

Supplemental Material to:

Marie-Abele Bind, Johanna Lepeule, Antonella Zanobetti, Antonio Gasparini, Andrea Baccarelli, Brent A Coull, Letizia Tarantini Pantel S Vokonas, Petros Koutrakis, and Joel Schwartz

Air pollution and gene-specific methylation in the Normative Aging Study: association, effect modification, and mediation analysis

> Epigenetics 2013; 9(3) http://dx.doi.org/10.4161/epi.27584

http://www.landesbioscience.com/journals/epigenetics/ article/27584/ **Supplementary material:** Air pollution is associated with gene-specific DNA methylation in the Normative Aging Study

Table of Contents

Web Figure 1: Tweedie distribution

Web Table 1: Distributions of the weather and air pollution variables

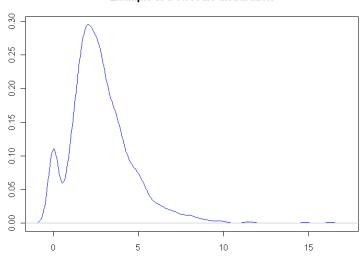
Web Table 2: Spearman correlations between weather and air pollution variables (1-week moving average)

Web Table 3: Spearman correlations between air pollutant concentrations (1st week, 2nd week, 3rd week, and 4th week moving averages preceding participant's visit)

Web Table 4: Gene-specific methylation (%5mC) across visits [5th, 50th, and 95th percentiles]

Web Table 5: Associations between participants' characteristics and gene-specific DNA methylation

Web Table 6: Associations between air pollution exposure over the 4-week period preceding medical examination and gene-specific DNA methylation according to the obesity status


Web Table 7: Associations between air pollution exposure over the 4-week period preceding medical examination and gene-specific DNA methylation according to the age category

Web Table 8: Associations between air pollution exposure over the 4-week period preceding medical examination and gene-specific DNA methylation according to the levels of LINE-1 and ALU methylation at baseline

Web Table 9: Associations between air pollution exposure over a 4-week period and genespecific methylation across positions

Web Table 10: Associations between air pollution exposure over a 4-week period and genespecific methylation using different models

Web Figure 1: Tweedie distribution

Example of a Tweedie distribution

	n _{observations}	n _{missing}	IQR		Percentiles	
	observations	missing	C	5 th	50th	95 th
Temperature (°C)						
1-week moving average	1,798	0	13°C	-1°C	13°C	24°C
2-week moving average	1,798	0	13°C	-1°C	13°C	24°C
3-week moving average	1,798	0	13°C	-1°C	13°C	23°C
4-week moving average	1,798	0	13°C	-1°C	14°C	23°C
Relative humidity(%)						
1-week moving average	1,798	0	12%	53%	68%	82%
2-week moving average	1,798	0	10%	56%	68%	80%
3-week moving average	1,798	0	9%	56%	68%	78%
4-week moving average	1,798	0	8%	58%	69%	77%
Particle number per	,					
cm ³						
1-week moving average	1,369	429	15,020	9,024	18,353	42,547
2-week moving average	1,369	429	14,795	9,219	18,092	42,749
3-week moving average	1,365	433	14,559	9,273	18,356	42,621
4-week moving average	1,365	433	14,599	9,352	18,426	42,291
Black carbon (µg/m ³)						
1-week moving average	1,798	0	0.33	0.42	0.73	1.16
2-week moving average	1,798	0	0.28	0.43	0.73	1.07
3-week moving average	1,798	0	0.25	0.45	0.74	1.05
4-week moving average	1,798	0	0.26	0.46	0.74	1.04
Sulfate (µg/m ³)	,					
1-week moving average	1,555	243	1.47	1.16	2.56	5.49
2-week moving average	1,553	245	1.29	1.38	2.65	5.03
3-week moving average	1,535	263	1.27	1.45	2.70	4.87
4-week moving average	1,555	243	1.22	1.57	2.69	4.88
Ozone (ppm)	,					
1-week moving average	1,796	2	0.014	0.011	0.024	0.038
2-week moving average	1,798	0	0.013	0.012	0.025	0.036
3-week moving average	1,798	0	0.013	0.012	0.026	0.036
4-week moving average	1,798	0	0.013	0.012	0.026	0.035

Abbreviation : Interquartile range (IQR)

