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Supplementary data 1 

Description of latent change score methodology 

Here we will describe LCS models based on two processes with observed variables Y and X 

at time t for individual i (represented in graphical form in Supplementary Figure 1A with 

parameters defined in Supplementary Table 1A). 

To begin, it is important to detail how latent difference scores are defined.  Under classical 

true score theory it is assumed that each observed raw score (Y) can be disintegrated into a 

true underlying latent score y or x plus a source of unrelated error e.  Therefore, one can 

express the observed score at any time point t, as: 
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Equation 1 

 

These true scores can then be used to define the present state of each variable as a function of 

its preceding state plus changes, using: 
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Equation 2 

 

From this equation, the development of observed variables Y and X for a person i at a 

specified time t can be expressed as a function of an originally observed score (y0 and x0) 
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plus the linear accumulation of latent changes (∆y and ∆x) until that point in time in addition 

to residual error (ey and ex), using: 
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Equation 3 

 

Following from this a model for the latent change scores can be written as a product of 

multiple components.  One common specification is: 
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Equation 4 

 

Whereby change in a variable (∆) is a function of three main components: a constant amount 

(α) which is associated with the additive scores/slopes of yis and xis (the sum of latent changes 

over time), a quantity proportional to the previous state of itself (β) – in many ways 

representing a self-feedback loop, and an amount proportional to the previous state of the 

alternative variable (γ).  Placing certain constraints on parts of this model allow for specific 

hypotheses to be tested. 

For example, constraining the coupling parameter (γ) from x to y to be zero, while estimating 

the parameter from y to x, would model a leading effect of y to changes in x.  Alternatively, 

one is able to use Equation 4 above (both coupling parameters freed) to explore whether there 
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is a reciprocal dynamic relationship over time between both variables.  Note that the 

dynamics of the system are brought about by jointly estimating and interpreting these 

equations together as the model parameters are dependent on each other [1–4]. 

It is also important to note that while LCS models are usually specified as linear models, 

nonlinear trajectories can be accommodated through the use of first differences because at 

each time point the proportional and coupling parameters are multiplied by scores from the 

previous measurement occasion which alter over time.  The result is that even in a model 

where the coefficients are assumed to be static over time the actual effects are compounded 

across occasions as a result of being multiplied by shifting values. 
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Supplementary Figure 1A. A path diagram representing a bivariate latent change score 

model1 

                                                           

1
 Using standard structural equation modelling graphical notation [5]: squares represent observed variables and 

circles represent latent variables. Single-headed arrows indicate regression coefficients or intercepts. Double-

headed arrows represent variance or covariance terms. The triangle represents a constant (set to 1 for 

identification purposes). 
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Supplementary Table 1A – Definition of parameters depicted in Supplementary Figure 

1A 2 

Parameter Definition 
Yit, Xit Observed values for variables Y and X  

yit, xit Latent scores for variables Y and X 

∆yit, ∆xit Latent changes in (latent) y and x 

y0i, x0i Latent intercept for variables Y and X 

ysi, xsi Latent slope (additive scores) for variables Y and X 

αy, αx Additive component of change for variables y and x 

βy, βx Autoproportional change parameter for variables y and x 

γy, γx Coupling parameter for variables y and x 

µy0, µx0 Mean of initial conditions for variables Y and X 

µys, µxs Mean of additive scores for variables Y and X 

σ
2
y0, σ

2
x0 Variance of initial conditions of Y and X 

σ
2
ys, σ

2
xs Variance of additive scores of Y and X 

σ
2
ey, σ

2
ex Residual variance of initial conditions of Y and X 

σy0, x0 Covariance of initial conditions of Y and X 

σys, xs Covariance of additive scores of Y and X 

σey, ex Covariance of residuals from Y and X 

K Constant to estimate means and intercepts (set to 1) 

 

                                                           

2
 Presentation of Supplementary Figure 1A alongside Supplementary Table 1A adapted from [6] 


