## **Supplementary Material**

#### **Supplementary Methods**

**DNA extraction.** To extract and purify DNA from seawater filters in the laboratory, small pieces of frozen filters (~ 35 mg filter mass) were put into 2-ml centrifuge tubes (one tube per depth) containing 200 µl of 10 mM Tris-1 mM EDTA buffer (TE) with 0.5 % (w/v) sodium dodecyl sulfate and proteinase K (50  $\mu$ g ml<sup>-1</sup>). Tubes were incubated at room temperature for 30 min; tubes with buffer and no filter material served as blanks. DNA was extracted by adding 200 µl of a pH 8-equibrated phenol: chloroform: iso-amyl alcohol mixture (25:24:1 [v/v/v]) and incubated for 5 min at room temperature. Tubes were then centrifuged for 5 min at highest speed, and aqueous phases were transferred into new centrifuge tubes. The phenol phases were mixed with 200 µl TE, incubated for 5 min at room temperature, and centrifuged for 5 min. The aqueous extracts were combined with the previous aqueous phases. DNA was precipitated in 10 % (v/v) 5 M NaCl and 2.5 volume of 100% ethanol overnight at room temperature. Tubes were then centrifuged for 15 min at highest speed, and pellets were washed with 70 % ethanol, air dried, and resuspended in 200 µl sterile RNA-free water (Qiagen). DNA from sediment was extracted and purified from 250 mg sediment using the MoBio UltraClean Soil DNA Kit (MoBio Laboratories, Inc, Solana Beach, CA.), following the manufacturer's instructions.

#### **Supplementary Results**

*Bacteroidetes*. Members of the phylum *Bacteroidetes* constituted the dominant clone library fraction in the surface water sample (58%), nearly disappeared in the bottom water sample (a single clone), and reappeared with ca. 12% and 16% clone library representation in the sediments. Strong phylogenetic partitioning between water column and sediment was also observed in the phylum *Bacteroidetes* (Fig. S1). Following the taxonomic outline of Bergeys Manual, 2<sup>nd</sup> edition that divides this phylum into the orders *Flavobacteriales* and *Bacteroidales* (S1), the surface water clones fell exclusively into the *Flavobacteriales*, where they form sister lineages to marine, heterotrophic and aerobic genera and species such as the vacuolated psychrophile *Polaribacter* (S2), or the genera *Algibacter* (S3), *Actibacter* (S4) and *Ulvibacter* (S5) that often use marine algae and biopolymers as carbon source. A number of these clones were very similar to those previously recovered from the surface water and bottom water in Kongsfjord (S6), designated as Svalbard bottom or shallow water clones (Fig. S1)

The *Flavobacteriales* disappeared almost completely in the bottom water sample and in the surface and subsurface sediment. In the sediment samples they were replaced by different lineages within the *Bacteroidales*: an uncultured cluster of marine sediment clones, including the Svalbard clone 1083 that was recovered previously from Svalbard marine sediments (S7); lineages affiliated with the fermentative marine psychrophile *Prolixibacter bellariivorans* (S8), or the fermenting obligate anaerobe *Paludibacter propionicigenes* within the *Porphyraceae* (S9). This taxonomic shift is congruent with metabolism: the aerobic *Flavobacteriales* in the water column and on the sediment surface yielded to anaerobic *Bacteroidales* within the sediment.

In addition to the *Verrucomicrobiaceae*, members of the *Flavobacteria* and the *Planktomycetes* are strong candidates as mediators of polysaccharide hydrolysis in the water column. The single cell amplified genomes AAA168\_G15 and AAA164\_L19 represent xylan and laminarin-binding cells within the *Flavobacteria* (Fig. S1). While they do not match specific Svalbard clones closely, a role for *Flavobacteria* in carbohydrate degradation in the water column would be consistent with the heterotrophic culture characteristics of flavobacterial genera and species, and the abundance of hydrolase genes in published genomes across the phylum *Bacteroidetes* (S10).