Temperature	Relative humidity	Particle number	Black carbon	Sulfate	Ozone
1	0.22*	-0.69*	0.39*	0.35*	0.49*
	1	-0.07*	0.39*	0.16*	-0.22*
		1	-0.03	-0.06*	-0.39*
			1	0.57*	-0.14*
				1	0.26*
	Temperature 1	humidity 1 0.22*	humidity number 1 0.22* -0.69* 1 -0.07*	humidity number carbon 1 0.22* -0.69* 0.39* 1 -0.07* 0.39* 1 -0.07* 0.39*	humidity number carbon 1 0.22* -0.69* 0.39* 0.35* 1 -0.07* 0.39* 0.16* 1 -0.03 -0.06* 1 0.57*

* P<0.05

moving averages preceding participant's visit)							
PN	1 st week	2 nd week	3 rd week	4 th week			
1 st week	1	0.90*	0.88*	0.86*			
2 nd week		1	0.91*	0.88*			
3 rd week			1	0.90*			
4 th week				1			
Black carbon	1 st week	2 nd week	3 rd week	4 th week			
1 st week	1	0.48*	0.45*	0.41*			
2 nd week		1	0.50*	0.46*			
3 rd week			1	0.49*			
4 th week				1			
Sulfate	1 st week	2 nd week	3 rd week	4 th week			
1 st week	1	0.42*	0.39*	0.26*			
2 nd week		1	0.42*	0.40*			
3 rd week			1	0.44*			
4 th week				1			
Ozone	1 st week	2 nd week	3 rd week	4 th week			
1 st week	1	0.76*	0.69*	0.66*			
2 nd week		1	0.77*	0.69*			
3 rd week			1	0.75*			
4 th week				1			

Web Table 3: Spearman correlations between air pollutant concentrations (1st week, 2nd week, 3rd week, and 4th week moving averages preceding participant's visit)

* P<0.05

Web Table 4: Gene-specific methylation (%5mC) across visits [5 th , 50 th , and 2	95 th
percentiles]	

	F3 mean	ICAM-1 mean	IFN-γ mean	TLR-2 mean	IL-6 mean
N observations	1,533	1,424	1,736	1,424	1.749
n _{missing}	265	374	62	374	49
Baseline (n=777)	[1.0, 2.0, 4.5]	[2.2, 4.1, 8.2]	[75.4, 85.2, 91.1]	[1.5, 2.8, 5.3]	[25.4, 43.7, 62.1]
Never smokers (n=223)	[0.9, 2.0, 4.7]	[2.1, 4.1, 8.1]	[72.4, 84.5, 91.0]	[1.7, 2.9, 5.7]	[23.7, 43.5, 60.3]
Former smokers (n=522)	[1.0, 2.0, 4.2]	[2.3, 4.1, 8.2]	[75.6, 85.3, 91.1]	[1.4, 2.8, 5.3]	[27.0, 43.8, 63.2]
Current smokers (n=32)	[1.1, 2.2, 4.6]	[2.1, 4.5, 10.1]	[79.7, 87.5, 91.6]	[1.6, 2.8, 3.8]	[19.7, 43.5, 62.1]
Participants having	g one visit (n=221)				
Visit 1	[1.1, 1.9, 3.5]	[2.6, 4.3, 7.7]	[72.4, 85.2, 91.8]	[1.4, 2.8, 5.0]	[23.7, 43.8, 61.6]
Participants having	g two visits (n=217)				
Visit 1	[1.0, 2.0, 4.2]	[2.2, 4.1, 8.4]	[75.4, 85.5, 90.9]	[1.5, 2.6, 5.1]	[23.7, 43.1, 65.3]
Visit 2	[0.8, 2.3, 4.4]	[2.2, 3.9, 8.2]	[75.8, 86.2, 91.4]	[1.0, 2.6, 5.7]	[24.7, 42.8, 59.8]
Participants having	g three visits (n=216)				
Visit 1	[1.0, 2.0, 4.5]	[2.1, 3.8, 7.6]	[75.8, 84.7, 91.1]	[1.3, 2.8, 5.2]	[28.9, 43.7, 59.8]
Visit 2	[0.9, 2.5, 4.5]	[2.1, 3.6, 7.8]	[76.4, 86.8, 90.7]	[1.5, 2.6, 5.3]	[28.4, 43.0, 57.5]
Visit 3	[0.9, 1.8, 4.3]	[2.9, 4.2, 6.7]	[76.3, 86.2, 91.1]	[0.9, 2.1, 4.9]	[24.9, 42.9, 59.7]
Participants having	g four visits (n=120)				
Visit 1	[0.4, 2.3, 5.2]	[2.1,4.0, 9.8]	[76.9, 84.4, 90.7]	[1.9, 3.3, 5.9]	[28.9, 43.8, 61.8]
Visit 2	[1.0, 2.4, 4.8]	[2.0, 3.3, 9.9]	[76.9, 85.6, 91.4]	[1.7, 3.1, 6.0]	[25.3, 43.4, 58.4]
Visit 3	[1.8, 2.9, 4.5]	[2.5, 4.4, 6.1]	[75.0, 86.4, 89.3]	[1.5, 3.0, 6.3]	[28.7, 44.4, 62.9]
Visit 4	[0.7, 1.3, 3.1]	[2.8, 4.0, 8.3]	[77.5, 86.2, 92.7]	[0.9, 1.6, 4.0]	[26.3, 44.9, 60.5]
Participants having	g five visits (n=3)				
Visit 1	[NA*, 3.0, 3.2]	[3.0, 3.3, 4.5]	[82.0,85.6, 93.9]	[2.3, 3.1, 3.9]	[NA*, 44.2, 51.8]
Visit 2	[2.6, 2.9, 3.3]	[NA*, 2.6, 2.7]	[84.2, 86.2, 89.9]	[NA*, 1.9, 2.8]	[36.8, 44.8, 50.1]
Visit 3	[2.4, 3.6, 8.5]	[NA*, 3.5, 3.7]	[83.9, 85.0, 86.2]	[NA*, NA*, 4.9]	[39.0, 42.8, 50.1]
Visit 4	[NA*, NA*, 2.2]	[2.5, 4.2, 7.1]	[87.7, 89.2, 89.7]	[NA*, NA*, 2.9]	[13.8, 30.4, 47.9]
Visit 5	[0.7, 1.6, 34.6]	[3.2, 5.2, 6.0]	[80.1, 86.8, 92.1]	[1.4, 2.1, 3.5]	[17.0, 28.6, 44.3]

