Supplementary Data

1

2

for:

A novel RNA motif mediates the strict nuclear localization of a long non-coding RNA

- Bing Zhang¹, Lalith Gunawardane¹, Farshad Niazi^{1,2}, Fereshteh Jahanbani^{1,3}, Xin Chen¹ and Saba
 Valadkhan^{1*}
- ⁷ ¹Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- ² Present address: Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland,
 9 Ohio 44195, USA
- 10 ³Present address: Center for Genomics and Personalized Medicine, Department of Genetics, Stanford
- 11 University, Palo Alto, CA 94304
- 12 * Corresponding Author.
- 13 Email: <u>saba.valadkhan@case.edu</u>
- 14 Phone: +1 (216) 368 1068

1 Supplementary Figure Legends

Fig. S1. Sequence of the mouse BORG RNA. The numbers refer to the mature, spliced BORG transcript. The darker gray highlights mark intron-derived sequences, which are separated from the exons by "/" marks. The size of each intron is shown within the highlighted region, and the sequence of the 5' and 3' splice site junctions, putative branch site and polypyrimidine tract are included. The polyadenylation signal hexamer and the cleavage site at the 3' end of BORG are shown in boldface letters. A forward slash marks the site of cleavage. The region downstream of the cleavage site highlighted in lighter gray contains the putative downstream poly(A) processing elements (the GU-rich region)(1).

9 Fig. S2. Characterization of the mouse BORG RNA. a. BORG is a strictly nuclear transcript. RT-gPCR 10 reactions on cytoplasmic (Cyt) and nuclear (Nuc) cellular fractions obtained from C2C12 cells. Both the 11 RT and PCR reactions have been performed using BORG-specific primers shown in Fig. 1a that flank an 12 exon-exon junction. The lanes marked "- RT" are control reactions in which the reverse transcriptase has 13 been omitted. Error bars represent the standard deviation calculated based on at least three independent 14 experiments, b. BORG is a spliced transcript originating from the reference minus (antisense) genomic 15 strand. To verify the existence of BORG RNA and determine its direction of transcription, we performed 16 strand-specific RT-PCR. Reverse transcription reactions contained primers that bound either the sense or 17 the antisense genomic strands in the BORG locus. Next, we used these reverse transcription reactions as 18 templates in qPCR reactions. Reverse transcription reactions with the primers that bound the sense strand 19 (labeled 5') do not yield a product when used as PCR templates, while those binding the antisense strand 20 (labeled 3') did yield a product. These results indicate that BORG is transcribed in the antisense (minus) 21 genomic reference orientation. The PCR primers flank either the first or second exon-exon junction in 22 BORG, ensuring that the observed RT-PCR product does not originate from genomic DNA contamination. 23 5' and 3' indicate the forward and reverse primers compared to BORG (binding the sense and antisense 24 genomic strands, respectively), with the numbers indicating the positions of the start and end of the 25 resulting amplicon on BORG RNA. The results of RT-qPCR reactions with random hexamers used in the 26 RT reaction are shown, which also yield a PCR product albeit with reduced efficiency compared to

BORG-specific primers. c. Validation of the sequence of the first and second splice junctions in mature 1 2 BORG RNA. The sequences surrounding the first (top panel) and second (bottom panel) exon-exon 3 junctions in the mature BORG RNA were amplified by RT-PCR using primers flanking the exon-exon junctions in total cellular RNA obtained from C2C12 cells. The amplicon was purified and sequenced using 4 5 a reverse primer to verify the sequence of the splice junctions as shown in the sequencing chromograms. 6 Sequencing of RT-PCR products obtained from mouse brain tissue RNA yielded similar results. d. BORG 7 RNA is polyadenylated at its 3' end. The reaction ingredients included or omitted in each reaction are 8 shown on top. e. To confirm the polyadenylation of BORG, we performed PCR reactions using 9 radiolabeled BORG-specific primers on two independently-generated cDNA libraries made with oligo(dT) 10 primers. In these experiments, BORG-specific primers used in the PCR reaction are located very close to 11 the 3' end of BORG to ensure that the observed oligo(dT)-mediated priming does not result from the 12 interaction of oligo(dT) primers with an A-rich stretch of BORG RNA. We verified that there are no A-rich 13 stretches between the amplicon and the 3' cleavage site determined by 3'RACE analysis in BORG. As the 14 BORG-specific PCR primers used in this study do not flank an exon-exon junction, we included a mock 15 reaction that lacked reverse transcriptase (lane marked No RT-BORG PCR) to check for the presence of 16 genomic DNA contamination, which proved to be negligible. f. To further prove the specificity of these 17 amplifications, we performed radioactive PCR reactions using BORG-specific primers on cDNAs made 18 with primers specific to Stat3, IKK and c-Met genes, which did not lead to a detectable product. The 19 specificity of the primer used for the RT and those used in the PCR reaction are shown above each lane. A 20 positive control reaction with c-Met-specific PCR primers is also shown. g. and h. Analysis of the level of 21 U6 and U99 (nuclear markers) and MT-RNR1 and 18S ribosomal RNA (cytoplasmic markers) in the 22 nuclear and cytoplasmic fractions (Nuc and Cyt, respectively) using both RT-PCR with radiolabeled 23 primers (g) and quantitative RT-PCR (h). The two sets of nuclear and cytoplasmic markers yield virtually identical results. 24