*Proteobacteria*. A wide range of *Proteobacteria*, predominantly from the Alpha-, Gamma- and Deltaproteobacterial subdivisions, were found in the water column and sediment (Fig. S2). The *Gammaproteobacteria* accounted for approximately 20% of both water column clone libraries, and occur in similar proportions (but in changing genusand family-level composition) in the sediment layers. The gammaproteobacterial clones belonged to the mostly uncultured lineages OCMS-1 group (S11), the GMS3 group (S12), and the ARCTIC96BD-19 group (S13) and originated mostly from surficial sediment, with the exception of a water column cluster and a deep sediment cluster related to the marine microaerophilic heterotroph *Haliea rubra* (S14). Members of these groups have been detected previously in clone libraries from the Svalbard water column (EU919783, S7) and sediments (EU050803, S15; AJ240991, S7). The Smeerenburg phylotypes overlapped with bacterial strains isolated from Svalbard sediments and water samples within the genus *Pseudomonas* (S16). In addition to the *Verrucomicrobia* and *Bacteroidetes*, a third phylogenetically defined group of bacteria active in carbohydrate degradation is indicated within the *Gammaproteobacteria*, where a single cell amplified genome (AAA168\_O11) is closely related to the genus *Pseudomonas* and a deep-water Svalbard clone (Fig. S2). No such association was found for the *Haliela rubra*-associated gammaproteobacterial phylotypes from the Svalbard water column (Fig. S2).

The *Alphaproteobacteria* accounted for only approximately 5% of the water column clone libraries, a much reduced proportion compared to their frequent detection in methodologically identical clone libraries obtained from the Smeerenburg fjord water column in the summer of 2007 (S11). The alphaproteobacterial clones were mostly obtained from the deep water column and branched with the marine *Roseobacter* clade of heterotrophic, often organosulfur-degrading bacteria that are abundant in coastal waters (S17, S18).

Members of the *Deltaproteobacteria* were almost exclusively recovered from the sediment samples; most clones were affiliated with the *Desulfosarcinales* and the psychrophilic sulfate-reducing genera *Desulfofrigus* and *Desulfofaba*, isolated previously from Svalbard sediments (S19) (Fig. S2). Other clones were affiliated to previously recovered Svalbard clones within uncultured deltaproteobacterial lineages (Sva0812b; S7). In contrast to the water column samples, the sediment samples contained a larger number of phylum-level lineages: the *Chloroflexi*, *Firmicutes*, *Actinobacteria*, *Planktomycetes*, and the *Nitrospina* lineage were represented by a few clones each (Fig. S3).

*Planctomycetes*. A fourth hot spot of carbohydrate-degrading cells within the phylum *Planctomycetes* is suggested by a laminarin-associated single amplified genome (phylotype AAA164\_M21) near *Rhodopirellula baltica*. The genome of this marine planctomycete contains an unusually large number of sulfatases, whose function is probably connected with accessing the carbon skeleton of sulfated complex organic compounds (S20); recent work demonstrates that *R. baltica* grows particularly well on chrondroitin sulfate (S21). While clones within the *Planctomycetes* phylum are commonly found in Svalbard marine sediments, water column clones were not recovered (S11, S15, this study); the *Planctomycetes* are therefore not among the conspicuous carbohydrate-utilizing bacteria in the water column but may play a greater role in the sediment.

## **Supplementary References**

S1. Garrity GM, Holt, JG. 2001. The road map to the manual. pp. 119–166. *In* D. R.
Boone and R. W. Castenholz (ed.), Bergey's Manual of Systematic Bacteriology, 2nd ed.,
vol. 1. Springer-Verlag, New York, NY.

