

## В

AbIM

| MKVLSENNII                           | RNTVLNVTAS                   | FL <b>KQESK</b> IN <b>E</b>         | <b>K</b> L <b>D</b> GVL <b>EKK</b> F | <b>EK</b> VEFNEAKY                                    | A <b>e</b> ll <b>k</b> fnilf | Y <b>k</b> tla <b>r</b> nt <b>e</b> p |
|--------------------------------------|------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------|---------------------------------------|
| LIG <b>k</b> WIV <b>dk</b> Y         | IPE <u>IDELEKD</u>           | LELTTAKCRK                          | YVNKAMKEGL                           | DSLKANDLNS                                            | FLAY <b>dk</b> M <b>e</b> ls | <b>ERRRRLEKD</b> Y                    |
| KVLNLY <b>KD</b> LL                  | NISL <b>rk</b> isl <b>e</b>  | <b>KKE</b> CG <b>D</b> LFL <b>K</b> | NQA <b>d</b> akrelk                  | <b>RE</b> IIFCVN <b>K</b> I                           | LASNKDVVPN                   | NVEENNEQDK                            |
| VEIKATEIED                           | LQLG <b>KD</b> NS <b>E</b> N | DMLLNEIKNS                          | KVKHESKSND                           | I <b>E</b> SKFI <b>DK</b> LN                          | SLNNESVSQT                   | IHN <b>E</b> Y <b>KK</b> LCG          |
| L <b>EE</b> LHSV <b>E</b> GY         | GFG <b>KE</b> II <b>KD</b> F | ACATVVL <b>e</b> fl                 | <b>KRRNRD</b> LI <b>E</b> G          | AMRLTIIGEF                                            | GPENF <b>KE</b> FV <b>D</b>  | YVI <b>k</b> N <b>k</b> T <b>e</b> IS |
| <b>ED</b> TWN <b>K</b> AQNL          | IKDNYSELEN                   | HEIASKRTRR                          | NKDIDIEEYI                           | YMI <b>k</b> NA <b>dkd</b> I                          | CFRSSISIED                   | DAEEGV <b>KEE</b> I                   |
| <b>D</b> SNNQ <b>D</b> IG <b>D</b> V | VEDKDTTDKE                   | YDSNKEDIIE                          | PENKKSKKKA                           | KLFGFIKKDN                                            | <b>EEVEQEEE</b> NL           | NDISPDIILD                            |
| KPVENNQVKS                           | EEIEQNELKE                   | I <b>K</b> Q <b>EE</b> PSQHI        | EEERSVKIEK                           | PINNNL <b>DEK</b> V                                   | SSNN <mark>ESKLEK</mark>     | ESKNLEDKKA                            |
| <b>KEIKE</b> EKLEN                   | <b>EK</b> SVVIPI <b>kk</b>   | KENSNKKSKN                          | SSKDKYRENK                           | KEMKNYVS <b>DK</b>                                    | <b>ED</b> SL <b>DDEE</b> VV  | S <b>kk</b> S <b>r</b> l <b>ke</b> TI |
| IAVVIVVIVG                           | VGYFITVGNN                   | KKNDKENIPK                          | SSTQQQANNK                           | LT <b>eeekk</b> aqa                                   | EKEKKEAEEK                   | AKAEKEAQEK                            |
| AQA <b>ekk</b> a <b>ke</b> M         | EAYKDGKGVY                   | YTVYAGSL <mark>k</mark> V           | EKTAKETAKE                           | Y <b>e</b> akgissti                                   | IQ <b>E</b> NGYY <b>K</b> IK | IG <b>D</b> YSQYG <b>E</b> A          |
| QEKCNELAKK                           | SIDTYIAMYD                   | KYYDYKLEEL                          | <b>KE</b> SAPSLSA <b>E</b>           | <b>E</b> L <b>K</b> Q <b>K</b> Y <b>ED</b> L <b>R</b> | SELKNKSGYR                   | <b>E</b> YV <b>K</b> HL <b>DK</b> LY  |
| EEIVEGA                              |                              |                                     |                                      |                                                       |                              |                                       |

