnðxÞ � Dm[kBT (Fig. 3 B). The
switching would inevitably occur at positions close to xc;n,
Biophysical Journal 106(11) 2450–2457
resulting in low energy dissipation in the potential switching
(low Qint). LnðxÞ of the TASAM (Fig. 3 A) agrees with the
estimated distribution presented in (24) whereas in the cases
where q ¼ 0:5 and 1 (Fig. S6), the peaks clearly shifted
more toward the forward direction than the intersection
point.

On theoretical grounds, the low velocity dependence of
Qext could be understood through the existence of the time
scale tp, which determines the minimal value ofW at which
the model presents the internal dissipation-free feature. We
have numerically verified that in the q ¼ 0 model, tp is the
time scale of the angular position to relax inside a single
potential (see Supporting Material). The crucial point is
that this time scale tp is much larger than the time scale
tv, which determines the rotational velocity saturation and
the single effective potential description (Fig. 2 B). The
large separation between the values of tp and tv causes
the experimentally accessible region of the value of W (cor-
responding to the ATP concentration) to fit inside the
inequality t�1

p <W%t�1
v , and the internal dissipation-free

feature is observed at all velocity conditions as a conse-
quence. In more practical words, our theory shows that
when the actual motor adopts the TASAM, Qext � Dm holds
if (ATP) is as large as 0.1 mM for the 0.3 mm probe bead
case (14,15). Since the velocity saturation occurs at (ATP)
> 5 mM under this condition (23), this lower bound concen-
tration to observe Qext � Dm is significantly small.

We next show how other features of the TASAM appear
in measurable quantities. For the sake of schematic expla-
nation, let us consider that the mechanical potentials are
harmonic, U0ðxÞ ¼ Kðx=LÞ2=2 (Fig. 4 A). Then, the poten-
tial switching model would be symmetric concerning the
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FIGURE 5 Characteristic torque dependence of velocity and dissipation

in the TASAM. (A) External torque dependence of the rotational velocity

in the TASAM (numerical, lines) and the corresponding values obtained

from experiment (points with standard deviation errorbars (25)). Velocity

is normalized using its value at F ¼ 0, which is shown as the title of

each lines. The, v ¼ 0.32, 1.9, 7.1, and 12 Hz cases correspond to W ¼
1.7, 15, 120, and 1000 sec�1 in the model, respectively, with other param-

eters fixed. (B) External torque dependence of the internal dissipation Qint

in the TASAM. At low nucleotide conditions (small W), Qint significantly

deviates from zero at the presence of large torque. (C) ATP hydrolysis

and synthetic rotation cases in the TASAM at the low nucleotide concentra-

tion condition. In contrast to the symmetric model (Fig. 4 B), the absolute

velocity and the value of internal dissipation are different in the F ¼ f and

2Dm=L� f cases. To see this figure in color, go online.

Nonequilibrium themodynamics of F1-ATPase 2455
change of parameters and coordinate, ðF; q; xÞ/ð2Dm=
L� F; 1� q;�xÞ. It follows from this symmetric property
that in the case of q ¼ 0.5 (symmetric model, Fig. 4 B),
the torque dependence of the steady-state rotational veloc-
ity, vðFÞ, would show an antisymmetric curve with respect
to the F ¼ Dm=L line. Indeed, this property is observed
even when we assume the nonharmonic and realistic form
of U0ðxÞ (see Fig. S7). On the contrary, in the TASAM
(q ¼ 0), this feature is lost especially at low W, and the tor-
que dependence of the velocity becomes sharper at F>Dm=L
than at F<Dm=L (vð0Þ ¼ 0:32; 1:9; 7:1 Hz lines in Fig. 5 A).
Remarkably, this feature of the TASAM matches with the
experimental observation (25) (line points in Fig. 5 A),
whereas other models fail to capture the observed feature
of F1 (Fig. S7).

We predict that similar difference between the torque-free
and torque-applied cases would be observed in the internal
dissipation, if the TASAM is adopted in the F1 motor. In
fact, Fig. 5 B shows that the internal dissipation-free nature
of the TASAM is lost, especially when large torque
F>Dm=L is applied in the model. The low torque depen-
dence of Qint at high nucleotide concentration has recently
been measured and reported (15), which is consistent with
the case of vð0Þ ¼ 12 Hz in Fig. 5 B. The validity of our
model can be checked by further measuring Qint in the
low nucleotide concentration condition (vð0Þ ¼ 0:32; 1:9
and 7.1 Hz cases in Fig. 5 B).

