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S1. MATERIAL PARAMETERS

Ms Keff µ0HD µ0HK ϵSHE ϵcalc ν

MA/m MJ/m3 mT mT 10−14TA−1m2

Pt(4)/Co(0.36)/Pt(1) 1.01(5) 0.39(2) 37(1) 37(1) 6.4(2) 6.7 0.68

Pt(4)/Co(0.36)/Pt(2) 1.08(5) 0.27(1) 12.5(4) 24.6(5) 2.76(6) 3.2 0.34

Pt(4)/Co(0.8)/AlOx(1.9) 1.17(5) 0.28(1) ≫ 40 ? 4.43(6) 3.4 0.89

Pt(4)/Co(0.5)/Pt(2) 1.07(5) 0.28(1) 11(2) 37(1) 2.4(1) 2.3 0.34

Pt(2)/Co(0.5)/Pt(4) 1.18(5) 0.22(1) 3(1) 19(2) -1.8(1) -2.1 -0.34

Table S1. Fit parameters and material properties of various compositions.

Table S1 summarizes the measured material properties. Ms and Keff have been measured

by VSM-SQUID magnetometery of unpatterned films. The samples labeled with a Co

thickness of 0.4 nm in the text for convenience, were actually 0.36 nm thick. µ0HD, µ0HK ,

and ϵSHE have been obtained by fits of the DW depinning data like in Figure 2 in the

main text. Although a stronger spin Hall current is injected in Pt/Co/AlOx, ϵSHE is smaller

than in Pt/Co/Pt(1 nm) because it is absorbed by a thicker Co layer (see equation (1) in the

main text). The inverted stack Pt(2)/Co(0.5)/Pt(4) also has an inverted ϵSHE, as we already

explained in [S1]. Figure S1 provides a new measurement of the depinning efficiency as a

function of Hx on this layer system, in order to reveal the presence of DMI. There is a very

small opening visible, indicative of a HD with the same sign as the inverted composition.

Actually, it seems like one of the DWs has zero HD (crosses through the origin), whereas

the other one has a small but finite HD. In any case, this suggests that the DMI, unlike the

SHE, is not a result of the Pt layer thicknesses themselves, but rather the effect of increasing

asymmetry between the top and bottom interface when the top layer is varied.

Since both DMI and PMA are expectedly interface effects, it is interesting to look for

correlations between the parametersHD andKeff . For the Pt/Co/Pt samples, there is indeed

a positive correlation between HD and Keff . However, Pt/Co/AlOx breaks this trend: it has

a much stronger HD than any other sample whereas Keff is similar, so the two parameters

are definitely not always directly related. Given that the DW motion is in the direction of

current flow, we know that the DMI at the bottom interface must be dominant over the DMI

from the top interface [S2]. So in fact, the DMI at the top interface must decrease when the
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top layer is made thinner, whereas the anisotropy contribution from this interface is actually

seen to increase. So there appears to be a negative correlation between the anisotropy and

DMI at the top interface, leading to a positive correlation between the anisotropy and the

total DMI which is dominated by the bottom Pt/Co interface.

S1.1. Spin Hall amplitudes

In the last two columns of Table S1, we have calculated the expected loss factor ν of the

spin Hall effect, and the accompanying depinning efficiency of Néel walls in the 1D model

[S3],

ϵcalc =
π~νθSH
4eMst

. (S1)

The calculation of ν is straightforward; the net spin Hall current due to a single thin Pt

layer with thickness tPt is given by [S4]

JS(tPt) = θSHJ

(
1− sech

(
tPt
λsf

))
, (S2)

where λsf ≈ 1.4 nm the spin diffusion length of Pt [S5] and θSH = 0.07 the spin Hall angle of

Pt [S5]. For a Co layer sandwiched between two Pt layers, two of these spin currents with

opposite polarization are injected, yielding a net spin current

Jeff
S = νθSHJ :=

(
sech

(
ttopPt

λsf

)
− sech

(
tbottomPt

λsf

))
θSHJ. (S3)

Comparing the calculated ϵcalc to the measured ϵSHE in Table S1, we observe close agree-

ment. The largest deviation is found in Pt/Co/AlOx which measures a slightly higher ϵSHE

than expected. We should note that this is the only sample that has undergone an annealing

treatment, hence it might have different properties compared to the other ones. There might

also be a contribution from conventional STT to ϵSHE in Pt/Co/AlOx, but since conven-

tional STT would oppose the SHE torque, this should reduce the measured ϵSHE compared

to the model, whereas the difference we observe is opposite.