*NA=missing data

Web Table 5: Association between Participants' Characteristics and Gene-Specific DNA Methylation

Methylatio	n mean ratio for a Δ incr	ease in exposure			
	Age (Δ=1 year)	BMI (Δ =1 kg/m ²)	Former smokers versus never smokers	Current smokers versus never smokers	
	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	
F3	0.998 0.991, 1.004	0.990 0.980, 1.000	1.018 0.940, 1.103	1.094 0.870, 1.376	
ICAM-1	0.998 0.994, 1.002	0.998 0.991, 1.004	1.018 0.963, 1.075	1.057 0.907, 1.232	
TLR-2	1.008 1.002, 1.014	1.000 0.991, 1.009	0.900 0.838, 0.967	1.043 0.845, 1.287	
Change in	methylation (% 5mC) for	r for a Δ increase in exp	osure		
	Age (Δ=1 year)	BMI (Δ=1 kg/m ²)	Former smokers vs never smokers	Current smokers versus never smokers	
	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	
IFN-γ	-0.036 -0.092, 0.019	-0.023 -0.112, 0.065	0.838 0.109, 1.567	1.855 -0.180, 3.891	
IL-6	0.017 -0.147, 0.114	-0.053 -0.258, 0.153	1.842 0.095, 3.589	-1.433 -5.831, 2.965	

a) Variables included in the models: $f_1(\text{particle number})^b$, $f_2(\text{temperature})^b$, $f_3(\text{relative humidity})^b$, age, body mass index, smoking status, diabetes status, statin use, % neutrophils in blood count, % lymphocytes in blood count, seasonal sine and cosine, season, and methylation batch b) $f_1(\text{particle number})$, $f_2(\text{temperature})$, and $f_3(\text{relative humidity})$ represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the particle number, temperature, and relative humidity associations at lags 0 and 27 days.