The character of the torque dependence of TASAM could
be understood through the property of the potential switch-
ing model discussed above. The dynamics of the TASAM
at the presence of large applied torque, for instance
F ¼ 2Dm=L, becomes equivalent to that of the q ¼ 1 model
with F ¼ 0 with opposite velocity. As we show in Fig. 2 C
and 3 A, the internal dissipation is large in the q ¼ 1 case,
which explains why we observe large internal dissipation
in the presence of torque in the TASAM at low W. In this
sense, adopting the TASAM in the forward step mechanism
(ATP hydrolysis) is equivalent to adopting the q ¼ 1 model
in the backward step (ATP synthesis, Fig. 5 C). The absolute
velocity at low nucleotide condition becomes faster at
F ¼ 2Dm=L than at F ¼ 0 in the TASAM (Fig. 5 A), which
is suggestive since the F1 is forced to rotate in the ATP
synthetic direction in physiological conditions. It shall be
interesting to quantify how asymmetric the thermodynamic
quantities and force-velocity relations are in other molecular
motors.

Another way to verify our model is to directly estimate
the switching rate functions. Recently, two groups have
reported the angular position dependence of chemical reac-
tion rates in the F1 motor (19,20,28). By assuming that
the ATP-on rates measured in these reports correspond
to the forward switching rate in our model (Rþ

n ðxÞ),
we obtain q ¼ 0:07 � 0:12 when the harmonic potential
model U0ðxÞ ¼ Kðx=LÞ2=2 with K ¼ 50 kBT is adopted
(see Supplementary Material, Section B). This means that
Biophysical Journal 106(11) 2450–2457



2456 Kawaguchi et al.
the angular position dependence of the ATP binding ob-
served in experiment is relatively low compared with that
of the ATP synthetic reaction (R�

n ðxÞ, corresponding to the
combination of ADP-on and ATP-off), which is consistent
with our assumption in the TASAM. We predict that if the
direct measurement of R�

n ðxÞ is possible, one should find a
large dependence on the angle, since 0 � q � 1� q � 1.
DISCUSSIONS

We now discuss the possibility of another model to explain
the experimental results. Instead of the form we introduced
in Eq. 5, we may choose a switching rate function that
has a sharp peak at a fixed certain position that is very close
to the potential intersection point xc;n under the experi-
mental condition of Dm ¼ 18:3 kBT (see Supporting Mate-
rial, Section C). In such a model, the peak position of
LnðxÞ would be independent ofW, and the velocity indepen-
dent feature of Qint � 0 would be trivially obtained as long
as Dm is not changed. The first problem of this model is
that it is difficult to explain the Dm independence of small
internal dissipation observed in (14). Since the intersection
point is Dm -dependent, the x-dependence of Rþ

n ðxÞ must
be explicitly changed depending on Dm to preserve the
intersection point switching. The second problem of this
model is that the vðFÞ curve would be antisymmetric for
general W, opposed to the experimental observation
(Fig. S8). This is because when Rþ

n ðxÞ has a sharp peak at
the intersection point, R�

nþ1ðxÞ would also have a sharp
peak around the intersection point, and the model would
effectively be symmetric about the parameter and coordi-
nate change ðF; xÞ/ð2Dm=L� F;�xÞ.

The motor conformation dependence of the chemical
reaction has been understood as the diffusion-catch mecha-
nism in various molecular motors (24,29,30). According to
our theory, one way to realize such diffusion-catch feature
is to simply make the chemical reaction that sets forward
the desired motion to have flat dependence on the motor
conformation. The potential switching scheme is a general
model that appears for example in the context of electron
transfer reactions (31). Therefore, it is of interest to find
the applicability of the two scenarios of intersection
point switching: the fast switching limit and the TASAM,
in a wide range of problems in biological and physical
chemistry.

In summary, we showed in this study that the general
model for molecular motors is internal dissipation-free,
but only when the chemical fuel concentration is high
enough for the motor to reach maximum velocity. We intro-
duced the TASAM to explain the internal dissipation-less
feature of F1 at the small velocity condition. We showed
the consistency of the model with the experimentally
observed feature in rotational velocity and the angular
dependent chemical reactions, and further discussed on
the possibility of large internal dissipation in the ATP syn-
Biophysical Journal 106(11) 2450–2457
thetic rotation to be observed in future experiments. Since
the basic scheme we considered is generic, and the assump-
tion made on the TASAM is simple, we consider that our
theory would serve as a prototype for physicists as well as
biologists to further investigate the thermodynamics of
nano-machines.
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A. Effective potential in the fast chemical reaction limit 

Here we show that by assuming fast ATP hydrolysis and Pi release, the dynamics apart from the slow 120° steps 
are governed by the overdamped Brownian motion inside the effective potentials 𝑈𝑖(𝑥). Through the same method, 
we may prove that in the high ATP concentration limit, one obtains the tilted periodic potential picture (Fig. 2C in 
the main text) for the full dynamics.  

