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Figure S1. No changes in methyltransferase levels in the absence of Lsh and
hypomethylation of Lsh nuclei. a) Left panel: indirect immunofluorescence on fixed cells
using a 5-methylcytosine (left) antibody and a single-stranded DNA (right) antibody. 5meC
staining was detected with an Alexa Fluor 594 secondary antibody yielding a red stain and
single-stranded DNA with an Alexa Fluor 488 secondary yielding a green stain. Note the
absence of multiple condensed heterochromatic foci in Lsh” nuclei compared to wildtype
nuclei indicated by white dashed circles. Right panel: indirect immunofluorescence on fixed
cells using an Lsh antibody (left) and DAPI stained DNA (right). Lsh staining was detected
with an Alexa Fluor 488 secondary antibody yielding a green stain. Note the absence of Lsh
nuclear staining in Lsh”" cells compared to wildtype cells. Scale bar = 10uM. b) Wild type and
Lsh-/- genomic DNA was mock-digested and digested with Msp |, Hpa Il and Maell, which
reveals normal methylation digestion profiles in wild type cells. In Lsh-/- cells note the small
digestion fragments (black arrowheads) with Mae Il digestion; indicative of
hypomethylation. The Mae Il digest were also run side by side for direct comparison. c)
Graph indicating no differences in transcript levels (microarray) for DNA methyltransferases
in wild type and Lsh-/- fibroblasts.

Figure S2. HELP-seq Additional file. a) Example of HELP-seq data in Dnmt3b knockout
system. Left: a HELP-seq browser track showing mouse chr2:95100568-951000802 (genomic
build mm9) and loss of methylation at the indicated (asterisk) LINE-1 element as in Figure 1.
b) HELP-seq browser track showing mouse chr15:31097720-31097931 (genomic build mm?9)
and no change in DNA methylation at indicated (asterisk) genomic locus. c) Bioinformatics
pipeline scheme used to analyse HELP-seq repeat element data. d) Analysis of genome-wide
HELP-seq DNA methylation difference reproducibility in biological replicate libraries at
repeat classes in WT & Lsh”" cell line pair. Compare the OR profile for compiled replicates 2
and 3 (shown here) and replicate 1 shown in Figure 1. Scale is calculated odds-ratio (OR;
Additional file 1: Figure S2). OR>1 hypomethylation in Lsh”" indicated by green arrow; OR<1
hypermethylation in Lsh”" indicated by red arrow. e) Table of read counts and statistics for
HELP-seq replicates 2 and 3 as shown above in S2d. f) Bisulfite sequencing pattern at mouse
IAP LTR (left) and IAP gag gene (right) in heterozygous and homozygous Dnmt3b MEFs.
Percentage methylation and cell types indicated. Black square = methylated; white square =
unmethylated; red square = non-consensus CpG. See Additional file 1: Figure S6 for bisulfite
primer locations. g) RRBS data mined for methylation levels at indicated repeat classes in
p53'/' MEFs . h) RRBS data mined for methylation levels at indicated repeat classes in p53'/'
|Dnmt1”" MEFs .

Figure S3. Differential RNA-seq analysis of mouse IAP and LINE-1 in DNA methylation
mutants. a) 10kb downstream IAP LTR probability density function plotted against fold
change in indicated cell types. b) 10kb downstream non-IAP LTR fold-change plotted against



probability density function in indicated cell types. Note the lack of RNA-seq read changes
between paired mutants and wildtype cells at regions 10kb downstream of annotated IAP
LTRs (a) and non-IAP LTRs (b). Vertical lines indicate -5 and +5 log,-fold changes. Scales: x-
axis is log,-fold change RNA expression; y-axis is probability density function (P.D.F.). c)
Overlap between misexpressed LTRs in DNA hypomethylated cell types. Numbers of unique
LTRs misexpressed in each mutant colour-coded: Lsh (blue) and DN (green). Interestingly,
there is greater overlap in misexpression between non-IAP LTRs than IAP LTRs in Lsh and DN
datasets. d) Boxplot of spread of distance between unique LTRs which change in expression
in Lsh and DN datasets and the nearest annotated gene. Lsh IAPs are generally further from
genes than the genome average and DN IAPs. In fact, DN IAPs are nearer to genes than the
genome average. In contrast, Lsh and DN non-IAP LTRs are closer to neighbouring genes tan
the gnome average. e) To determine if upregulated IAP LTRs or non-IAP LTRs are
evolutionarily conserved we compared our LTRs to the published locations of all mouse
IAPLTR1_Mm LTRs (n=1390) [77]. The generated LTR dataset was computationally divided
into three distinct clades. Using BedTools we overlapped our LTRs with the published
dataset and determined which clade our groups of LTRs belong to. Using chi-squared
statistical tests, we found no significant difference between our LTR groups and the
published LTR dataset (p>0.1 in all comparisons). X-axis is log,-fold change in repeat RNA
expression; y-axis is probability density function (P.D.F.).