## MIdB

| MLKLG <b>ek</b> IIY          | <b>E</b> LS <b>D</b> GF <b>E</b> LSG  | IS <b>r</b> yskeykk                  | LHITNLGNII                           | ISKSDEVNED                          | TGV <b>K</b> YIYSFS          | DN <b>KEK</b> L <b>E</b> AVL        |
|------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|------------------------------|-------------------------------------|
| EDSQIIVYGN                   | NLPFYI <b>k</b> S <b>e</b> n          | SS <b>K</b> NVTANLT                  | MKITL <b>DE</b> Y <b>D</b> L         | IC <b>k</b> SQ <b>re</b> fif        | YL <b>KD</b> NMTILS          | L <b>DD</b> N <b>K</b> FYMGG        |
| IN <b>KD</b> N <b>EK</b> FIF | ISG <b>K</b> N <b>R</b> F <b>E</b> IN | FDDIERYILE                           | <b>DKR</b> VSL <b>K</b> GYF          | HMEREGIIVR                          | SVSIFNNNID                   | SVVPSDLN <b>ER</b>                  |
| V <b>KD</b> NQ <b>K</b> IGNL | PKDCEIVFCK                            | ISGNI <b>D</b> GF <b>D</b> Y         | <b>K</b> NTNMLLV <b>K</b> Y          | Q <b>D</b> QLIFIN <b>kk</b>         | S <b>kk</b> tiv <b>k</b> sak | DNCSKLNLGE                          |
| DIILYDNKNV                   | FNLHIN <b>dk</b> n <b>r</b>           | EIMQIDDLKD                           | IENEIVGYTL                           | KHAPFFIQ <b>ED</b>                  | FDSLTILKSF                   | QKEIISIKNS                          |
| DIKDIVINKE                   | FENENSNFVE                            | T <b>EIK</b> FNNQ <b>K</b> V         | LLNLS <b>K</b> SMVQ                  | <b>K</b> LMQ <b>D</b> VFIYA         | <b>K</b> QPLL <b>KE</b> NSI  | EVIYKNWSKA                          |
| MNDMIIFNFF                   | GNIYYM <b>k</b> S <b>e</b> f          | <b>DKILEKE</b> LN <b>D</b>           | EIRIEVINSL                           | Y <b>K</b> QIQ <b>E</b> QRNN        | LDLLSAYMPR                   | ILENQEIDLF                          |
| EKYNTKLDVQ                   | VF <b>K</b> QI <b>K</b> NLLS          | DLSYNISSYL                           | NEVEKSLDNI                           | IFVISG <b>EDKK</b>                  | KYNYRMLKES                   | <b>E</b> SASL <b>D</b> VFL <b>K</b> |
| QAIS <b>R</b> LNHLV          | <b>E</b> NMYPYYV <b>DE</b>            | TS <b>re</b> mf <b>k</b> lf <b>e</b> | LLW <b>K</b> NY <b>R</b> NI <b>D</b> | <b>DD</b> SI <b>KE</b> ILF <b>E</b> | <b>R</b> ITNTYVF <b>K</b> Q  | LTLNNST <b>KER</b>                  |
| <b>RKD</b> II <b>EK</b> IYN  | SV <b>D</b> YGTN <b>K</b> L <b>D</b>  | ENMFFTGGIK                           | YV <b>K</b>                          |                                     |                              |                                     |

MIdC

MSSKYNVWTF NYEFLGLDSG DEKNNEVYYE IDLDEILNEN YIDEDIDSGL DSDGNSILGE LISEMDIDED VSVDMTYQEL EVDLEDLDSY LDEDIDSDIK GILDEI

**FIG. S1.** Sequences of MId proteins. (A) The putative SPOR domain from MIdA (residues 717-789) was aligned by hand to the Pfam HMM logo for SPOR domains (1). The alignment revealed matches to one of the top three amino acids at 28 out of 76 positions, consistent with previous evidence that SPOR domain sequences are highly degenerate (2). (B) The predicted amino acid sequences of MIdA, MIdB and MIdC. Positively charged residues are in blue, negatively charged residues are in red. For MIdA, the predicted coiled-coil regions are underlined in grey, the transmembrane helix is highlighted in grey and the SPOR domain is underlined in black. Predicted coiled-coil regions in MIdB are underlined in grey (3).



**FIG. S2.** Expression of *mldA* is reduced in an *mldB*::*erm* mutant. RNA was harvested from wild-type and mutant *C. difficile* strains in logarithmic growth, and qRT-PCR was used to assess mRNA levels for *mldA* and *mldB*. The housekeeping gene *rpoB* was used for normalization. Oligonucleotide primers are listed in Table S1.