We consider that there are two potentials (Fig. S1), 𝑈h(𝑥) and 𝑈b(𝑥), corresponding to the ATP hydrolysis 
dwell (centered at 𝑥 = −𝑙 = −40°) and the ATP binding dwell (𝑥 = 0). To neglect the slow switching (80° step), 
we assume that the probe is contained in either of the potential for the time scale of interest. We assume that the 
potential energy is large compared to the thermal energy, 𝑈h(0),𝑈h(−𝑙) ≫ 𝑘B𝑇, which is the case observed in 
experiment. Let 𝑃h𝑡(𝑥) and 𝑃b𝑡(𝑥) be the probability density functions of finding x inside each potentials. The 
Fokker-Planck equations read 
 ∂

∂𝑡̃
𝑃𝑖𝑡̃(𝑥) =

𝑘𝐵𝑇
𝛤𝑋𝑙𝑣2

∂
∂𝑥�

�
𝑑𝑈�𝑖(𝑥)
𝑑𝑥�

𝑃𝑖𝑡̃(𝑥�) +
∂
∂𝑥�

𝑃𝑖𝑡̃(𝑥�)�+ 𝑓𝑗(𝑥�)𝑃𝑗𝑡̃(𝑥�)− 𝑓𝑖(𝑥�)𝑃𝑖𝑡̃(𝑥�) (S1) 

where i and j , i are h or b. We have normalized the equation using 𝑡̃ = 𝑋𝑡, 𝑥� = 𝑥/𝑙𝑣, and 𝑈�i(𝑥) = 𝑈𝑖(𝑥)/𝑘B𝑇. 
Here, X is the typical (slowest) rate of the ATP hydrolysis or the Pi releasing reaction. As the typical length scale 𝑙𝑣, 
we shall adopt the length scale of 𝐸(𝑥): = [𝑈h(𝑥)  − 𝑈b(𝑥)  + 𝛥𝜇]/𝑘B𝑇, which is much smaller than the length 
scale of 𝑈h(𝑥)  in the large potential energy setup. The switching rates from h to b and b to h have been defined as 
𝑋𝑓h(𝑥) and 𝑋𝑓b(𝑥), respectively, which satisfy the local detailed balance: 
 
 

 
FIGURE S1 Left: Mechanical potentials and chemical reactions corresponding to the substeps. Right: In the 
limit of the fast 40° substep, the two potentials, 𝑈h(𝑥) and 𝑈b(𝑥), corresponding to the ATP hydrolysis dwell and 
the ATP binding dwell, respectively, will be merged into one effective potential, 𝑈0(𝑥). When 𝑈h(𝑥) and 𝑈b(𝑥) 



are assumed to be harmonic with the same spring constant (as observed in [1]), 𝑈0(𝑥) is given by Eq. S7. 
Numerical results presented in the main text were obtained using this 𝑈0(𝑥). 
 𝑓h(𝑥)

𝑓b(𝑥)
= exp�−

[𝑈h(𝑥)− 𝑈b(𝑥) + 𝛥𝜇]
𝑘B𝑇

�. (S2) 

The free energy difference between the ATP bound state and the ATP hydrolyzed + Pi released state of the F1 is 
denoted as 𝛥̃𝜇. Assuming fast reaction (𝑋 → ∞) corresponds to taking 𝜖 ∶=  1/𝜏𝑣𝑋 as the small parameter, where 
𝜏𝑣 ∶= 𝛤𝑙𝑣2/𝑘B𝑇. Let us calculate 𝑃𝑖𝑡(𝑥) in the form, 𝑃𝑖𝑡(𝑥) = 𝑃𝑖

(0)(𝑥) + ϵ𝑃𝑖
(1)(𝑥) + 𝑂(ϵ2). We obtain from the 0-th 

order equations in Eq. S1: 
 𝑃𝑖

(0)(𝑥) = 𝑄𝑡(𝑥)𝑃𝑖∗(𝑥), (S3) 
where 𝑃h∗(𝑥) = {1 + exp[𝐸(𝑥)]}−1  and 𝑃b∗(𝑥) = {1 + exp[−𝐸(𝑥)]}−1[= 1 − 𝑃h(𝑥)] . We adopted the length 
scale of 𝐸(𝑥) as 𝑙𝑣 in Eq. S1 since this is the length scale of 𝑃h,b(𝑥) which is critical in the perturbation theory. 
The solvability condition for the 1st order equations in Eq. S1 determines the dynamics of 𝑄𝑡(𝑥): 
 ∂