Web Table 6: Association between Air Pollution Exposure over the 4-week Period Preceding Medical Examination and Gene-Specific DNA Methylation according to the Obesity Status

Methylation mean ratio for an interquartile range increase in air pollution

	Particle number Estimate 95% CI	Black carbon Estimate 95% CI	Sulfate Estimate 95% CI	Ozone (March to August) Estimate 95% CI
F3 Non obese Obese	0.731 0.658,.0.812 0.714 0.638, 0.799	0.877 0.824, 0.933 0.877 0.821, 0.936	0.995 0.916, 1.081 1.037 0.945, 1.138	$\begin{array}{cccc} 1.076 & 0.878, 1.319 \\ 1.097 & 0.893, 1.348 \end{array}$
ICAM-1	,	,	,	
Non obese Obese	0.8980.830, 0.9730.8730.802, 0.951	1.0120.967, 1.0590.9960.949, 1.044	0.948 0.896, 1.003 0.927 0.870, 0.989	0.757 0.661, 0.866 0.758 0.660, 0.871
TLR-2 Non obese Obese	0.941 0.847, 1.046 0.944 0.843, 1.056	1.0360.981, 1.0931.0220.965, 1.081	0.992 0.923, 1.066 0.970 0.896, 1.051	0.932 0.787, 1.103 0.904 0.762, 1.073

Change in methylation (% 5mC) for an interquartile range increase in air pollution

	Particle number	Black carbon	Sulfate	Ozone (March to August)	
	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	
IFN-γ					
Non obese	-0.975 -1.834, -0.117	-0.380 -0.888, 0.128	0.606 -0.181, 1.393	1.831 0.177, 3.485	
Obese	-0.452 -1.310, 0.407	-0.280 -0.789, 0.228	0.657 -0.130, 1.444	2.170 0.515, 3.824	
IL-6					
Non obese	1.525 -0.131, 3.182	0.781 -0.101, 1.664	0.500 -0.871, 1.872	-2.277 -5.215, 0.660	
Obese	0.980 -0.677, 2.636	0.820 -0.063, 1.702	-0.041 -1.412, 1.331	-3.007 -5.944, -0.069	

a) Variables included in the models: $f_1(air pollutant)^b$, $f_2(temperature)^b$, $f_3(relative humidity)^b$, obesity status* $f_1(air pollutant)^b$, age, body mass index, smoking status, diabetes status, statin use, % neutrophils in blood count, % lymphocytes in blood count, seasonal sine and cosine, season, and methylation batch

b) $f_1(\text{air pollutant})$, $f_2(\text{temperature})$, and $f_3(\text{relative humidity})$ represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the air pollution, temperature, and relative humidity associations at lags 0 and 27 days.

Web Table 7: Association between Air Pollution Exposure over the 4-week Period Preceding Medical Examination and Gene-Specific DNA Methylation according to the Age category

Methylation mean ratio for an interquartile range increase in air pollution

	Particle number Estimate 95% CI	Black carbon Estimate 95% CI	Sulfate Estimate 95% CI	Ozone (March to August) Estimate 95% CI
F3				
\leq 72 years	0.709 0.638,.0.788	0.872 0.819, 0.928	0.986 0.903, 1.077	1.073 0.877, 1.313
>72 years	0.740 0.664, 0.826	0.886 0.832, 0.943	1.025 0.942, 1.116	1.131 0.921, 1.390
ICAM-1				
\leq 72 years	0.885 0.816, 0.959	0.995 0.951, 1.041	0.936 0.879, 0.997	0.752 0.657, 0.860
>72 years	0.893 0.823, 0.968	1.025 0.980, 1.073	0.951 0.898, 1.008	0.782 0.682, 0.897
TLR-2				
\leq 72 years	0.955 0.859, 1.063	1.038 0.983, 1.096	1.017 0.944, 1.097	0.916 0.775, 1.082
>72 years	0.926 0.830, 1.033	1.025 0.971, 1.082	0.965 0.898, 1.036	0.884 0.745, 1.050

Change in methylation (% 5mC) for an interquartile range increase in air pollution

	Particle number	Black carbon	Sulfate	Ozone (March to August)
	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI
IFN-γ ≤72 years >72 years	-0.892 -1.750, -0.033 -0.830 -1.688, 0.029	-0.234 -0.742, 0.274 - 0.520 -1.028, -0.011	0.703 -0.084, 1.489 0.514 -0.273, 1.300	2.0030.349, 3.6571.7370.083, 3.391
IL-6 ≤72 years >72 years	1.530 -0.127, 3.186 1.392 -0.265, 3.048	0.766 -0.117, 1.648 0.851 -0.032, 1.733	0.597 -0.775, 1.969 0.114 -1.258, 1.486	-2.464 -5.402, 0.474 -2.641 -5.579, 0.297

a) Variables included in the models: $f_1(air pollutant)^b$, $f_2(temperature)^b$, $f_3(relative humidity)^b$, age category* $f_1(air pollutant)^b$, age, body mass index, smoking status, diabetes status, statin use, % neutrophils in blood count, % lymphocytes in blood count, seasonal sine and cosine, season, and methylation batch

b) $f_1(\text{air pollutant})$, $f_2(\text{temperature})$, and $f_3(\text{relative humidity})$ represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the air pollution, temperature, and relative humidity associations at lags 0 and 27 days.