S2. Gosink JJ, Woese CR, Staley JT. 1998. *Polaribacter* gen. nov., with three new species, *P. irgensii* sp. nov., *P. franzmannii* sp. nov. and *P. filamentus* sp. nov., gas vacuolate polar marine bacteria of the *Cytophaga-Flavobacterium-Bacteroides* group and reclassification of '*Flectobacillus glomeratus*' as *Polaribacter glomeratus* comb. nov. Int. J. Syst. Bacteriol. **48**:223-235.

S3. Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM, Rohde M, Zhukova NV, Frolova GM, Mikhailov VV, Bae KS. 2004. *Algibacter lectus* gen. nov., sp. nov., a novel member of the family *Flavobacteriaceae* isolated from green algae. Int. J. Syst. Evol. Microbiol. **54**:1257-1261.

S4. Kim JH, Kim KY, Hahm YT, Kim BS, Chun J, Cha CJ. 2008. *Actibacter sediminis* gen nov. sp. nov. a marine bacterium of the family *Flavobacteriaceae* isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. **58**: 139-143.

S5. Choi TH, Hong KL, Lee H, Cho JC. 2007. *Ulvibacter antarcticus* sp. nov., isolated from Antarctic coastal seawater. Int. J. Syst. Evol. Microbiol **57**: 2922-2925.

S6. Zeng Y, Zeng T, La H. 2009. Community composition of the marine bacterioplankton in Kongsfjorden (Spitsbergen) as revealed by 16S rRNA gene analysis. Polar Biol. 32:1447-1460.

S7. Ravenschlag K, Sahm K, Pernthaler J, Amann R. 1999. High bacterial diversity in permanently cold sediments. Appl. Environ. Microbiol. 65:3982-3989.

#### S8. Holmes DE, Nevin KP, Woodard TL, Peacock AD, Lovley DR. 2007.

*Prolixibacter bellariivorans* gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum *Bacteroidetes*, isolated from a marine sediment fuel cell. Int. J. Syst. Evol. Microbiol. **57:**701–707.

S9. Ueki A, Akasaka H, Suzuki D, Ueki K. 2006. Paludibacter propionicigenes gen. nov., sp. nov, a novel strictly anaerobic, gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 56:39-44.

S10. Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga
KG, Xie G, Poulton NJ, Lluesma Gomez M, Masland DED, Thompson B, Bellows
W, Ziervogel K, Lo CC, Ahmed S, Gleasner C, Detter C, Stepanauskas R. 2012.
Capturing single cell genomes of active polysaccharide degraders: an unexpected
contribution of *Verrucomicrobia*. PloS ONE 7:e35314

S11. **Teske A, Durbin A, Ziervogel K, Cox C, Arnosti C.** 2011. Microbial community composition and function in permanently cold seawater and sediments from an Arctic fjord of Svalbard. Appl. Environ. Microbiol. **77**:2008-2018.

S12. Gillan DC, Pernet P. 2007. Adherent bacteria in heavy metal contaminated marine sediments. Biofouling 23:1-13.

S13. **Stevens H, Ulloa O.** 2008. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. **10**:1244-1259.

S14. Urios L, Intertaglia L, Lesongeur F, Lebaron P. 2009. *Haliea rubra* sp. nov., a member of the *Gammaproteobacteria* from the Mediterranean Sea. Int. J. Syst. Evol. Microbiol. 59:1188-1192.

S15. **Tian F, Yu Y, Chen B, Li H, Yao YF, Guo XK.** 2009. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA clone library analysis. Polar Biol. **32**:93-103.

S16. Prasad S, Manasa P, Buddhi S, Tirunagari P, Begum Z, Rajan S, Shivaji S.
2013. Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial fjord, Kongsfjorden. Current Microbiology, doi
10.1007/s88284-013-0467-6.

S17. **Wagner-Döbler I, Riedl H.** 2006. Environmental biology of the marine *Roseobacter* lineage. Annu. Rev. Microbiol. **60:**255-280.

S18. Brinkhoff T, Giebel HA, Simon M. 2008. Diversity, ecology, and genomics of the *Roseobacter* clade: a short overview. Arch. Microbiol. **189:**531-539.