∂𝑡
𝑄𝑡(𝑥) =

1
𝛤
∂
∂𝑥 �

� 𝑃𝑖∗(𝑥)
𝑑𝑈𝑖(𝑥)
𝑑𝑥

𝑄𝑡(𝑥)
𝑖=h,b

+ 𝑘B𝑇
∂
∂𝑥

𝑄𝑡(𝑥)� (S4) 

which is equivalent to the one-dimensional overdamped Langevin equation with the effective force 
 −

𝑑𝑈0(𝑥)
𝑑𝑥

= − � 𝑃𝑖∗(𝑥)
𝑑𝑈𝑖(𝑥)
𝑑𝑥

𝑖=h,b

 (S5) 

where the effective potential is obtained by 
 𝑈0(𝑥) = � 𝑑𝑥 � 𝑃𝑖∗(𝑥)

𝑑𝑈𝑖(𝑥)
𝑑𝑥

𝑖=h,b

𝑥

𝑐
 (S6) 

with an arbitrary fixed constant c (Fig. S1). Assuming that the two potentials 𝑈h(𝑥)  and 𝑈b(𝑥) are harmonic with 
the same spring constants, 𝑈b(𝑥) = 𝑈h(𝑥 + 𝑙) = 𝑘𝑥2/2, which is consistent with the ATP binding dwell and 
catalytic dwell observed in experiment [1], we have an explicit form  
 

𝑈0(𝑥) = 𝑘B𝑇 �
1
2𝑘𝑥

2 + log�𝑒−𝑘𝑙𝑥 + 𝑒𝛥�𝜇/𝑘B𝑇+𝑘𝑙2/2�� (S7) 

We used Eq. S7 to fit the potential estimated from the probe trajectory [4] by the parameters k and 𝛥𝜇�, and 
obtained 𝑘 = 0.0061 deg−2𝑘B𝑇. and 𝛥̃𝜇 = 5.2 𝑘B𝑇.  

The high ATP concentration case of the full dynamics [which consists of potentials 𝑈𝑛(𝑥) and switching rates 
𝑅𝑛±(𝑥)] could be treated in a similar manner if we adopt as 𝑙𝑣  the length scale of 𝐸𝑛(𝑥) ≔ [𝑈𝑛(𝑥)− 𝑈𝑛+1(𝑥) +
𝛥𝜇]/𝑘B𝑇 and consider the limit 𝑊𝜏𝑣 ≫ 1. The dynamics in this limit is described by 
 𝛤𝑥̇ = 𝐹(𝑥) + �2Γ𝑘B𝑇𝜉𝑡 (S8) 
The effective force 𝐹(𝑥) is given by 
 

𝐹(𝑥) = � 𝑃𝑛∗(𝑥)
𝑑𝑈𝑛(𝑥)
𝑑𝑥

 
∞

𝑛=−∞

 (S9) 

with 𝑃𝑛∗(𝑥) defined similarly to the previous case as 
 

𝑃𝑛∗(𝑥) ≔
exp{−[𝑈𝑛(𝑥)− 𝑛Δ𝜇]/𝑘𝐵𝑇} 

∑ exp{−[𝑈𝑚(𝑥)−𝑚Δ𝜇]/𝑘𝐵𝑇} ∞
𝑚=−∞  

 (S10) 

The force in Eq. S9 corresponds to a tilted periodic potential, where the energy difference per 120° step is Δ𝜇 (Fig. 
2B). Since this energy difference is dissipated through the rotational motion of the probe, 
 

𝑄ext ≔ −� 𝐹(𝑥)𝑑𝑥 =
120° 

0° 
Δ𝜇 . (S11) 

The maximum velocity v, which is the steady-state velocity of the model described by Eq. S8, may be obtained 
analytically using 𝐹(𝑥). 
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B. Harmonic potential model 
We consider in this section the simplified harmonic potential case, 𝑈𝑛(𝑥) = 𝐾(𝑥 − 𝑛𝐿)2/2, with 𝐿 = 120°. In 

Fig. S2, we show the numerical results of 𝑄ext in this model. Under the condition that the diffusion coefficient 
𝐷 =  𝑘B𝑇/𝛤 as 𝐷/𝐿2 = 3.3 sec−1 [4], and the chemical potential as 𝛥𝜇/𝑘𝐵𝑇 =  19 [5, 6], the value of 𝐾 was 
determined as 𝐾𝐿2/𝑘𝐵𝑇 =  50 by setting the maximum average velocity to fit with that obtained in experiment. 
The characteristic feature of q dependence is similar to the case of Fig. 2C, where the potential estimated through 
experiment was used in the calculation. Note that in this model, the angular position dependence of the forward 
switching rate has a simple form, 
 𝑅𝑛+ (𝑥) ∝ exp[𝑞𝐾𝐿𝑥/𝑘B𝑇] (S12) 
which allows us to directly compare the value of q with the experimentally observed rates of ATP binding[1, 2, 3]. 
Using the above parameters, we obtain 𝑞 =  0.07 ~ 0.1, 0.11, and 0.12 for [2], [1], and [3], respectively, which 
is consistent with our observation that q should be close to zero in order to explain the internal dissipation-free and 
asymmetric velocity features of the F1 motor. 