Web Table 8: Association between Air Pollution Exposure over the 4-week Period Preceding Medical Examination on Gene-Specific DNA Methylation according to the levels of LINE-1 and ALU Methylation at Baseline

Methylation mean ratio for an interquartile range increase in air poliution								
	Particle number Black car		ck carbon	Sulfate		Ozone (March to August)		
	Estima	te 95% CI	Estim	ate 95% CI	Estim	ate 95% CI	Estima	0 /
F3								
Low LINE-1	0.765	0.678, 0.863	0.866	0.805, 0.931	1.000	0.906, 1.103	0.972	0.743, 1.272
High LINE-1	0.718	0.640, 0.807	0.898	0.834, 0.967	1.001	0.899, 1.115	1.155	0.900, 1.483
	o - /-					0 0 4 C 4 4 		0.00 0 1.100
Low ALU	0.747	0.664, 0.840	0.898	0.835, 0.965	1.046	0.946, 1.157	1.146	0.882, 1.490
High ALU	0.701	0.624, 0.788	0.851	0.791, 0.917	0.979	0.888, 1.080	1.038	0.816, 1.320
ICAM-1								
Low LINE-1	0.925	0.847, 1.010	0.993	0.941, 1.047	0.934	0.872, 1.001	0.675	0.568, 0.803
High LINE-1	0.923	0.788, 0.942	1.029	0.976, 1.086	0.959	0.890, 1.033	0.879	0.746, 1.037
Ingii Ente I	0.002	0.700, 0.742	1.02)	0.970, 1.000	0.757	0.090, 1.099	0.077	0.710, 1.057
Low ALU	0.911	0.832, 0.998	1.018	0.966, 1.074	0.967	0.903, 1.036	0.734	0.618, 0.872
High ALU	0.879	0.808, 0.957	1.007	0.956, 1.061	0.930	0.869, 0.995	0.812	0.692, 0.954
TLR-2								
Low LINE-1	0.930	0.827, 1.046	1.040	0.975, 1.103	0.945	0.869, 1.027	0.880	0.709, 1.091
High LINE-1	0.920	0.817, 1.037	1.009	0.947, 1.076	1.000	0.913, 1.096	0.946	0.768, 1.164
T. ATT	0.049	0.041 1.070	1.016	0.052 1.082	0.074	0.90(1.0(2	0.052	07(7 1 10)
Low ALU	0.948	0.841, 1.069	1.016	0.953, 1.082	0.976	0.896, 1.062	0.953	0.767, 1.186
High ALU	0.956	0.853, 1.071	1.046	0.981, 1.115	1.005	0.925, 1.091	0.908	0.743, 1.109

Methylation mean ratio for an interquartile range increase in air pollution

Change in methylation (% 5mC) for an interquartile range increase in air pollution

	Particle number	Black carbon	Sulfate	Ozone (March to August)
	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI	Estimate 95% CI
IFN-y				
Low LINE-1	-1.114 -1.973, -0.256	-0.733 -1.241, -0.225	0.992 -0.205, 1.779	2.656 1.002, 4.310
High LINE-1	-0.594 -1.453, 0.264	0.005 -0.504, 0.513	0.593 -0.193, 1.380	1.586 -0.068, 3.240
Low ALU	-1.023 -1.882, -0.165	-0.462 -0.971, 0.046	0.750 -0.037, 1.536	3.529 1.875, 5.183
High ALU	-0.855 -1.713, 0.004	-0.175 -0.683, 0.333	0.426 -0.361, 1.212	1.029 -0.625, 2.683
IL-6				
*	1 2 (9 . 0 2 9 . 2 0 2 5	0.514 0.2(0.1.20)	0.517 0.955 1.990	0.042 2.090 2.905
Low LINE-1	1.268 -0.388, 2.925	0.514 -0.369, 1.396	0.517 -0.855, 1.889	-0.042 -2.980, 2.895
High LINE-1	1.794 0.138, 3.451	0.987 0.105, 1.870	0.504 -0.868, 1.876	-4.482 -7.420, -1.544
Low ALU	1.185 -0.472, 2.842	1.274 0.392, 2.157	0.756 -0.616, 2.127	-4.556 -7.494, -1.618
	,		,	,
High ALU	1.811 0.154, 3.468	0.166 -0.716, 1.049	-0.175 -1.547, 1.197	-0.893 -3.831, 2.045