**FIG. S3.** Expression of CFP<sub>opt</sub>-MId fusion proteins in wild-type and *mId* mutant backgrounds. Whole cell extracts were prepared from the same cultures used for localization (Fig. 4). Steady-state levels of CFP<sub>opt</sub> fusion proteins were determined by Western blotting with polyclonal anti-GFP antibodies that recognize CFP<sub>opt</sub>. Note that the same amount of tetracycline (500 ng/ml) was used for induction in all cases, so the differences in fusion protein abundance may reflect differential stability. The Western results are consistent with the relative brightness of the CFP fusions in Figure 4. Molecular mass standards are indicated to the left of the blot. Asterisks denote the various CFP<sub>opt</sub>-MIdB = 106 kDa, CFP<sub>opt</sub>-MIdC = 39.5 kDa, CFP<sub>opt</sub> = 27.7 kDa.



**FIG. S4.** Sporulation and germination. Wild type and mutant *C. difficile* strains were allowed to sporulate on TY or TYN plates. Spores were harvested using equal volumes of PBS and then heat-killed at 65°C for 10 min. Serial dilutions were spread onto either TY or TYN containing 0.1% taurocholate to stimulate germination of spores. No colonies were detected on plates that lacked taurocholate. Samples were normalized to volumes of PBS used to process each plate.



**FIG. S5.** Toxin A production. Cell-free spent medium was concentrated approximately 100-fold and analyzed by Western blotting with a monoclonal antibody against toxin A (predicted mass 306 kDa). Molecular mass standards are indicated to the left of the blot. Glucose in the growth medium is known to repress toxin A production and was included in some cultures to verify antibody specificity (4). Samples were normalized to volume of spent medium.