S19. Knoblauch C, Sahm K, Jørgensen BB. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of *Desulfofrigus oceanense* gen. nov., sp nov., *Desulfofrigus fragile* sp nov., *Desulfofaba gelida* gen. nov., sp. nov., *Desulfotalea psychrophila* gen. nov., sp. nov., and *Desulfotalea arctica* sp. nov. Int. J. Syst. Bacteriol. **49:**1631-1643.

S20. Glöckner FO, et al. 2003. Complete genome sequence of the marine planctomycete *Pirellula* sp. strain 1. Proc. Natl. Acad. Sci. USA. **100**:8298-8303.

S21. Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M,
Achstetter T, Glöckner FO, Harder J. 2013. Expression of sulfatases in *Rhodopirellula* baltica and the diversity of sulfatases in the genus *Rhodopirellula*. Marine Genomics 9: 51-61.

# **Supplementary Tables**

**Table S1.** Summary of clone names organized by sample isolation source, including

 GenBank accession numbers, phylogenetic affiliation, and number of repeats for each

 representative sequence in the clone libraries. Red shading corresponds to higher relative

 abundance.

| SOURCE             | CLONE    | ACCESSION<br>NUMBER | РНҮLОGENY        | REPEATS | SOURCE               | CLONE     | ACCESSION<br>NUMBER | PHYLOGENY        | REPEATS          | SOURCE           | CLONE          | ACCESSION<br>NUMBER | PHYLOGENY        | REPEATS          |                  |   |
|--------------------|----------|---------------------|------------------|---------|----------------------|-----------|---------------------|------------------|------------------|------------------|----------------|---------------------|------------------|------------------|------------------|---|
|                    | WS08_002 | KJ566246            | Flavobacteriales | 1       |                      | SS08_003  | KJ566234            | Verrucomicrobia  | 1                |                  | SD08_004       | KJ566264            | Firmicutes       | 1                |                  |   |
| ε                  | WS08_007 | KJ566221            | Verrucomicrobia  | 9       | 9<br>8               | SS08_005  | KJ566266            | Chlorophyta      | 1                |                  | SD08_005       | KJ566295            | δ-proteobacteria | 1                |                  |   |
|                    | WS08_009 | KJ566243            | Flavobacteriales | 8       |                      |           | SS08_006            | KJ566294         | δ-proteobacteria | 1                | 1              | SD08_006            | KJ566238         | Planctomycetales | 1                |   |
| 2                  | WS08_012 | KJ566245            | Flavobacteriales | 4       |                      | SS08_012  | KJ566251            | Bacteroidales    | 1                |                  | SD08_008       | KJ566263            | Nitrospina       | 2                |                  |   |
| 05 m WATER COLUMN: | WS08_014 | KJ566258            | Actinobacteria   | 2       |                      | SS08_013  | KJ566285            | γ-proteobacteria | 1                |                  | SD08_009       | KJ566260            | Actinobacteria   | 1                |                  |   |
|                    | WS08_015 | KJ566261            | Actinobacteria   | 1       |                      | SS08_014  | KJ566268            | γ-proteobacteria | 2                |                  | SD08_010       | KJ566237            | Planctomycetales | 3                |                  |   |
|                    | WS08_016 | KJ566249            | Flavobacteriales | 4       |                      | SS08_016  | KJ566286            | γ-proteobacteria | 1                |                  | SD08_011       | KJ566257            | Bacteroidales    | 1                |                  |   |
|                    | WS08_017 | KJ566250            | Flavobacteriales | 4       |                      | SS08_018  | KJ566284            | γ-proteobacteria | 2                |                  | SD08_013       | KJ566293            | δ-proteobacteria | 1                |                  |   |
|                    | WS08_021 | KJ566267            | Cyanobacteria    | 1       |                      | SS08_021  | KJ566228            | Verrucomicrobia  | 1                |                  | SD08_014       | KJ566271            | γ-proteobacteria | 3                |                  |   |
|                    | WS08_023 | KJ566247            | Flavobacteriales | 3       |                      | SS08_022  | KJ566220            | Verrucomicrobia  | 2                | -                | SD08_015       | KJ566290            | δ-proteobacteria | 6                |                  |   |
|                    | WS08_039 | KJ566224            | Verrucomicrobia  | 1       |                      | SS08_024  | KJ566298            | δ-proteobacteria | 1                | g                | SD08_020       | KJ566269            | γ-proteobacteria | 1                |                  |   |
|                    | WS08_048 | KJ566248            | Flavobacteriales | 1       | -                    | SS08_029  | KJ566230            | Verrucomicrobia  | 1                | L S              | SD08_022       | KJ566277            | γ-proteobacteria | 1                |                  |   |
|                    | WS08_058 | KJ566226            | Verrucomicrobia  | 4       | g                    | SS08_031  | KJ566289            | δ-proteobacteria | 1                | 6-               | SD08_023       | KJ566227            | Verrucomicrobia  | 1                |                  |   |