Fig. S3. Characterization of subcellular localization of BORG. a. RT-PCR reactions with radiolabeled primers indicate the nuclear localization of BORG in 4T1 mouse breast cancer cells. b. Validation of fractionation purity by RT-qPCR assays on nuclear and cytoplasmic fractions from 4T1 and

BORG-overexpressing NMuMG cells using U6 and MT-RNR1 as nuclear and cytoplasmic markers, 1 2 respectively. Cyt and Nuc refer to cytoplasmic and nuclear fractions. Identity of the fractionated cell line is 3 shown at the top. c. RT-qPCR reactions on nuclear and cytoplasmic fractions from HEK293 cells indicate the nuclear localization of BORG in these cells. d. RT-gPCR assays on nuclear and cytoplasmic fractions 4 5 (Nuc and Cyt, respectively) obtained from HEK293 cells to determine the purity of fractions, using U6 and 6 MT-RNR1 as nuclear and cytoplasmic markers. e. RT-qPCR reactions on nuclear and cytoplasmic 7 fractions from HeLa cells indicate the nuclear localization of BORG in these cells. U6 and MT-RNR1 are 8 used as nuclear and cytoplasmic markers to indicate the purity of the fractions. f. RT-qPCR assays to 9 monitor the purity of the nuclear and cytoplasmic fractions from BMP2-treated cells using U99 and 10 MT-RNR1 as nuclear and cytoplasmic markers, respectively. g. RT-gPCR reactions on nuclear and 11 cytoplasmic fractions (Nuc and Cyt, respectively) obtained from BORG-overexpressing clones 1 and 2 to 12 show the purity of the fractions using U99 and MT-RNR1. h and i. Analysis of the level of BORG in 13 vector-transfected (h) and BORG overexpressing (i) C2C12 cells after the addition of DRB to block Pol II 14 transcription. Dotted red lines mark the value on the Y axis corresponding to 50% of the starting level of BORG. 15

16 Fig. S4. The localization of BORG is not altered as a result of blocking nonsense-mediated decay 17 pathways. a. RT-gPCR assays using BORG-specific primers on cellular fractions from C2C12 18 untransfected cells and those overexpressing BORG from a low expression level transgene (+BORG) after 19 an hour of heat shock and the indicated time point of post-heat-shock recovery. b. Similar assays as in 20 panel a. on fractions from cells treated with cycloheximide for the indicated time points. c. RT-gPCR 21 probing of fractionated RNAs from the early time points of cycloheximide treatment indicate a rise in the 22 level of both total and cytoplasmic IncRNA GAS5 transcript, which is known to be an NMD target (2). The 23 tested time points match those in Fig. 2e. d and e. Validation of fractionation purity for the heat shock- and 24 cycloheximide-treated samples using U99 and MT-RNR1 as nuclear and cytoplasmic markers, 25 respectively. f. RT-gPCR reactions on nuclear and cytoplasmic fractions from cells in which BORG has 26 been induced by BMP2 treatment, followed by cycloheximide addition. Nuc and Cyt refer to nuclear and 27 cytoplasmic fractions, respectively. For details, see Methods.

Fig. S5. Analysis of the subcellular localization of Mut and Exon transcripts. a and b. RT-qPCR 1 2 assays indicate that all BORG truncation mutant transcripts are strictly localized to the nuclei. Nuc and Cyt 3 refer to nuclear and cytoplasmic fractions, respectively. The PCR reactions were performed with primers 4 that flanked the region deleted in each construct (Table S3) to enable us to distinguish the 5 transgene-expressed transcript from the endogenous BORG RNA (shown) based on size (see panel d 6 below). c. Validation of fractionation purity for the Mut1-6 constructs using RT-qPCR assays on fractionated 7 RNAs against U6 and MT-RNR1 as nuclear and cytoplasmic markers, respectively. d. The expression of 8 the mutant constructs do not alter the localization of the endogenous RNA. The RT-PCR assays shown are 9 performed with radiolabeled primers that flank the region deleted in mutants 3 and 4. Due to the small size 10 of the deleted region, an amplicon corresponding to the endogenous transcript could also be detected in 11 the same PCR assay. Cyt and Nuc refer to the cytoplasmic and nuclear fractions, respectively.