| Oliao   | Purpose                                                       | Sequence 5`-3`*                           |
|---------|---------------------------------------------------------------|-------------------------------------------|
|         | EBS universal primer                                          |                                           |
| NE1438  | Reverse primer for sequencing inserts in                      | GATCCAGCACACTGGCATCTTTTTATTTAGG           |
| NI 1400 | pRPF185                                                       | GATTTCTCAC                                |
| P1447   | IBS for constructing <i>mldA</i> <sub>248</sub> :: <i>erm</i> | AAAAAAGCTTATAATTATCCTTAGAAAAAGAT          |
|         | 0 2.0                                                         | TTAGTGCGCCCAGATAGGGTG                     |
| P1448   | EBS1 for constructing <i>mldA</i> <sub>248</sub> ::erm        | CAGATTGTACAAATGTGGTGATAACAGATAA           |
|         | •                                                             | GTCGATTTAGATAACTTACCTTTCTTTGT             |
| P1449   | EBS2 for constructing mldA <sub>248</sub> ::erm               | TGAACGCAAGTTTCTAATTTCGGTTTTTTCTC          |
|         | -                                                             | GATAGAGGAAAGTGTCT                         |
| RP1     | Verifying insertion in <i>mldA</i> gene                       | GAAGCAAAATATGCAGAGC                       |
| RP2     | Verifying insertion in <i>mldA</i> gene                       | GCGTCTTCTTCTCTCGATAGTTCC                  |
| RP26    | Intergenic PCR between cd2718-mldA                            | TAGGTCGCTTGAGCCTATTGGTGA                  |
| RP27    | Intergenic PCR between cd2718-mldA                            | CCATTTGCCAATAAGTGGTTCTGT                  |
| RP28    | Intergenic PCR between mldA-mldB                              | GAATCAGCTCCTTCTTTGAGTGC                   |
|         | Verifying insertion in <i>mldB</i> gene                       |                                           |
| RP29    | Intergenic PCR between mldA-mldB                              | AAAGGCAAGTTATTTCCATAGAC                   |
|         | Verifying insertion in <i>mldB</i> gene                       |                                           |
| RP30    | Intergenic PCR between <i>mldB-mldC</i>                       | GAAAGTGAAAGTGCAAGTCTTGATG                 |
| RP31    | Intergenic PCR between <i>mldB-mldC</i>                       | ACACTGACATCCTCATCTATATCC                  |
| RP56    | Intergenic PCR between <i>mldC-gtaB</i>                       | GAGTTCTTAGGATTGGACTCAGGG                  |
| RP33    | Intergenic PCR between mldC-gtaB                              | GCACAGTAAATTGCATGTCCAAGAC                 |
| RP34    | gRT-PCR for <i>mldA</i>                                       | ACAGAACCACTTATTGGCAAATGG                  |
| RP35    | aRT-PCR for <i>mldA</i>                                       | GAGAGTCTAATCCCTCTTTCATAGCC                |
| RP36    | aRT-PCR for <i>mldB</i>                                       | CAGATGGGTTTGAGCTTAGTGGCA                  |
| RP37    | aRT-PCR for <i>mldB</i>                                       | ACACCTGTATCCTCATTAACTTCATCTG              |
| RP200   | aRT-PCR for <i>mldC</i>                                       | GAGTTCTTAGGATTGGACTCAGG                   |
| RP201   | gRT-PCR for <i>mldC</i>                                       | TCCATCAGAATCTAAACCACTATCT                 |
| RP58    | gRT-PCR for <i>ataB</i>                                       | CCTGCAATTGAAGAAGCTCCATCTG                 |
| RP59    | gRT-PCR for <i>ataB</i>                                       | TCTCCACCTTTACCAGGTGTCTGT                  |
| TEQ009  | gRT-PCR for moB                                               | AAGAGCTGGATTCGAAGTGCGTGA                  |
| TEQ010  | gRT-PCR for rpoB                                              | ACCGATATTTGGTCCCTCTGGAGT                  |
| RP47    | Sequencing <i>mldA</i>                                        | GTAGTATTTCAATAGAAGATGATGCTGAAGA           |
|         |                                                               | AGGGG                                     |
| RP48    | Sequencing <i>mldA</i>                                        | CTTCTTTATTGCTGTCGTACTCTTTATCTGTA          |
|         |                                                               | G                                         |
| RP80    | Sequencing <i>mldB</i>                                        | CGATAGCTTGACTATTCTAAAGTC                  |
| RP81    | Sequencing <i>mldB</i>                                        | CATCTTGCATAAGTTTTTGAACCATAC               |
| RP114   | IBS for constructing <i>mldB</i> <sub>153</sub> ::erm         | AAAA <u>AAGCTT</u> ATAATTATCCTTAAATGACGAT |
|         |                                                               | ACAGTGCGCCCAGATAGGGTG                     |
| RP115   | EBS1 for constructing mldB <sub>153</sub> ::erm               | CAGAT <u>TGTACA</u> AATGTGGTGATAACAGATAA  |
|         |                                                               | GTCGATACAGGTAACTTACCTTTCTTTGT             |
| RP116   | EBS2 for constructing mldB <sub>153</sub> ::erm               | TGAACGCAAGTTTCTAATTTCGGTTTCATTC           |
|         |                                                               | CGATAGAGGAAAGTGTCT                        |
| RP160   | Cloning CFP into pRPF185                                      | CCC <u>GGATCC</u> TTACTTATATAATTCATCCATTC |
|         | opt                                                           | C                                         |
| RP161   | Cloning CFP into pRPF185                                      | GGG <u>GAGCTC</u> CTGCAGTAAAGGAGAAAATTT   |
|         | opt                                                           | TATGGTTTCAAAAGGAGAAGAATTATTTAC            |
| RP164   | Cloning mldABC, mldAB and mldA into                           | GGG <u>GAGCTC</u> CTGCAGTAAAGGAGAAAATTT   |
|         | pRPF185                                                       | TAAGGTTTTGAGTGAAAATAATATAATAAG            |
| RP165   | Cloning <i>mldABC</i> and <i>mldC</i> into pRPF185            | CCC <u>GGATCC</u> AATTTCATCTAAGATGCCTTTT  |
| DD400   |                                                               |                                           |
| KP166   | Forward primer for sequencing inserts in<br>pRPF185           | CATIGATAGAGITATIIGICAAACIAG               |

Table S1. Oligonucleotide primers used in this study.

