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Fig. S1. CD4 T cell development is normal in mice with T cellqsecific deletion ofMecp2.
(A) Naive CDACD25 T cells and B cells from CD4-Ciecp2”¥, CD4-CréMecp2™, and
CD4-CréMecp2” littermates were sorted by flow cytometry. The amts of MeCP2 in these
cells and in the brains and lungs of these miceevdetermined by Western blotting analysis.
Blots are representative of three independent @xpeats. Bar graph shows meahSEM from
three independent experimentB) (Absolute numbers of cells from the thymus, splemmd
lymph nodes (LN) of 6- to 8-week-old CD4-Ckéecp2’* or CD4-CréMecp2?”? (WT) and CD4-
Creé'Mecp2™ or CD4-Crémecp2™ (KO) littermates. Pooled data are from five paifsnouse
littermates. Data are meaisSEM. (C) Analysis of the percentages of T cells from tmgmus,
spleen, and lymph nodes of 6- to 8-week-old WT avdCP2 KO littermates. Left:
Representative flow cytometry plots. Right: Pootida from three pairs of mouse littermates.
Data are means SEM.
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Fig. S2. T cells inMecp2-deficient mice do not undergo spontaneous activatn. (A andB)
Flow cytometric analysis of the percentages ofaffiecells among (A) CD4T cells and (B)
CDS8' T cells from the lymph nodes (LN) and spleens -0fo68-week-old WT and MeCP2 KO
littermates. Left: Representative flow cytometrptpl Right: Pooled data are from five pairs of
mouse littermates. Data are means and were andbysstlident’s test results.) Percentages
of effector cells among CD4left) and CD$ (right) T cells from the spleens of 8- to 14-month
old WT and MeCP2 KO mice. Pooled data present mganssix pairs of mouse littermates.
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Fig. S3. Loss of MeCP2 does not alter antigen-dep#ent proliferation or activation-
induced cell death.(A andB) Lymphocytes from LLO118 TCR transgenic WT and NP@XKO
littermates were labeled with CFSE and primed \&i{liM LLO 190205 peptide for 72 hours. (A)
Proliferation of CD4 T cells was measured by flow cytometric analy$ithe extent of dilution
of CFSE. (B) Activation-induced cell death was assé by Annexin V and 7-AAD staining.
Data are representative of three independent expats.
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Fig. S4. Chromatin accessibility of thel17 and Ifng loci in naive CD4CD25 T cells. (A)
Histone modifications of thg2m (B2M) andvh7183 (VH7183) loci in CD4 T cells from WT



and MeCP2 KO mice were determined by ChIP asdayar(d C) Histone modifications of
different cis elements within the (B)L7 and (C)Ifng loci in naive CD4CD25 were measured
by ChIP analysis. The histone modifications in fen andvh7183 loci in CD4 T cells in (A)
served as positive and negative controls, respadgtiData are means SEM of triplicate
samples from a single experiment and are reprasentd three independent experiments.



Fig. S5
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Fig. S5. Abundances of mRNAs for components of STASignaling pathways.(A) List of
proteins related to STAT activation whose mRNA anteuwere determined by quantitative
PCR analysis.R) Fold-differences in the abundances of the inditahRNAs between WT and
MeCP2 KO CDZ T cells were determined by quantitative PCR amgily3ata are means SEM
from three independent experiments.
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Fig. S6. The dynamics of SOCS5 abundance during thactivation of CD4" T cells in the
presence of IL-6.CD4°CD25 T cells from WT and MeCP2 KO mice were activatedvitro
with anti-CD3 and anti-CD28 antibodies in the preseof IL-6 (50 ng/ml) for various times.
Amounts of SOCS5 protein were analyzed by Westdattitg. The intensities of bands
corresponding to SOCS5 were normalized to the sities of bands corresponding fteactin,
the loading control. For relative quantificationetamounts of SOCS5 protein in WT cells before
stimulation (time zero) were set to one. Data ftbnee independent experiments are shown.
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Fig. S7. SOCSS5 inhibits the activation of STAT1 andhe differentiation of naive CD4 T
cells. (A) CD4" T cells transduced with control retrovirus expiegsGFP or with retrovirus
expressing SOCS5 and GFP were treated withyKN3 ng/ml) for 10 or 30 min, and then the
abundance of pSTAT1 (TSH) was determined by intracellular staining and flogtometric



analysis. B to D) CD4" T cells from LLO118 TCR transgenic mice with ditfat Thy markers
were transduced with retroviruses expressing ei@ieP (Thyl.1+) or SOCS5 (Thyl.2+). Six
hours after competitive transfer of control and S83@xpressing (COGFFP) cells in a ratio of
1:1 to TCR™ recipient mice (n = eight mice), the recipient enisvere immunized
subcutaneously with LL{o-205 peptide emulsified in CFA. Five days after immuatian,
splenocytes from the recipient mice were rechabengith LLO;g0-205peptide and were cultured
under H1-skewing conditions in vitro. Forty-eight hoursela IFNy—producing GFRCD4™ T
cells were enumerated by intracellular staining ot cytometric analysis. (B) Representative
flow cytometry contour plots. (C) Percentages oR4F cells. (D) MFIs of IFNy staining.
Graph represents two independent experimeiisand F) Lymphocytes from LLO118 TCR
transgenic WT and MeCP2 KO mice were transducel eontrol retrovirus or with retrovirus
expressingsocss-specific ShRNA. (E) Total RNA was isolated from BED4" T cells from the
indicated samples, and the amoungads5 mMRNA was determined by quantitative PCR analysis.
(F) CD4 T cells from LLO118 TCR transgenic WT and MeCP2 Kifzrmates were cultured
under H17-skewing conditions. Four days after retrovimfection, IL-17A production in
CD4'GFP T cells was detected by intracellular staining dlosv cytometric analysis. Left:
Percentages of IL-17Acells among CD4cells from the indicated conditions. Right: Mean
percentages SEM of IL-17" cells from three independent experiments.
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Fig. S8. The chromatin accessibility of theSocs5 locus in naive CD4ACD25 T cells. (A)
ChIP analysis of the histone modifications of difet cis elements within thScs5 locus in



