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1. Mathematical Analysis 

 

According to the Euler stability criterion, the critical state for compression failure is reached 

when the work of the external forces equals the change in strain energy of the body
1,2

: 

 (S1) 

Furthermore, the work of the compressive forces acting on the middle plane of the plate is 

given by
2
: 

 (S2) 

where u is the out-of-plane displacement, A is the area of the plate (graphene) and Nx is the 

compressive force along the x-direction. The bending energy is given by
2
: 
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where D is the bending stiffness and v the Poisson ratio of graphene. The surrounding 

polymer matrix is assumed to contribute to the system through the deformation energy: 
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 (S4) 

 

where Kw is the Winkler’s modulus. From the physical point of view the last term describes 

the interaction between the plate and the elastic foundation which is loaded as the plate bends 

at the critical point. 

 By equating the work of the external forces with the change in the strain energy we 

obtain: 
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For the out-of-plane displacement it is common to assume that it has a sinusoidal form
2-6

 

which models adequately the form of buckling that appears at the critical strain. For our 

purposes we make the following assumption for u: 
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where l, w is the length and the width of the flake, respectively. Under the above assumption 

we obtain: 
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 (S7) 

 

                        (S8) 

 

                        (S9) 

 

Using the expression on eq 5 we obtain the critical force Nx: 

 

 (S10) 

 

Following the reasoning similar to reference 2, the critical force Nx, being a sum of positive 

quantities, is minimized when only one term αmn is different than zero. In such a case we 

have: 

 

      (S11) 

 

If we further make the physically plausible assumption
2
 that there are several half waves in 

the direction of compression but only one half wave in the perpendicular direction (n=1) and 

use the formula Nx=εC, where C is the tension rigidity, we finally arrive at the following 

expression for the critical strain for buckling: 
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      (S12) 

where 

           

 

 (S13) 

 

The determination of the half waves, m, stem from equating the force expression 11, for m 

and m+1: 

 

 (S14) 

 

This way we obtain the following equation for m: 

            

 (S15) 

The evaluation of the half wavelength and the amplitude relies on the inextensibility 

assumption. We assume that for small values of applied strain, the length of the specimen 

remains the same after buckling initiates. The wavelength that corresponds to the half-wave 

number is evaluated according to the formula:  

         (S16) 

The projection of the buckled length divided by the number of half waves, m, corresponds to 

the wave length. The length of the projection can be calculated by: , figure S1 where 
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The incompressibility constraint is a plausible assumption since we are at the regime of low 

strains (approximately ~-0.5 %). The line integral: 

 (S17) 

corresponds to the length of the flake. In the above relation u is the out-of-plane displacement 

that now takes the form: 

 (S18) 

A its amplitude, while the term (1-εcr) describes the contractions due to buckling as the figures 

shows. 

 

Figure S1. The initial length of the specimen and the length after buckling occurs.  

 

2. Stress transfer from the PMMA to the graphene flake 

We apply a compressive loading to the system graphene–PMMA. This kind of loading results 

to a shear stress at the interface between the graphene flake and the surrounding medium 

which is responsible for transferring the stress to the inclusion (graphene)
8
. The shear stresses 

require a specific length to reach the maximum value of the stress that is possible to be 

transferred from the polymer to the graphene. This is the transfer length Lt. So, if the length of 

the graphene is smaller than the critical transfer length, Lc  (Lc=2Lt) then graphene is not 

stressed to the maximum value which is the externally applied stress through the flexure of 

PMMA beams. Indeed, only a fraction of the load is transferred to graphene.  
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Figure S2. Building of stress transfer in graphene. 