12 Fig. S6. Validation of the expression level and purity of fractionation for the Frag constructs and 13 Ex2- and Ex3-mutant constructs. a. Quantitative RT-PCR to define the level of nuclear and 14 cytoplasmic-localized Frag3 and Frag4 RNAs. Nuc and Cyt refer to nuclear and cytoplasmic fractions, 15 respectively. b. RT-qPCR assays for defining the purity of the nuclear and cytoplasmic fractions using U99 16 and 18S rRNAs as nuclear and cytoplasmic markers, respectively. c. A transcript containing sequences 17 that are reverse and complement of those in Frag5 construct is dominantly cytoplasmic as determined by 18 RT-gPCR. d. Quantitative RT-PCR assays indicate the purity of the nuclear and cytoplasmic fractions used 19 in panel c. U99 and 18S rRNA are used an nuclear and cytoplasmic markers, respectively. e. Quantitative 20 RT-PCR to define the level of nuclear and cytoplasmic-localized Ex2-Mut3 and Ex3-Mut7 RNAs. Nuc and 21 Cyt refer to nuclear and cytoplasmic fractions, respectively. f. and g. Validation of the fractionation purity of 22 RNAs used in Fig. 5. Nuc and Cyt refer to nuclear and cytoplasmic fractions, respectively. Either U6 (f) or 23 U99 (g) and MT-RNR1 are used as nuclear and cytoplasmic markers, respectively.

Fig. S7. Validation of purity of nuclear and cytoplasmic fractions from AGCCC insertion and mutation experiments. a. U99 and MT-RNR1 are used as nuclear and cytoplasmic markers for defining the purity of the fractions obtained from cells transfected with Frag2 mutants. The identity of each mutant (corresponding to those in Fig. 6b) is shown at the bottom. b. A similar analysis as in panel a. for fractions

1 obtained from AGCCC insertion mutants analyzed in Fig. 6c.

2 Fig. S8. Analysis of the specificity of the correlation between AGCCC copy number and nuclear 3 localization of RNAs. a. Distribution of the number of -8(A/T),-3(G/C),AGCCC motifs per transcript in 4 IncRNAs, antisense RNAs and mRNAs annotated in the Ensembl database. In the box graph in this and the following two panels, the dotted line marks the median, and the box marks the 25-75th percentile 5 6 distribution. The whiskers marks the 0 (when applicable) and 100 percentile assuming a normal 7 distribution. b. and c. Distribution of length of mature RNAs (b) and number of introns (c) in the three 8 groups of transcripts. d. and e. Distribution of the number of -8(A/T),-3(G/C),AGCCC motifs per transcript 9 divided by the length of the transcript (in d) and number of exons per transcript (in e). f. and g. Correlation 10 between the exon number (f) and transcript length (g) with nuclear/cytoplasmic ratio of RT-gPCR signals 11 for protein-coding RNAs. In these and the following graphs, the size of the circles representing each RNA 12 is correlating with the size of the RNA (see Table S2). Error bars represent two standard deviations. The 13 Spearman's correlation coefficient (r) and two-tailed p-values (p) are shown. h. and i. Correlation of the 14 nuclear/cytoplasmic ratio of the RT-qPCR signal for protein-coding RNAs with the number of AGCCC 15 motifs per exon (h) and the number of AGCCC motifs divided by the length of the RNA (i). Neither improve 16 the correlation with nuclear/cytoplasmic ratio compared to the absolute number of motifs per RNA (Fig. 6d). 17 -8,-3,AGCCC refers to the motif containing both the AGCCC pentamer and the sequence restrictions at 18 positions -3 and -8. j. In the absence of the sequence restrictions at positions -3 and -8, the AGCCC motif 19 shows a weaker correlation with the nuclear localization of RNAs as evidenced by the values of 20 Spearman's correlation coefficient (r) and two-tailed p-values (p).

21 Supplementary References

- Darnell JE Jr. 2013. Reflections on the history of pre-mRNA processing and highlights of current knowledge: a unified picture. RNA 19:443–460.
- Tani H, Torimura M, Akimitsu N. 2013. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS ONE 8:e55684.