Let us first consider the large W limit (high ATP concentration). The length scale of potentials 𝑈𝑛(𝑥) = 𝐾(𝑥 −
𝑛𝐿)2/2 and that of 𝑈𝑛(𝑥)− 𝑈𝑛+1(𝑥) = ∓𝐾𝐿𝑥 are �𝑘B𝑇/𝐾 and 𝑘B𝑇/𝐾𝐿 , respectively. Since the potential 
energy is sufficiently large 𝐾𝐿2/𝑘B𝑇 ≫ 1, the smallest length scale in this model is 𝑙𝑣 =  𝑘B𝑇/𝐾𝐿. This length 
defines the time scale 𝜏𝑣 = 𝛤𝑘B𝑇/(𝐾𝐿)2, which determines the typical W (ATP concentration) that allows the 
effective force description of the model, and consequently the velocity saturation. Let us also define 𝜏𝑝: = 𝛤/𝐾 (≫
𝜏𝑣), which corresponds to the time scale of equilibration inside a single potential.  
Significance of the time scale 𝜏𝑣 is numerically verified through seeing how the velocity dependence of 𝑊in the 
model changes according to the spring constant 𝐾. In Fig. S3, we show the results for the case where 𝐾 and 𝛥𝜇 
are parameterized by d (= −1, 0, 1, 2, 3, 4, 5) as  
 𝐾𝐿2/𝑘B𝑇 = 50 × 2d (S13) 

 𝛥𝜇/𝑘B𝑇 = 19 × 2d (S14) 
Clearly, the value of 𝑊 at which the velocity saturates is scaled by 𝜏𝑣 (∝ 𝐾−2) and not by 𝜏𝑝 (∝  𝐾−1), when 𝑑 is 
sufficiently large.  

To understand the limit 𝑊 → 0 of the model, we focus on the switching dynamics between potentials 𝑈0(𝑥) 
and 𝑈1(𝑥)− Δ𝜇 since the dynamics between two neighboring potentials are equivalent in steady-state. Our aim is 
to estimate the probability density of the position where the switching from 𝑈0(𝑥) to 𝑈1(𝑥)− Δ𝜇 takes place: 
 𝜆0(𝑥): = 𝛬0(𝑥)/𝑊 = 𝑃0𝑠𝑠  (𝑥)𝑓0+(𝑥)− 𝑃1𝑠𝑠(𝑥)𝑓0−(𝑥). (S15) 
𝑃0𝑠𝑠  (𝑥) and 𝑃1𝑠𝑠  (𝑥) are the steady-state densities of x under the condition that 𝑛 is 0 and 1, respectively. The 
first term in the right-hand side of Eq. S15 corresponds to the probability density of the switching at 𝑥, whereas the 
second part is that of the switch back (1 → 0). When 𝜆0(𝑥) is obtained, the internal heat dissipation may be 
calculated as 
 

𝑄int =
1
𝑍
�  𝑑𝑥 𝜆0(𝑥)[𝑈0(𝑥)−𝑈1(𝑥) + 𝛥𝜇]

 
 (S16) 

where 𝑍 = ∫ 𝑑𝑥 𝜆0(𝑥) is the normalization factor. 
For ≪ 𝜏𝑝−1 , the steady-state probability density of x is close to the equilibrium density inside each potential 

 𝑃𝑛𝑠𝑠  (𝑥) ≃ 𝑃𝑛
𝑒𝑞

 (𝑥) ∝ exp[−𝑈𝑛(𝑥)/𝑘B𝑇] (S17) 
Although this assumption is valid in estimating the first term in the right-hand side of Eq. S15, it fails to capture the 
feature of the second term at 𝑊 > 0, since the small but finite switching makes 𝑃1𝑠𝑠  (𝑥) deviate from 𝑃1