 

In the case of flakes with lengths not large enough compared to the required critical length 

(Lc), the strain/ stress that is transferred to the flake will never reach the maximum value 

(applied strain). Thus, the actual strain developed in the graphene must be corrected as it is 

not the same with the external strain. Our experimental results indicate that the flakes with 

length of up to about ~4 μm are not able to obtain the maximum values of the stresses applied 

to the system. This is observed by the slope of the curve Pos2D vs Strain (here the strain is 

that applied to the beam). In all these cases the slope is much smaller than the critical slope, 

~60 cm
-1

/% (estimate based on the present work as well as values from the literature, see Refs 

[9–11]). Thus, a simple correction can be implemented by shifting the Pos2D vs Strain slope 

near the origin (zero strain) and recalibrating the actual strain through the formula: 

 (S20) 

3. Fitting 

In figure 2 the fourth order polynomial Pos2D=2596 – 56.41ε– 29.54ε
2
 + 13.16ε

3
 + 4.01ε

4 
is 

fitted to the data, is in closed form and captures the observed trend of the experimental data 

within the full range of strain levels under study. This was the lowest polynomial order that 

, 0

max , 0

(%)
 or (%)

60

appliedmeasured
graphene applied graphene

measured

imum T







 
  

 






   
               
    



7 

 

yielded acceptable fitting of the data points at both the region near the origin and the region 

near failure point. An alternative approach would be to use two separate 2
nd

 degree 

polynomials, one for each region of interest. Such polynomials, for example, would have the 

form y=2595.8 – 56.1x – 33.2x
2
 and y=2595.4 – 61.2x – 42.8x

2
 for the regions near the origin 

and at the failure point, respectively. These functions reproduce almost exactly our values for 

the slope at the origin and critical strain of failure. 

 

4. Graphene–PMMA Interaction Potentials 

Optimized structures 

The optimized structures are shown in figure 7 of the manuscript. The structures have a 

helical pitch of 19.4 Å and 6.75 Å, an outer diameter of 10.1 Å and 23.2 Å, and a helical tilt 

angle (with respect to the axis of the main chain) of 28.6° and 78.7°, for the i-PMMA and s-

PMMA chains respectively. The inner diameter of the s-PMMA helix is 13.8 Å which is 

substantially larger than the outer diameter of the i-PMMA helix and thus permits the 

formation of the 2:1 (s:i) PMMA stereocomplex. These values are in good agreement with the 

high-resolution atomic force microscopy measurements on the 2:1 (s:i) PMMA stereocomplex 

of Kumaki et al. who reported an outer s-PMMA helix tilt angle of 74°, a chain–chain lateral 

spacing of 24 Å and a helical pitch of 9.2 Å. Any difference from our theoretical values can 

be attributed to the influence of the internal i-PMMA double helix of the experimental 

stereocomplex structure. 

The orientations of the monomers in the optimized polymer chains have been employed as a 

guide in selecting the most probable MMA monomer–coronene relative configurations for the 

PES scan, which are shown in figure S3. We denote these relative configurations of a MMA 

monomer and coronene as h-PC, in which the O–C (single) bond of a MMA monomer is 

horizontal, i.e. parallel to the coronene plane, and v-PC, for the case which the O–C (single) 
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bond of the MMA monomer is vertical, i.e. perpendicular to the coronene plane. The third 

configuration corresponds to an approximate reversed h-PC. A fourth configuration, not 

shown, corresponds to an h-PC with the monomer’s backbone tilted by 30° with respect to the 

normal axis of the coronene plane. 

 

 

Figure S3. PMMA–coronene relative configurations used for the PES scans. The 

configurations correspond to the potentials (a) u1, (b) u2, and (c) u3. A fourth configuration 

used is the same as (a) tilted by 30 degrees. 