S2. DW RESISTANCE MODEL

In this section, we propose a model to describe the two dominant contributions to the

DW resistance. We first apply the Levy-Zhang model of the intrinsic resistivity to the
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expected DW profile in the sample. Then, we discuss the contribution from anisotropic

magnetoresistance (AMR). Finally, an expression is given for the measured resistance change

in an actual Pt/Co/Pt layer, where current shunts through the Pt layers. This expression

is fitted to the experimental data.

S2.1. Levy-Zhang model for arbitrary DW profiles

The Levy-Zhang model describes the contribution to DW resistance due to spin mis-

tracking [S6]. In their original derivation, they assume a simplified DW profile of the form

θ(x) = πx/d. However, in reality the DW has the more complicated Bloch profile, and

when magnetization canting due to an in-plane field starts to play a role, the actual profile

is even more complex. We therefore first derive an expression valid for any DW profile, and

then insert an approximated ‘canted’ profile to find an expression for RLZ as a function of

in-plane field.

The original result of DW resistivity by Levy and Zhang for a current perpendicular to

the DW reads

ρLZ = C
(π
λ

)2
, (S4)

with λ the DW width and C a prefactor given by

C =
~4k2ρ0
80J2m2

(
ρ↑
ρ↓

− 2 +
ρ↓
ρ↑

)(
3 +

10
√

ρ↑/ρ↓
ρ↑/ρ↓ + 1

)
, (S5)

with ~ Planck’s constant, k ≈ 1Å
−1

the Fermi wavevector, m the electron mass, J ≈ 0.5 eV

the (microscopic) exchange splitting, ρ↑/ρ↓ the spin asymmetry in the Co layer, and ρ0 the

resistivity of the Co layer.

Eqn. (S4) was obtained for the simple DW profile with a constant slope dθ/dx = π/λ.

For a real DW in which this slope is not constant, the resistivity is position-dependent within

the DW. Therefore, a more general form of the DW resistivity is

ρLZ = C

(
dθ(x)

dx

)2

. (S6)

The DW resistance is found by integrating the resistivity over the entire DW profile,

RLZ(x) =
1

S

∫ ∞

−∞
C

(
dθ(x)

dx

)2

dx, (S7)
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with S the cross-sectional area of the magnetic layer.

As explained briefly in the main text, we expect at high in-plane fields a DW profile that

rotates from θ = 0 in the non-irradiated region, to θc(Hx) < π in the Ga-irradiated region,

where the anisotropy has decreased so much that the magnetization is significantly pulled

in-plane. We assume a scaled Bloch profile that takes into account this smaller final angle

of the DW,

θ(x) =
2

π
θc(Hx) arctan

(
ex/λ

)
, (S8)

where we use λ =
√
A/Klow with A = 16 pJ/m and Klow the effective anisotropy in the

irradiated region (a fit parameter), which is seen to determine the DW width in micromag-

netic simulations. From the Stoner-Wohlfarth model, it is straightforward to derive that the

magnetization canting as a function of in-plane field is given by

θc(Hx) = π − arcsin

(
HxMs

2Klow

)
. (S9)

Plugging the DW profile of Eqn. (S8) into the expression for the resistance Eqn. (S8) yields

RLZ(Hx) =
2C

S

(
π − arcsin

(
HxMs

2Klow

))2
π2λ

. (S10)

Note that we used Hx in the expressions above, but the same expressions hold for Hy.

S2.2. AMR contribution

The AMR resistivity within the DW scales with the square of the projection of the

magnetization on the x-axis, hence

ρDWAMR(x) = ρAMR cos2 ϕ sin2 θ(x), (S11)

where ρAMR is the AMR resistivity parameter of Co. We will assume that the angle ϕ

does not vary within the DW (which is supported by micromagnetic simulations). ϕ = 0

represents a Néel wall, giving the highest AMR.