𝑒𝑞
 (𝑥) at 

around the peak point of 𝑃0𝑠𝑠  (𝑥)𝑓0+(𝑥), where 𝑓0−(𝑥) may take a large value. 
We focus on the model with 𝑞 < 𝑥𝑐/𝐿, where 𝑥𝑐 ∶=  (𝐾𝐿2/2 −  𝛥𝜇)/𝑘𝐵𝑇𝐾𝐿 ≃  14° is the intersection point 

between the two potentials, 𝑈0(𝑥𝑐)− 𝑈1(𝑥𝑐) + 𝛥𝜇 = 0. In this region of 𝑞, 𝑃0
𝑒𝑞

 (𝑥)𝑓0+(𝑥) has a peak at 𝑥 < 𝑥𝑐. 
In order to phenemenologically take into account the effect of switch back, we consider the conditional probability 
that after the switching occurs at x, the potential stays as 𝑈1(𝑥)− Δ𝜇 and is not switched back to 𝑈0(𝑥): 
 

𝐷0(𝑥) ≔
exp[−𝜏𝑣/𝜏𝑙𝑒𝑞(𝑥)]  +  exp[𝐸0(𝑥)]

 1 +  exp[𝐸0(𝑥)]  
 (S18) 
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FIGURE S2 Rotational velocity 𝑣 versus the external heat dissipation per step 𝑄ext in the harmonic potential 
model. Parameters are given in the text. The experimental results were obtained from [5] (error bar: standard error 
of mean). 

 
 

 
FIGURE S3 𝑊 dependence of velocity for the harmonic potential model with 𝑞 = 0 (numerical). Different 
colors correspond to different 𝑑’s, which changes the set of spring constant 𝐾 and hydrolysis free energy 𝛥𝜇 in 
the model according to Eqs. S13 and S14. Results from models with different 𝑑 are plotted by scaling 𝑊 by 𝜏𝑣−1. 
Inset shows same data without scaling 𝑊. 
  



We have introduced the local equilibrium time scale 
 

𝜏𝑙𝑒𝑞(𝑥): =  
1

𝑅0+(𝑥) + 𝑅0−(𝑥) =
1

𝑊[𝑓0+(𝑥) + 𝑓0
−(𝑥)]

 (S19) 

which is the typical time required for equilibration between 𝑈0(𝑥) and 𝑈1(𝑥)− Δ𝜇 at a fixed position 𝑥. Using 
𝐷0(𝑥), we assume that the switching position probability density is given by 
 𝜆̃ 0(𝑥) ≔ 𝑃0

𝑒𝑞(𝑥)𝑓0+(𝑥)𝐷0(𝑥)  (S20) 
This is justified since the main contribution from the 𝑃1𝑠𝑠  (𝑥)𝑓1−(𝑥), term in Eq. S15 is the switch back which 
occurs right after the switch 0 → 1, and the probability that the probe spontaneously climbs the potential 𝑈1(𝑥) in 
the backward direction for the switch back to occur is negligibly small. As shown in Fig. S4, the external heat 
dissipation theoretically obtained as 
 

𝑄�(𝑊) ≔ Δ𝜇 −
1
𝑍

 �𝑑𝑥
 

𝜆0(𝑥)[𝑈0(𝑥)− 𝑈1(𝑥) + 𝛥𝜇] (S21) 

 
=

1
2
𝐾𝐿2 − 𝐾𝐿

1
𝑍

 �𝑑𝑥
 

𝜆0(𝑥)𝑥 (S22) 

captures the feature of 𝑄ext at small 𝑊. Note that in the limit 𝑊 → 0, we find 
 

𝑄ext = 𝑄�(𝑊 = 0) = �
1
2
− 𝑞�𝐾𝐿2 (S23) 

since in this limit the switching position probability density becomes 𝑃0
𝑒𝑞

 (𝑥)𝑓0+(𝑥) ∝ exp[−𝐾(𝑥 − 𝑞𝐿)2/2𝑘B𝑇], a 
Gaussian distribution with peak at 𝑥 = 𝑞𝐿. For finite 𝑊, the value of 𝑄int deviates drastically from 𝑄�(𝑊 = 0) 
in a manner ∝ − log𝑊, which is observed as a sharp drop when 𝑊 or 𝑣 is linear scaled (Fig. S4 inset, Fig. S2). 
Physically, this corresponds to the fact that very little ADP concentration is sufficient to prevent switching to 
occur at energetically unfavorable positions [𝑈0(𝑥𝑐)− 𝑈1(𝑥𝑐) + 𝛥𝜇 ≫ 𝑘B𝑇]. 
𝜆0(𝑥) ≃ 𝜆̃0(𝑥) is valid when 𝑊 ≪ 𝜏𝑝−1, and should fail when 𝑊 > 𝜏𝑝−1 since Eq. S17 used to evaluate the first 