 

Primitive potentials 

Compared to both the results from using the B2PLYPD functional as well as the SCS(MI)-

MP2 method, the B97-D functional slightly overestimates the interaction energy (see figure 

S4a). A scaling factor of 1.11 is applied to the values obtained from the B97-D functional in 

order to match the results of the more accurate (but impractical for computational reasons) 

B2PLYPD functional and SCS(MI)-MP2 method. The primitive potentials are fitted to the 

scaled B97-D datasets. The values for the fitting parameters, σ, ε and C, for the primitive 

potentials, u1–4, are, ε1 = 18.98 kJmol
-1

, σ1 = 2.80778 Å, C1 = 0.74371, ε2 = 16.68 kJmol
-1

, σ2 = 

2.99278 Å, C2 = 0.68142, ε3 = 21.59 kJmol
-1

, σ3 = 2.7788 Å, C3 = 0.68782, and ε4 = 19.09 

kJmol
-1

, σ4 = 2.91439 Å, C4 = 0.78586. The primitive potentials, u1-4(z), thus take the form: 
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(c) 

(d) 

Figure S4. Potential energy surface scans for the configurations PMMA–Coronene shown in 

figure S3. R is the transverse distance of the PMMA carbon atom nearest to the coronene 

plane. 

 

Two-parameter PES scan 

 

We have additionally performed a two-parameter PES scan on a coronene with two MMA 

molecules, one on each of the coronene surfaces. The configuration corresponds to that used 

in PES1, and the scanning parameters are the distances R1, R2 between each monomer and the 

coronene plane. The resulting scan is shown in figure S5. The presence of the second MMA 
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molecule reduces the interaction very slightly, and the overall interaction energy is 1.2 % less 

compared to twice the interaction energy of the corresponding single monomer case. 

 

 

Figure S5. Two parameter potential energy surface scan corresponding to PMMA-coronene 

configurations as in PES1 with two MMA monomers, one on each side of coronene. The 

distances of each monomer from the coronene plane are denoted as R1 and R2. 

 

Composite potentials 

 

The final potentials have been constructed as a linear combination of the primitive potentials 

from the PES scans. The coefficients of the expansion, aij, are integers denoting 

approximately the number of each monomer types encountered in each PMMA–coronene 

configuration. Additional parameters, hij, define the height of the specific monomer relative to 

the one closest to the coronene plane. Explicitly these are: 
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s-PMMA, horizontal (experimental length): 

   

where a31 = 6, h31 = 0.0 Å, a41 = 4, h41 = 2.6 Å, a42 = 4, and h42 = 4.7 Å. When the theoretical 

s-PMMA helical pitch is used the corresponding potential is multiplied by a factor of 1.363. 

 

s-PMMA, face-down: 

   

where a11 = 7, h11 = 0.0 Å, a12 = 1, h12 = 1.45 Å, a31 = 7, h31 = 2.3 Å, a32 = 1, and h32 = 5.2 Å. 

 

i-PMMA, horizontal: 

   

where a11 = 6, h11 = 0.0 Å, a12 = 2, h12 = 1.3 Å, a31 = 2, h31 = 2.4 Å, a32 = 2, and h32 = 3.7 Å. 

 

The fitting parameters for the modified Lennard–Jones composite potentials take the 

following values: 

 

For Ush: ε = 0.25209(2) kJmol
-1

Å
-2

, σ = 2.96414(2) Å, and C = 0.67282(5) 

For Usf: ε = 0.3014(1) kJmol
-1

Å
-2

, σ = 2.7495(1) Å, and C = 0.7093(3) 

For Uih: ε = 0.3401(1) kJmol
-1

Å
-2

, σ = 2.75851(9) Å, and C = 0.7236(2) 

 

These primitive and composite potentials can be used to create mesoscopic models for the 

interaction of graphene and PMMA with regions of arbitrary tacticity. 

 

5. Effective Stiffness of Polymer Matrix 
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A second spring is included in the analysis through which the elasticity of the polymer matrix 

is accounted for. This spring is in series with the corresponding VdW (first) spring. The 

equivalent stiffness of the two springs is given by 

   

where the constants , and  are defined per unit area. 

From the graph given in figure S6, to obtain the effective (second) spring length, we use 

the specific Young’s modulus,  and the Van der Waals spring constant, . In 

addition, the experimental Winkler modulus, , as obtained via the mathematical model  

(see section SI-1), is also used. 

 

Figure S6. Family of curves corresponding to the range of Young’s moduli for PMMA and 

the range of calculated VdW spring stiffnesses. 
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