| RP171 | Cloning $cfp_{opt}^{}$ – MCS <sup>†</sup> into pRPF185 | GGC <u>GGATCC</u> GGCGCGCCTCAGCTGTTTAAT<br>TAAGTCGACGCATGCGTTCATCTTATAAAT |
|-------|--------------------------------------------------------|---------------------------------------------------------------------------|
| RP178 | Cloning <i>cfp<sub>opt</sub>-mldA</i> fusion           | AAA <u>GCATGC</u> GTGAAGGTTTTGAGTGAAAATA<br>ATATAATAAGAAACACTG            |
| RP179 | Cloning <i>cfp<sub>opt</sub>–mldA</i> fusion           | TTT <u>GGCGCGCC</u> CTAAGCACCTTCAACTATTT<br>CTTCATAAAGTTTATC              |
| RP184 | Cloning <i>mldB</i> into pRPF185                       | GGG <u>GAGCTC</u> CTGCAGTAAAGGAGAAAATTT<br>TATGTTGAAATTAGGAGAAAAAATCATATA |
| RP185 | Cloning <i>mldC</i> into pRPF185                       | GGG <u>GAGCTC</u> CTGCAGTAAAGGAGAAAATTT<br>TATGTCAAGTAAATACAATGTTTGGACTTT |
| RP186 | Cloning <i>mldA</i> into pRPF185                       | CCC <u>GGATCC</u> CTAAGCACCTTCAACTATTTCT<br>TCATAAAG                      |
| RP187 | Cloning mldB and mldAB into pRPF185                    | CCC <u>GGATCC</u> TTACTTGACATACTTTATTCCT<br>CCTGTG                        |
| RP196 | Cloning <i>cfp<sub>opt</sub>-mldB</i> fusion           | AAA <u>GCATGC</u> ATGTTGAAATTAGGAGAAAAAA<br>TCATATATGAGC                  |
| RP197 | Cloning <i>cfp<sub>opt</sub>-mldB</i> fusion           | TTT <u>GGCGCGCC</u> TTACTTGACATACTTTATTC<br>CTCCTGTG                      |
| RP198 | Cloning <i>cfp<sub>opt</sub>-mldC</i> fusion           | AAA <u>GCATGC</u> ATGTCAAGTAAATACAATGTTT<br>GGACTTT                       |
| RP199 | Cloning <i>cfp<sub>opt</sub>-mldC</i> fusion           | TTT <u>GGCGCGCC</u> CTAAATTTCATCTAAGATGC<br>CTTTTATATC                    |

\* Restriction sites underlined.

<sup>†</sup>MCS, multicloning site.

| Organism                                   | MIdA                                  | MIdB                                   | MIdC                                       |
|--------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------|
| Clostridium difficile CD196                | YP_003215577 (2559)                   | YP_003215576 (2558)                    | YP_003215575 (2557)                        |
|                                            | 847 a.a.                              | 663 a.a.                               | 106 a.a.                                   |
|                                            | E-value 0.0                           | E-value 0.0                            | E-value 2e-65                              |
| Clostridium difficile BI1                  | YP_006199787 (13235)                  | YP_006199786 (13230)                   | YP_006199785 (13225)                       |
|                                            | 847 a.a.                              | 663 a.a.                               | 106 a.a.                                   |
|                                            | E-value 0.0                           | E-value 0.0                            | E-value 2e-65                              |
| Clostridium difficile R20291               | YP_003219085 (2606)                   | YP_003219084 (2605)                    | YP_003219083 (2604)                        |
|                                            | 847 a.a.                              | 663 a.a.                               | 106 a.a.                                   |
|                                            | E-value 0.0                           | E-value 0.0                            | E-value 2e-65                              |
| Clostridium difficile NAP07                | EFH14798 (2596)                       | EFH14797 (2595)                        | EFH14796 (2594)                            |
|                                            | 844 a.a.                              | 663 a.a.                               | 106 a.a.                                   |
|                                            | E-value 0.0                           | E-value 0.0                            | E-value 5e-63                              |
| Clostridium hiranonis                      | EEA85283                              | EEA85284                               | EEA85285                                   |
|                                            | 839 a.a.                              | 665 a.a.                               | 104 a.a.                                   |
|                                            | E-value 7e-113                        | E-value 0.0                            | E-value 1e-6                               |
| Peptostreptococcus<br>anaerobius CAG:653-L | EFD05099<br>985 a.a.<br>E-value 2e-38 | EFD05083<br>660 a.a.<br>E-value 3e-134 | HMPREF0631_1876<br>58 a.a.<br>E-value 4e-2 |
| Peptostreptococcus                         | WP_007789343                          | Unannotated ORF                        | Unannotated ORF                            |
| stomatis                                   | 947 a.a.                              | 575 a.a.                               | 58 a.a.                                    |
| DSM 17678                                  | E-value 7e-38                         | E-value 2e-108                         | E-value 2.2e-2                             |