|                    | WD08_001 | KJ566222            | Verrucomicrobia  | 1       | 1 11 C-C-U 11 10 C-C | 2 CH      | C C                 | SS08_036         | KJ566270         | γ-proteobacteria | 1              |                     | SD08_027         | KJ566283         | γ-proteobacteria | 4 |
|                    | WD08_002 | KJ566282            | γ-proteobacteria | 11      |                      |           | SS08_039            | KJ566291         | δ-proteobacteria | 3                | E              | SD08_032            | KJ566239         | Planctomycetales | 1                |   |
|                    | WD08_004 | KJ566223            | Verrucomicrobia  | 35      |                      | SS08_040  | KJ566272            | γ-proteobacteria | 1                | ₩                | SD08_033 KJ566 | KJ566288            | β-proteobacteria | 1                |                  |   |
| ٦<br>              | WD08_005 | KJ566225            | Verrucomicrobia  | 7       | E                    | SS08_042  | KJ566300            | a-proteobacteria | 1                | ā                | SD08_034       | KJ566252            | Bacteroidales    | 2                |                  |   |
| Ş                  | WD08_006 | KJ566303            | a-proteobacteria | 1       | 빌                    | SS08_045  | KJ566236            | Planctomycetales | 2                | UN S             | SD08_036       | KJ566292            | δ-proteobacteria | 1                |                  |   |
| 5                  | WD08_009 | KJ566297            | δ-proteobacteria | 1       | E                    | SS08_046  | KJ566259            | Actinobacteria   | 2                |                  | SD08_046       | KJ566233            | Verrucomicrobia  | 1                |                  |   |
| Ы                  | WD08_015 | KJ566242            | Flavobacteriales | 1       | US S                 | SS08_047  | KJ566232            | Verrucomicrobia  | 3                |                  | SD08_047       | KJ566253            | Bacteroidales    | 2                |                  |   |
| C<br>C             | WD08_020 | KJ566302            | a-proteobacteria | 1       |                      | SS08_048  | KJ566244            | Flavobacteriales | 1                |                  | SD08_051       | KJ566273            | γ-proteobacteria | 1                |                  |   |
| Ш                  | WD08_045 | KJ566287            | γ-proteobacteria | 1       |                      | SS08_049  | KJ566229            | Verrucomicrobia  | 4                |                  | SD08_054       | KJ566256            | Bacteroidales    | 1                |                  |   |
| Ā                  | WD08_055 | KJ566281            | γ-proteobacteria | 1       |                      | SS08_050  | KJ566231            | Verrucomicrobia  | 1                |                  | SD08_056       | KJ566235            | Lentisphaerae    | 1                |                  |   |
| 3                  | WD08_060 | KJ566299            | ε-proteobacteria | 1       |                      | SS08_052  | KJ566275            | γ-proteobacteria | 1                |                  | SD08_057       | KJ566241            | OP3              | 1                |                  |   |
|                    | WD08_065 | KJ566301            | α-proteobacteria | 1       |                      | SS08_056  | KJ566254            | Bacteroidales    | 1                |                  | SD08_063       | KJ566240            | OP3              | 1                |                  |   |
|                    |          |                     |                  |         |                      | SS08_058  | KJ566280            | γ-proteobacteria | 1                |                  | SD08_064       | KJ566279            | γ-proteobacteria | 1                |                  |   |
|                    |          |                     |                  |         |                      | SS08_061  | KJ566274            | γ-proteobacteria | 1                |                  | SD08_065       | KJ566304            | α-proteobacteria | 1                |                  |   |
|                    |          |                     |                  |         |                      | SS08_062  | KJ566255            | Bacteroidales    | 1                |                  | SD08_066       | KJ566276            | γ-proteobacteria | 2                |                  |   |
|                    |          |                     |                  |         |                      | SS08_064  | KJ566262            | Chloroflexi      | 1                |                  |                |                     |                  |                  |                  |   |
|                    |          |                     |                  |         |                      | SS08_065  | KJ566296            | δ-proteobacteria | 1                |                  |                |                     |                  |                  |                  |   |
|                    |          |                     |                  |         |                      | S\$08_067 | KJ566265            | Firmicutes       | 1                |                  |                |                     |                  |                  |                  |   |
|                    |          |                     |                  |         |                      | SS08_068  | KJ566278            | γ-proteobacteria | 1                |                  |                |                     |                  |                  |                  |   |