term of Eq. S15 is violated in this region. The 𝑄ext therefore deviates from the sharp theoretical curve at around 
𝑊 ≃ 𝜏𝑝−1 (Fig. S5). As shown in Fig. S4, the value of 𝑄�(𝑊) is sufficiently close to 𝛥𝜇 when 𝑊 ≃ 𝜏𝑝−1, which 
could be understood as follows. Assuming 𝐷0(𝑥)  ≃  exp[−𝜏𝑣/𝜏𝑙𝑒𝑞(𝑥)], the peak position 𝑥 = 𝑥𝑐 −  𝛿 of 𝛬0(𝑥) 
at 𝑊 = 𝜏𝑝−1 satisfies 
 𝐾𝐿( 𝑥𝑐 − 𝑞𝐿)

𝑘B𝑇
=
𝐾𝐿𝛿
𝑘B𝑇

−  𝑞 exp �
𝑞𝐾𝐿𝛿
𝑘B𝑇 �+ (1 − 𝑞) exp �

(1 −  𝑞)𝐾𝐿𝛿
𝑘B𝑇

� (S24) 

Using the 𝛿 obtained in Eq. S24, 𝑄��𝑊 = 𝜏𝑝−1� is estimated as ≃ 𝛥𝜇 + 𝐾𝐿𝛿. At large 𝐴 ∶=  𝐾𝐿2/𝑘B𝑇 and 
𝐵 ∶=  𝛥𝜇/𝑘B𝑇 =  𝑂(𝐴), the value of 𝛿 satisfying Eq. S24 scales as 𝐴𝛿/𝐿 ∝ log𝐴. Therefore, 𝑄��𝑊 = 𝜏𝑝−1�/
𝛥𝜇 = 1 + 𝑂(log 𝐴/𝐴), which means that 𝑄��𝑊 = 𝜏𝑝−1�  ≃  𝛥𝜇 is satisfied with a small error term under 𝐴 ≫ 1.  

To sum up, in the potential switching model with the switching rates (3) and (4) in the main text and 𝑞 < 𝑥𝑐/𝐿, 
𝑄ext becomes sufficiently close to 𝛥𝜇  at 𝑊 ≃ 𝜏𝑝−1 , when the condition 𝐾𝐿2,𝛥𝜇 ≫ 𝑘𝐵𝑇  is satisfied. Since 
𝜏𝑝  =  𝜏𝑣𝐾𝐿2/𝑘B𝑇, there exists a time scale separation 𝜏𝑝  ≫  𝜏𝑣, hence at 𝑊 ≃ 𝜏𝑝−1 the velocity is still smaller 
than the maximum velocity, 𝑣 < 𝑣max. This means that if 𝐾𝐿2/𝑘B𝑇 =  50, which is the case where the maximum 
velocity is close to the real F1, the model shows the 𝑄ext  ∼  𝛥𝜇 behavior even when [ATP] is as low as 1/50 of the 
velocity saturating concentration. Persistent 𝑄ext ∼  𝛥𝜇  for the broad range of 𝑊 > 𝜏𝑝−1 allows the low 
dependence of 𝑄ext on 𝑣, which explains the internal dissipation-free feature of F1 observed in experiment. For the 
case of models with q > xc/L, it is confirmed that there exists a significant difference between 𝑄ext  and 𝛥𝜇 for 
= 𝜏𝑝−1, even when 𝑑 is as large as 5 in the parameterization given by Eqs. S13 and S14. It is left for future 
studies to theoretically understand the 𝑞 > 𝑥𝑐/𝐿 models (including 𝑞 =  0.5 and 1, Fig. S6). 
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FIGURE S4 Numerically obtained 𝑄ext (red) and the theoretical 𝑄�(𝑊) (green) obtained from Eq. S22 in the 
𝑞 = 0 model. Starting from 𝑄�(0) in the limit 𝑊 → 0, 𝑄ext drops sharply in a manner ∝ −log𝑊 at low but 
finite 𝑊. 𝑄ext stops dropping at 𝑊 ≃ 𝜏𝑝−1 , and converges to 𝛥𝜇 at  𝑊 > 𝜏𝑝−1. Inset shows same data with 
linear-scale 𝑊. 

 

 
FIGURE S5 Deviation of 𝑄ext from the theoretically obtained 𝑄�(𝑊) from Eq. S22. Different colors correspond 
to 𝑑 = −1, 0, 1, 2, 3, 4, 5 in the model parameterized by Eqs. S13 and S14. Inset shows same data without scaling. 
 