a) Variables included in the models: $f_1(\text{air pollutant})^b$, $f_2(\text{temperature})^b$, $f_3(\text{relative humidity})^b$, baseline methylation status* $f_1(\text{air pollutant})^b$, baseline methylation status, age, body mass index, smoking status, diabetes status, statin use, % neutrophils in blood count, % lymphocytes in blood count, seasonal sine and cosine, season, and methylation batch

b) $f_1(air pollutant)$, $f_2(temperature)$, and $f_3(relative humidity)$ represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the air pollution, temperature, and relative humidity associations at lags 0 and 27 days.

Web Table 9: Associations between air pollution exposure over a 4-week period and gene-specific methylation across positions

Methylation mean ratio for an interquartile range increase in air pollution [95% CI]

•		1 8	1 I	1				
F3	Particle number	Black carbon	Sulfate	O ₃ (March to August)				
Mean	0.725 [0.655 to 0.803]	0.877 [0.825 to 0.932]	1.008 [0.930 to 1.093]	1.082 [0.885 to 1.322]				
Position 1	0.677 [0.538 to 0.852]	0.898 [0.778 to 1.038]	1.071 [0.863 to 1.328]	1.126 [0.741 to 1.711]				
Position 2	0.892 [0.721 to 1.103]	0.948 [0.841 to 1.068]	0.874 [0.707 to 1.081]	0.633 [0.439 to 0.912]				
Position 3	0.686 [0.584 to 0.806]	0.824 [0.753 to 0.901]	1.074 [0.949 to 1.215]	1.301 [0.969 to 1.746]				
Position 4	0.620 [0.496 to 0.774]	0.813 [0.712 to 0.929]	0.815 [0.686 to 0.969]	0.843 [0.522 to 1.362]				
Position 5	0.770 [0.683 to 0.868]	0.895 [0.834 to 0.961]	0.981 [0.889 to 1.082]	1.170 [0.933 to 1.466]				
ICAM-1	Particle number	Black carbon	Sulfate	O ₃ (March to August)				
Mean	0.889 [0.824 to 0.961]	1.009 [0.965 to 1.055]	0.948 [0.896 to 1.003]	0.759 [0.664 to 0.868]				
Position 1	0.919 [0.852 to 0.992]	1.020 [0.977 to 1.066]	0.944 [0.894 to 0.995]	0.758 [0.665 to 0.865]				
Position 2	0.926 [0.824 to 1.042]	1.028 [0.970 to 1.089]	0.898 [0.825 to 0.978]	0.664 [0.559 to 0.788]				
Position 3	0.811 [0.729 to 0.902]	0.969 [0.909 to 1.032]	1.012 [0.936 to 1.096]	0.886 [0.717 to 1.096]				
TLR-2	Particle number	Black carbon	Sulfate	O_3 (March to August)				
Mean	0.943 [0.851 to 1.044]	1.032 [0.979 to 1.088]	0.987 [0.920 to 1.058]	0.917 [0.775 to 1.086]				
Position 1	0.894 [0.765 to 1.044]	1.049 [0.966 to 1.140]	0.927 [0.824 to 1.043]	0.660 [0.505 to 0.863]				
Position 2	1.099 [0.967 to 1.249]	1.010 [0.940 to 1.085]	0.999 [0.904 to 1.105]	1.113 [0.877 to 1.412]				
Position 3	0.845 [0.713 to 1.002]	1.030 [0.944 to 1.123]	1.028 [0.901 to 1.173]	0.809 [0.607 to 1.077]				
Position 4	0.937 [0.830 to 1.058]	1.014 [0.947 to 1.087]	0.979 [0.893 to 1.074]	0.964 [0.772 to 1.202]				
Position 5	0.895 [0.711 to 1.127]	1.006 [0.893 to 1.132]	0.931 [0.788 to 1.101]	1.116 [0.763 to 1.632]				
Change in methylation (% 5mC) for an interquartile range increase in air pollution [95% CI]								
IFN-γ	Particle number	Black carbon	Sulfate	O ₃ (March to August)				
Mean	-0.845 [-1.704 to 0.013]	-0.363 [-0.872 to 0.145]	0.589 [-0.198 to 1.376]	1.898 [0.244 to 3.552]				
Position 1	-1.258 [-2.271 to -0.266]	-0.951 [-1.548 to -0.355]	0.339 [-0.557 to 1.235]	2.453 [0.516 to 4.390]				
Position 2	-0.430 [-1.227 to 0.367]	0.225 [-0.251 to 0.702]	0.835 [0.094 to 1.576]	1.326 [-0.243 to 2.894]				
IL-6	Particle number	Black carbon	Sulfate	O ₃ (March to August)				
Mean	1.412 [-0.245 to 3.068]	0.806 [-0.077 to 1.688]	0.317 [-1.055 to 1.688]	-2.486 [-5.424 to 0.452]				
Position 1	2.229 [0.397 to 4.062]	1.301 [0.293 to 2.309]	0.378 [-1.137 to 1.893]	-3.035 [-6.490 to 0.420]				
1								