## **Supplementary Figures**

FIG. S1. Neighbor-Joining phylogeny of Smeerenburg Fjord *Bacteroidetes*, based on a  $\sim$ 1200-bp alignment of bacterial 16S rRNA sequences. The Svalbard phylotypes are labeled with habitat indicator (water surface = WS; water deep = WD; sediment surface = SS; sediment deep = SD), followed by clone designation, and highlighted in boldface.



X66002 · Clostridium sporosphaeroides

- C SURFACE WATER
- C DEEP WATER
- SURFACE SEDIMENT

SUBSURFACE SEDIMENT

0.10

**FIG. S2**. Neighbor-Joining phylogeny of Smeerenburg Fjord alpha-, beta-, gamma-, delta-, and epsilonproteobacterial phylotypes, based on a ~1200-bp alignment of bacterial 16S rRNA sequences. The Svalbard phylotypes are labeled with habitat indicator (water\_surface = WS; water\_deep = WD; sediment\_surface = SS; sediment\_deep = SD), followed by clone number, and highlighted in boldface.



🔉 DEEP WATER

😂 SURFACE SEDIMENT

SUBSURFACE SEDIMENT

0.10

**FIG. S3**. Neighbor-Joining phylogeny of other Smeerenburg Fjord phylotypes within the *Actinobacteria*, *Firmicutes*, *Chloroflexi*, *Chlorophyta*, *Cyanobacteria* and the *Nitrospina* lineage, based on a ~1200-bp alignment of bacterial 16S rRNA sequences. The Svalbard phylotypes are labeled with habitat indicator (water\_surface = WS; water\_deep = WD; sediment\_surface = SS; sediment\_deep = SD), followed by clone number, and highlighted in boldface.



○ SURFACE WATER
 ➡ SURFACE SEDIMENT
 ➡ SUBSURFACE SEDIMENT

0.10

**FIG. S4**. Hydrolysis rates of polysaccharides in surface (horizontal striped bars) and bottom water (vertical striped bars) samples (A) and in homogenized sediments from 0-2 cm (grey bars) and 3-9 cm (black bars) depth (B) from Smeerenburgfjord in 2007. Substrate labels are as in Fig. 1. Asterisk: no data. Data replotted from (S11).