Figure S4. DNA hypomethylation and expression of LINE-1s are poorly correlated in Lsh”"
mutants. Plot of RNA-seq expression changes versus HELP-seq DNA methylation changes in
Lsh”" versus WT cells. LINE-1s plotted are indicated in colour (yellow=LINE-1s that were
significantly differentially expressed as shown in Figure 4; grey = all LINE-1s including non-
significant elements which were present in both RNA-seq and HELP-seq datasets).
Significant (and non-significant) differences detected using EdgeR in RNA-seq reads
sequenced between Lsh”" and WT cells are plotted against significant changes (Fisher’s t-
test and Benjamini-Hochberg multiple testing) in HELP-seq reads. Vertical dashed lines
indicate -5 and +5 RNA-seq log,-fold change thresholds and horizontal dashed lines indicates
-1 and +1 log,-fold change HELP-seq threshold. Note the pattern of expression: majority of
LINE-1 are unchanged, a fraction are either upregulated or downregulated. However, many
downregulated LINE-1s are hypomethylated, many upregulated LINE-1s are
hypermethylated and vice versa.

Figure S5. Validation of repeat RNA-seq data by gRTPCR on embryonic Lsh+/- and Lsh”"
E13.5 isolates and strand-specific major satellite expression analysis. a) gRTPCR expression
of IAP sequences in Lsh+/- and Lsh” E13.5 embryos showing major transcriptional
derepression at IAP-gag and IAPEz-int. b) Similar to (a) marked derepression of mouse
major satellite transcripts. ¢) SINE derived sequences show low expression in mutant
embryos (note scale). d) LINE-1 5‘UTR and ORF1 transcripts show little derepression in
mutant embryos. e) GAPDH expression loading control for RNA samples analysed showing
similar levels of this constitutive transcript. —rt shows undetectable signal in the absence of



reverse transcriptase. WT samples= red; Lsh”" samples = orange. f) Strand-specific gRTPCR
showed no preference for sense or antisense transcription in the absence of Lsh. All
experiments are in triplicate. Expression level units are arbitrary and are all normalised to
GAPDH expression levels. Also shown is Tex19.1 mis-expression in Dnmt3b-/- and Dnmt1-/-
(DN) cells. g) Indicated repeat expression levels in p53” and p53'/'|Dnmt1'/' MEFs. grey=p53
" MEFs (p53); red=p53'/'|Dnmt1'/' MEFs (DN). Experiments represent triplicate analysis. See
Additional file 1: Figure S6 for qRTPCR primer locations. Expression level units are arbitrary
(arbitrary expression units A.E.U.) and are all normalised to GAPDH expression levels. h) The
TEM for Dnmt3b-/- cells does not detect VLPs.

Figure S6. Bisulfite, qRTPCR and ChIP primer maps on repeats. a) Bisulfite primers on major
satellites, minor satellites and the IAP LTR are depicted. Black and white triangle pairs
indicate primer pairs. Vertical blue lines indicate locations of CpG dinucleotides. Product
sizes are indicated in base pairs. b) gRTPCR primers for expression analysis on IAP LTRs,
major satellites, SINE B1, LINE-1 and Gapdh are depicted. Black and white triangle pairs
indicate primer pairs. c¢) ChIP primers on major satellites, IAP LTRs, LINE-1 and beta-actin are
depicted. Black and white triangle pairs indicate primer pairs.

Figure S7. Knockdown of Lsh does not induce hypomethylation in terminally differentiated
tailtip fibroblasts nor embryonic stem cells. a) Lentiviral infection (#sh44 and #sh48) of WT
tailtip fibroblasts reduces Lsh protein levels by 60-80% compared to non-mammalian target
sequence (shNM). Extract dilutions were blotted and probed with Lsh and tubulin
antibodies. b) Densitometry of western blots using ImagelJ software. c) Lsh-depleted
fibroblast genomic DNA retains normal methylation levels. Genomic DNA digested with
Maell reveals normal methylation digestion profiles in sh44 and sh48 DNA compared to
shNM DNA. Lsh™" genomic DNA is a positive control for hypomethylation — see small
digestion fragments (arrowheads). d) IAP is not upregulated in Lsh knockdown fibroblasts by
gRT-PCR — note similar levels of IAP expression in Lsh knockdowns ( sh44 & sh48) compared
to shNM. e) Wildtype and mutant Lsh (ATPase mutant) do not rescue hypomethylation in
Lsh”" MEFs. Lsh”" cells were transfected for 72 hours with GFP, GFP-Lsh or GFP-Lsh”™* and
genomic DNA isolations (including WT MEF DNA for comparison) were digested with Maell
or Hpall - note presence of small DNA digestion fragments (arrowheads) in Lsh cells
transfected with either Lsh or Lsh*™"*¢. f) Lsh-depleted ES cell genomic DNA retains normal
methylation levels. Genomic DNA was digested with Maell, revealing normal methylation
digestion profiles in sh44 and sh48 DNA compared to shNM DNA. g) Clonal ES cells from
anti-Lsh lentiviral infections are depleted for Lsh protein. Western blotting shows marked
reduction in Lsh protein comparing five control ES clones (shNM) against six Lsh-depleted ES
clones (sh44). Blots were probed as in (a). h) Lsh-depleted ES clone genomic DNA retains
normal methylation levels. Genomic DNA was digested with Hpa Il or Mae Il revealing
normal methylation digestion profiles in sh44 genomic DNA compared to shNM genomic
DNA
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