a) Variables included in the models: $f_1(\text{air pollutant})^b$, $f_2(\text{temperature})^b$, $f_3(\text{relative humidity})^b$, age, body mass index, smoking status, diabetes status, statin use, percentage of neutrophils in blood count, percentage of lymphocytes in blood count, seasonal sine and cosine, season, and batch b) $f_1(\text{air pollutant})$, $f_2(\text{temperature})$, and $f_3(\text{relative humidity})$ represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the air pollution, temperature, and relative humidity associations at lags 0 and 27 days.

0.273 [-1.182 to 1.727]

-2.362 [-5.468 to 0.743]

0.366 [-0.564 to 1.296]

0.624 [-1.065 to 2.314]

Position 2

Web Table 10: Associations betw	een air pollution exposure o	over a 4-week period and ge	ne-specific methylation usi	ng different models
Methylation mean ratio for an interquar	tile range increase in air pollution	n [95% CI]		
F3	Particle number	Black carbon	Sulfate	Ozone (March to August)
Main model	0.725 [0.655 to 0.803]	0.877 [0.825 to 0.932]	1.008 [0.930 to 1.093]	1.082 [0.885 to 1.322]
Co-pollutant model	0.715 [0.644 to 0.793]	0.883 [0.830 to 0.940]	0.955 [0.871 to 1.046]	0.713 [0.522 to 0.974]
Model with further adjustments	0.725 [0.655 to 0.803]	0.876 [0.824 to 0.931]	1.009 [0.930 to 1.094]	1.075 [0.880 to 1.313]
GEE model (robust variance)	0.715 [0.649 to 0.788]	0.882 [0.836 to 0.930]	0.920 0.889 to 0.953	1.071 [0.887 to 1.293]
GEE model (robust variance and IPCW)	0.758 [0.658 to 0.872]	0.878 [0.825 to 0.934]	0.977 [0.875 to 1.092]	1.117 [0.915 to 1.365]
ICAM-1	Particle number	Black carbon	Sulfate	Ozone (March to August)
Main model	0.889 [0.824 to 0.961]	1.009 [0.965 to 1.055]	0.948 [0.896 to 1.003]	0.759 [0.664 to 0.868]
Co-pollutant model	0.890 [0.824 to 0.962]	1.004 [0.960 to 1.050]	0.968 [0.912 to 1.027]	0.953 [0.767 to 1.186]
Model with further adjustments	0.892 [0.826 to 0.963]	1.010 [0.966 to 1.056]	0.951 [0.899 to 1.006]	0.762 [0.666 to 0.872]
GEE model (robust variance)	0.889 [0.831 to 0.951]	1.028 [0.981 to 1.078]	0.948 [0.897 to 1.003]	0.743 [0.623 to 0.887]
GEE model (robust variance and IPCW)	0.924 [0.856 to 0.999]	1.070 [1.010 to 1.130]	0.946 [0.886 to 1.011]	0.747 [0.630 to 0.885]
TLR-2	Particle number	Black carbon	Sulfate	Ozone (March to August)
Main model	0.943 [0.851 to 1.044]	1.032 [0.979 to 1.088]	0.987 [0.920 to 1.058]	0.917 [0.775 to 1.086]
Co-pollutant model	0.924 [0.832 to 1.026]	1.029 0.976 to 1.086	0.964 0.886 to 1.049	0.881 0.638 to 1.215
Model with further adjustments	0.938 0.847 to 1.040	1.031 [0.977 to 1.087]	0.988 [0.921 to 1.060]	0.916 [0.773 to 1.084]
GEE model (robust variance)	0.943 [0.856 to 1.039]	1.031 [0.979 to 1.086]	0.988 [0.915 to 1.067]	0.917 [0.788 to 1.068]
GEE model (robust variance and IPCW)	0.899 [0.783 to 1.033]	1.048 [0.988 to 1.112]	0.955 [0.854 to 1.068]	0.935 [0.795 to 1.099]