If there is no DW present and no canting of the magnetization, the additional AMR

contribution in the presence of DWs is found by integrating Eqn. (S11). However, if one of

the domains is canted in the x-direction, there is a large contribution form this domain to the

AMR. This is however not the experimental situation, because the subtracted background
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signal is recorded at the same in-plane field, hence AMR from the domains is not included

in the presented DW resistance. Since we do not have an analytical expression for this

background, we start from the original Bloch profile which rotates from 0 to π so that the

integral to infinity converges, and multiply Eqn. (S11) by a correction factor cos2 θc(Hx)

which is not analytical but at least correct in the center of the domain wall,

ρDWAMR(x) = ρAMR cos2 ϕ sin2 θ(x) cos2 θc(Hx). (S12)

Now we only need to integrate the resistivity to get the AMR contribution to the DW

resistance,

RAMR =
1

S

∫ ∞

−∞
ρDWAMRdx =

1

S

ρAMRλ (4K
2
low −H2

xM
2
s ) cos

2 ϕ

2K2
low

. (S13)

S2.3. Converting to actually measured resistance change

The actually measured resistance change is reduced strongly by current shunting through

the Pt layers. Assuming only a fraction p ≈ 0.03 of the current runs through the Co layer in

Pt/Co/Pt based on a Fuch-Sondheimer model [S7], the resistance of the wire Rwire can be

described as the result of two parallel resistors RCo =
Rwire

p
and RPt =

Rwire

1−p
. The occurrence

of N DWs only trigger a resistance change of the Co layer ∆RCo,

∆RCo = N(RLZ +RAMR). (S14)

In the parallel resistor model, it is easy to show that this leads to a resistance change of the

whole wire of

∆R =
Np2(RLZ +RAMR)Rwire

Rwire −N(p− 1)p(RLZ +RAMR)
. (S15)

In the Pt(4)/Co(0.5)/Pt(2) wire, Rwire = 1.3 kΩ and N = 20, whereas in the Pt/Co/AlOx

wire, Rwire = 1.8 kΩ and N = 18

This model for ∆R has been fitted to the DWR data in Figure 3(c) in the main text, with

ρAMR, C, and Klow as free parameters. The value for ρ0 in the prefactor C was calculated as

RCo S/L, with L the length of the wire. Note that a dependence on the DW angle ϕ enters

in the model via RAMR. The value of ϕ at each Hx and Hy are described by minimization

of Eqn. (1) in the main text, where HD and HK are extracted from the DW depinning

data (see table S1). The best fit was obtained with parameters ρAMR = 2.9 × 10−9Ωm,
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C = 2.25×10−24 Ωm3, Klow = 29.8 kJ/m3. The value of the prefactor C implies via Eqn. (S5)

that ρ↑/ρ↓ ≈ 15, which is reasonable according to the original paper by Levy and Zhang

[S6]. The value for Klow at a dose of 0.50 × 1013 ions/cm2 is somewhat lower than we

measured before [S8], which could relate to some of the assumptions in our modeling, such

as the chosen values of the fixed parameters or the assumption that the DW width does not

depend on in-plane field. Note that we did not have to include additional magnetoresistance

effects such as the geometric size effect or the anisotropic interface magnetoresistance [S9]

to obtain a reasonable fit. The presence of such an effect could alter the fit parameters, but

our main conclusion that Bloch walls transform to Néel walls is robust simply because of

the very different response to x and y fields, regardless of the precise relative magnitude of

the effects that are responsible for the measured changes.

In Figure S2, we have plotted the various contributions that make up the fitted curves

in Figure 3(c) (main text). The purple solid line indicates the intrinsic DW resistance as a

function of in-plane field, which gives the same result for Hx and Hy fields. The dark blue

dotted line shows the modeled contribution from the AMR effect under the influence of Hx

fields. The light blue dash-dotted line shows a calculation of what the AMR effect would

look like if we would not take into account the magnetization canting: the AMR resistance

simply saturates at high Hx. The contribution from AMR as a function of Hy (dashed green

curve) is quite small, and reduces at higher in-plane fields since the DW loses its slight Néel

character. Note that, since we always measure DWs of both polarities in experiment, the

modeled AMR under Hx fields is a superposition of two curves, mutually shifted by the

chiral field 2
π
HD.
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SUPPLEMENTARY FIGURES
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Figure S1. Depinning efficiency as a function of Hx on the inverted stack Pt(2)/Co(0.5)/Pt(4).
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Figure S2. Contributions of the various domain wall resistance effects as a function of in-plane field.

Plotted are the intrinsic Levy-Zhang contribution (solid red line), the DW AMR as a function of Hy

(dashed green line) and Hx (dotted dark-blue line), and the (hypothetical) DW AMR contribution

as a function of Hx in the absence of magnetization canting (dash-dotted light-blue line). The

kinks occur when one of the two present domain-wall types reach the Néel state, and there are two

of them on both sides because they are shifted in opposite directions by the effective chiral fields.
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