naive CD4CD25 T cells from WT and MeCP2 KO mice. Data are meai8EM of triplicate
samples from a single experiment and are reprasent# three independent experiments. ChIP
analyses oB2m andVh7183 were performed as control®)(Analysis of the methylation status
in the promoter and the conserved noncoding seg@ué@tlS) of Socs5 locus by bisulfite
sequencing. Numbers on the x-axes indicate thetiposof CpG islands relative to the
transcription start site &ocss. Bar graphs show data quantified from the sequenaf at least
ten clones for each sample. Data are representa#tiveee independent experiments.
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Fig. S9. miR-124 was computationally predicted toarget Socs5 mRNA at a highly
conserved site.Top: Schematic representation of the putative n2R-binding site within the
J'UTR of Socsb. Bottom: The sequences of th&JBRs of Socsb from different species, which
contain the indicated miR-124-binding site. Nudldes that are complimentary to the seed
region (nucleotides 2-8) of miR-124 are shown iloye nucleotides predicted to interact with
the rest of miR-124 are shown in blue. The red linderscores the mRNA of mouSacsb.
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Fig. S10. Activated MeCP2-deficient CD4T cells have decreased amounts of pri-miR-124
and mature miR-124 compared to those of wild-type D4" T cells.(A) Left: Standard curves
for calculating the absolute copy numbers of matnife-124. Synthesized standard mature miR-
124 (0.1 or 0.01 pmol) was processed to cDNA thihougyverse transcription. The cDNAs
generated were further diluted before they werdyard by quantitative PCR. Linear regression
[y:Ct value; x:log10(copy numbers per PCR reactidjwas used to calculate the standard curve.
Right: The absolute copy numbers of miR-124 in eadD4 T cells from WT and MeCP2 KO
mice were determined by quantitative PCR analy@¥.Total RNA from CD4CD25 T cells



from WT and MeCP2 KO mice were primed with anti-C&3d anti-CD28 antibodies together
with IL-6 for 72 hours. Total RNA was then extratteand the amounts of miR-124ere
determined by quantitative PCR analysis. Data aean®t SEM from three independent
experiments.€) The relative amounts of pri-mmu-miR-124-1 traistsrin primed CDACD25

T cells from WT and MeCP2 KO mice were determingdjbantitative PCR analysis. Data are
meanst SEM from three replicated samples and represee¢ tindependent experiments.
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Fig. S11. Retroviral-mediated overexpression of miR24 in 3T3 cells and CDAT cells.(A)

The relative abundances of miR-124 in the indic&8&8 stable cell lines were measured by
guantitative PCR analysis. Data are meai®EM from three biological replicates and represent
three independent experiment®) (Lymphocytes from LLO118 TCR transgenic mice were
transduced with control retrovirus or with retradrexpressing miR-124. Seventy-two hours
after infection, CDAGFP T cells were sorted by flow cytometry and thelatiee abundances



of miR-124 were measured by quantitative PCR armly3ata are means SEM from three
biological replicates and represent three indepena@xperiments. ) Lymphocytes from
LLO118 TCR transgenic WT and MeCP2 KO littermateevieansduced with control retrovirus
or with retrovirus expressing miR-124. Seventy-taours later, CD4GFP T cells were sorted
by flow cytometry, and their relative abundancesmiiR-124 were determined by quantitative
PCR analysis. Data are meaAsSEM from three biological replicates and represiémee
independent experiments.
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Fig. S12. miR-124 promotes IL-6-induced STAT3 actation in CD4" T cells. (A) The MFI
quantification of pSTAT3 (TyF? staining for Fig. 7D.B) The MFI quantification of pSTAT3
(Tyr’®) staining for Fig. 7E. Data were normalized to ltaekground signal with the secondary
antibody staining.
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Fig. S13. The MeCP2-miR-124-SOCS5 axis enables CD® cell differentiation. Left: In
WT CD4" T cells, MeCP2 promotes the transcription ppf-miR-124, which results in the
suppression ofocsb expression. Loss of SOCS5 enables the efficidiférdntiation of naive
CD4" T cells into F17 cells. Right: In MeCP2-deficient CDA cells, the accumulation of
SOCSS5 protein results in the attenuation of STAIEBaing, which impairs the generation of
TH17 cells.
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Fig. S14. Loss of a single copy dfecp2 does not adversely affect the generation of4IL and
Twl7 mouse T cells(A andB) T cells from LLO118 TCR transgenic WT mice artkelimates
with heterozygou$/ecp2 deletion were cultured in vitro undegT- or Ty17-skewing conditions
for 4 days. The percentages of (A) IFNeroducing and (B) IL-17A—producing CDA cells
were determined by flow cytometric analysis. Datea ameanst SEM from the indicated
numbers of experiments.
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