 



C. External torque dependence of velocity in various models 
In Fig. S8, the external torque dependence of the rotational velocity for the 𝑞 = 0.5 (left) and 1 (right) models 

are shown. We used Eq. S7 for 𝑈0(𝑥), with 𝑘 = 0.0061 deg−2𝑘B𝑇. and 𝛥̃𝜇 = 5.2 𝑘B𝑇. In comparison to the 
𝑞 = 0 model (Fig. 5A in main text), the 𝑞 =  0.5 and 1 models fail to capture the feature of F1, where large 
minus velocity in the presence of large torque and low nucleotide concentration has been observed. Notice that in 
the case of 𝑞 =  0.5, the curves are close to anti-symmetric in a wide range of 𝑊 [represented by 𝑣(0)]. 

We define the intersection switching model by 
 

𝑓𝑛+(𝑥) = exp �−
�𝑥 − 𝑥𝑐,𝑛�

2

2𝜎2 +
𝑞
𝑘B𝑇

 [𝑈𝑛(𝑥)−  𝑈𝑛+1(𝑥) + Δ𝜇]�, 

𝑓𝑛+1− (𝑥) = exp �−
�𝑥 − 𝑥𝑐,𝑛�

2

2𝜎2 +
𝑞 − 1
𝑘B𝑇

 [𝑈𝑛(𝑥)−  𝑈𝑛+1(𝑥) + Δ𝜇]�, 

(S25) 

Here, 𝑥𝑐,𝑛 is the intersection point between the two potentials 𝑈𝑛(𝑥) and 𝑈𝑛+1(𝑥)− Δ𝜇, satisfying  𝑈𝑛�𝑥𝑐,𝑛� −
 𝑈𝑛+1�𝑥𝑐,𝑛�+ Δ𝜇 = 0, and 𝜎 is the typical width of the window of the angle at which the switching is allowed. If 
𝜎 is sufficiently small, this model would become internal dissipation-free for a wide range of W, which seems to 
explain the experimental data. This is because the switching of the mechanical potential only occurs at angles 
satisfying  𝑈𝑛(𝑥)−  𝑈𝑛+1(𝑥) + Δ𝜇 ≃ 0 in this model. However, if 𝜎 is too small, the torque dependence of the 
velocity becomes anti-symmetric with respect to the 𝐹 =  𝛥𝜇/𝐿 line for all 𝑞 even at small 𝑊 (Fig. S8 left), 
which is inconsistent with the experimental observations. When 𝜎 is sufficiently large (Fig. S8 right), the 
torque-velocity curve would depend on 𝑞, which shows that adopting 𝑞 ≃ 0 is critical even in the intersection 
switching model to reproduce the feature of F1. 
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FIGURE S6 Schematic of the 𝑞 = 0.5 and 𝑞 = 1 models. In the 𝑞 = 0.5 model, the coordination between the γ 
shaft and the nucleotide binding sites are equally present in the forward and backward reactions. On the other hand, 
the γ shaft and the nucleotide binding sites are only coordinated in the forward step in the 𝑞 = 1 model, which is 
completely opposite to the case of 𝑞 = 0 model (Fig. 1B in the main text). As shown in Fig. 2C and 3A in the 
main text, these models fail to reproduce the internal dissipation-free feature of F1. 
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FIGURE S7 External torque dependence of the rotational velocity in the 𝑞 = 0.5 (left) and 1.0 (right) models, 
plotted with the experimental data [6] (kindly provided by S. Toyabe). For each numerical lines, W was chosen and 
fixed in order to reproduce the values of 𝑣(0) of the corresponding experimental data. 
 
 
 

FIGURE S8 External torque dependence of the rotational velocity for the intersection switching model [see text Eq. 
S25]. When 𝜎 is small and the switching is only allowed in a narrow range around the potential intersection point 
(left), the torque-velocity curve becomes anti-symmetric with respect to the 𝐹𝐿 = 𝛥𝜇 line. When 𝜎 is set larger 
(right), the q-dependence appears. For each numerical lines, 𝑊 was chosen and fixed in order to reproduce the 
values of 𝑣(0) = 0.32 Hz. 
 



FIGURE S9 Rotational velocity 𝑣  versus the external heat dissipation per step 𝑄ext  in the non-harmonic 
potential model [using Eq. S7 for 𝑈0(𝑥)], and the harmonic potential model, in the case of 𝛥𝜇 = 28 𝑘B𝑇. 
Parameters from Supplementary Material A and B were used. The experimental result was obtained from [5] (error 
bar: standard error of mean). In this large 𝛥𝜇 setup, the intersection point becomes 𝑥𝑐 < 0 in the non-harmonic 
and harmonic potentials we have introduced. Nevertheless, numerical result for 𝑞 = 0 shows consistent value with 
experiment. 
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