Table S2. Sequence identities and E-values of MIdABC homologs\*

\*Determined using BLAST searches (5)

| <u>Strain</u> |         | Cells  | Cell        |       |       | Septa j | oer Cell |       |       |
|---------------|---------|--------|-------------|-------|-------|---------|----------|-------|-------|
| host          | plasmid | Scored | Length*     | 0     | 1     | 2       | 3        | 4-5   | ≥6    |
| Wild type     | vector  | 451    | 8.7 ± 2.9   | 36.8% | 59.9% | 3.1%    | 0.2%     | 0%    | 0%    |
| mldA::erm     | vector  | 315    | 11.7 ± 6.0  | 13.3% | 30.5% | 21.9%   | 14.3%    | 14.3% | 5.7%  |
| mldA::erm     | mldABC  | 323    | 10.9 ± 4.0  | 20.7% | 60.7% | 14.9%   | 2.8%     | 0.9%  | 0%    |
| mldA::erm     | mldAB   | 328    | 13.1 ± 5.6  | 11.3% | 48.8% | 20.7%   | 14.6%    | 3.7%  | 0.9%  |
| mldA::erm     | mldA    | 217    | 11.6 ± 5.6  | 11.1% | 38.2% | 20.7%   | 15.2%    | 11.1% | 3.7%  |
| mldA::erm     | mldBC   | 212    | 11.0 ± 5.6  | 12.3% | 37.3% | 17.5%   | 17.5%    | 10.4% | 5.2%  |
| mldA::erm     | mldB    | 201    | 10.8 ± 4.9  | 12.9% | 37.8% | 15.4%   | 13.9%    | 15.9% | 4.0%  |
| mldA::erm     | mldC    | 219    | 11.2 ± 5.1  | 9.1%  | 39.7% | 20.1%   | 18.3%    | 9.1%  | 3.7%  |
| mldB::erm     | vector  | 211    | 13.9 ± 7.0  | 8.1%  | 38.4% | 14.7%   | 11.4%    | 14.7% | 12.8% |
| mldB::erm     | mldABC  | 207    | 11.4 ± 5.0  | 41.1% | 53.1% | 4.3%    | 1.4%     | 0%    | 0%    |
| mldB::erm     | mldAB   | 229    | 14.6 ± 10.4 | 17.5% | 55.0% | 14.0%   | 11.8%    | 1.7%  | 0%    |
| mldB::erm     | mldA    | 109    | 15.5 ± 9.8  | 8.3%  | 31.2% | 16.5%   | 13.8%    | 20.2% | 10.1% |
| mldB::erm     | mldBC   | 105    | 11.3 ± 6.4  | 12.4% | 34.3% | 13.3%   | 21.9%    | 12.4% | 5.7%  |
| mldB::erm     | mldB    | 107    | 11.5 ± 8.5  | 14.0% | 27.1% | 12.1%   | 19.6%    | 15.0% | 12.1% |
| mldB::erm     | mldC    | 106    | 11.5 ± 6.6  | 9.4%  | 23.6% | 16.0%   | 15.1%    | 19.8% | 16.0% |

Table S3. Complementation of *mld* mutants.

 $^{\ast}$  Mean ± standard deviation, in  $\mu m.$ 

## References

- 1. Schuster-Bockler B, Schultz J, Rahmann S. 2004. HMM Logos for visualization of protein families. BMC Bioinformatics 5:7.
- 2. Williams KB, Yahashiri A, Arends SJ, Popham DL, Fowler CA, Weiss DS. 2013. Nuclear magnetic resonance solution structure of the peptidoglycan-binding SPOR domain from *Escherichia coli* DamX: insights into septal localization. Biochemistry **52:**627-639.
- 3. Lupas A. 1996. Prediction and analysis of coiled-coil structures. Methods Enzymol **266**:513-525.
- 4. **Dupuy B, Sonenshein AL.** 1998. Regulated transcription of *Clostridium difficile* toxin genes. Mol Microbiol **27:**107-120.
- 5. **Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK.** 2005. Protein database searches using compositionally adjusted substitution matrices. FEBS J **272:**5101-5109.