Change in methylation (% 5mC) for an i	interquartile range increase in air	pollution [95% CI]		
IFN-γ	Particle number	Black carbon	Sulfate	Ozone (March to August)
Main model	-0.845 [-1.704 to 0.013]	-0.363 [-0.872 to 0.145]	0.589 [-0.198 to 1.376]	1.898 [0.244 to 3.552]
Co-pollutant model	-0.829 [-1.694 to 0.036]	-0.317 [-0.831 to 0.197]	0.535 [-0.335 to 1.406]	1.151 [-1.650 to 3.952]
Model with further adjustments	-0.803 [-1.662 to 0.057]	-0.328 [-0.837 to 0.180]	0.654 [-0.133 to 1.441]	1.925 [0.271 to 3.579]
GEE model (robust variance)	-0.753 [-1.740 to 0.238]	-0.358 [-0.877 to 0.162]	0.587 [-0.251 to 1.420]	1.880 [0.286 to 3.470]
GEE model (robust variance and IPCW)	-0.618 [-2.320 to 1.080]	-0.656 [-1.420 to 0.109]	0.935 [-0.314 to 2.180]	2.290 [0.590 to 4.000]
IL-6	Particle number	Black carbon	Sulfate	Ozone (March to August)
Main model	1.412 [-0.245 to 3.068]	0.806 [-0.077 to 1.688]	0.317 [-1.055 to 1.688]	-2.486 [-5.424 to 0.452]
Co-pollutant model	1.180 [-0.496 to 2.855]	0.827 [-0.065 to 1.719]	0.724 [-1.104 to 2.552]	-3.316 [-8.655 to 2.024]
Model with further adjustments	1.403 [-0.257 to 3.064]	0.800 [-0.086 to 1.686]	0.310 [-1.065 to 1.686]	-2.466 [-5.415 to 0.483]
GEE model (robust variance)	2.560 [0.541 to 4.590]	1.380 [0.194 to 2.570]	0.827 [-0.648 to 2.300]	-4.520 [-8.620 to -0.425]
GEE model (robust variance and IPCW)	0.588 [-2.580 to 3.750]	1.060 [-0.127 to 2.240]	-0.209 [-2.200 to 1.780]	-4.820 [-8.190 to -1.460]

Abbreviations: Generalized estimating equations (GEE), Inverse probability censoring weights (IPCW)

a) Variables included in the main model: f₁(air pollutant)^f, f₂(relative humidity)^f, age, body mass index, smoking status, diabetes status, statin use, % neutrophils in blood count, % lymphocytes in blood count, seasonal sine and cosine, season, and batch.

b) Air pollution variables included in the co-pollutant model: f₁₁(air pollutant₂)^f, f₁₂(air pollutant₂)^f, where air pollutant₂ is ozone when air pollutant₁ is particle number or black carbon and air pollutant₂ is particle number when air pollutant₁ is sulfate or ozone

c) Additional variables included in the model with further adjustments: cigarette pack-years, more than two drinks per day, and maximal education

d) Variables included in the GEE model with robust variance: same as in main model

(b) Variables included in the GEE model with robust variance and IPCW (inverse probability censoring weights): same as in main model (f) $f_1(air pollutant), f_2(temperature), and f_3(relative humidity) represent the distributed-lag functions with sets of coefficients constrained by a natural spline (with 3 degrees of freedom) that correspond to the air pollution, temperature, and$ relative humidity associations at lags 0 and 27 days.-