1	cacccagaag	tgtgctattc	taccagctat	ttggtatctc	tagggcaaca	aacttgacaa
61	tcaagatcag	ttaccacatg	cctctctcct	cgataaagag	caagctgcga	agggcgatta
121	cagctggaca	caggtgagtg	agccagaagg	aactgaccag	ccttaggaag	gaaccgtcac
181	agctaggcca	tgctccagat	attaatttct	qaqtcactqq	ccaqqaqcqa	gateccagtg
241	taagagtccc	ctgtgatgta	acqtctqqaa	qaattccaca	qaqaaaqaaq	tcagaaactt
301	ctacacaget	qacaqatcaa	gatcaccagg	gctgggaagt	tttctcaqqa	gtaaagtgtg
361	aqqaqcqqaq	tttaaatccc	agcagccgtg	taaaaqctqc	tgcaggagca	tqtctqcaat
421	ctcaggcctg	ggggaagtga	gcaaagacag	cagetgetga	gaacttactg	gacagccata
481	qaqacaaaqt	gccaagctcc	agattccgtg	qqaqccccaq	qaaataaqqt	gaaag/gtaa
	qqqtqqaqca	-9318 nts-	gccttgaatc	acatcttctc	ctatttqcct	tcag/aacaa
541	gatgtagaaa	gaactctcag	ctccctcage	atcctgtctg	cctgccttca	agetttegtg
601	cttcccacca	tgatgacaac	qqactqaacc	tcagaatcta	caaqtcaqcc	ccaattaaat
661	gttgttttag	tcatqqtqtc	ttttcacage	aatgaaaatt	ctaagataga	agttactaac
721	aaggactagg	gtattgctgt	gataggeetg	accatocttt	tatagatttt	gtaactttgg
781	atttggaaag	cagtggaatg	ctttaagtgg	gacttaatgg	gacagectag	taggaatagg
841	gaggacattg	gtgctaaggg	tgaactctgc	gaatctaact	caagagattt	cagaggagaga
901	taacttgagt	atgtggcctg	gagactgctt	ttgtgatact	ttagtgagga	atgtaggtac
961	tttttacct		atctacctaa	gactcaagtg	aagagattca	aattaattoc
1021	aatgacagaa	atctcagaaa	ag/gtaagtg	tactttatcc	tctaataat	tettatgagg
1021	aacattttga	tcaactgcag	-2794 nts-	catagatete	ttttgactac	ttcctgctca
	ctaagggcct	tgaattoota		ccaatcttca	tcatcaggat	atcttcaatc
1081	agcaaccagc	aaaaaacaac	aaaacagcaa	atgcaacagc	aggaaccagg	aacagcagga
1141	agaacaacaa	ccactacctc	ctctaatatt	tatatactoc	tctaatattt	atattctctc
1201	tcaagaattc		actotettea	actagcaaat	cacateceta	ccagagcacg
1261	agacaaatca	tagtcagetg	ctataacaa	tctgaagcag	acccacatcc	
1321	attaaaacaa	aaacacatto	atagaacata	actaggggg	aaaaaaccaa	tacagtgagg
1381	tttaaataa	ccarctttct	tacacquaqq	ctcagaggguu	cacagtaaga	aaaataata
1441	aaataataa	caggeeeeee	gactotcatc	tttcatgact	acctacataa	gagggeggeg
1501	cccaqqqata	gaggetcagc	ctctttatra	aagaatagca	tatctctaaa	agaacatgtt
1561	tagaggaea	gaggeeeage	accatattt	qqaaaatata	atgagagaga	atatttttt
1621	atagagggaaa	ttttataata	aggettattag	carraaatrt	ctcctracca	ccacctocta
1681	tcctgatgag	graaccaget	agggeggeag	tacctataat	aaataccacc	cactttrato
1741	ccatcactct	gguaecagee	actcacttac	aaccccttca	ctadadaaaa	agggattttt
1801	gatattacag	ctoccatcat	tacaaccatt	attocadoca	ttacaqqqq	aacaacaact
1861	actattaccc	agaccoccac	tatgagagg	tatcaacact	ataatata	agtcagetga
1921	actgetgeee	agacegeeae	tactaaatca	acatettat	gaggeeeea	acattttaca
1981	acaacadatt	geataggage	agagetgget	cttattagga	acatototot	caatacctta
2041	aagataccta	atcagacaaa	ttcctattcc	taaaacaaa	aaaaccactc	acttoccaa
2101	ttaataataa	atataaccac	atccataacc	aactttogaa	acadasacca	accegeeeaa
2161	acadaaaad	aaggaggett	ctctctccaa	ttcataaaca	ccgacagga	tatattactt
2221	ttoctaadco	atteactate	tttccaacaa		atcettaace	aaatataaaa
2221	tacacatttt	dadcacaaad	aatcaaagdd	ccaacadcaa	actoracatora	catcotttac
2341	aggaagtaaa	atatttaaaq	acagagtcag	agtettetat	tccctcccc	ccaggaagaa
2401	accetttaat	attoccatta	accttgatgt	gaatcacago	actecttett	ccctatagac
2461	agataatcat	gactcaccac	agacccctga	ctatagactt	catotaatto	taacaacaaa
2521	agentterer	adadaaacta	tataaaacca	ttaactataa	aatctttaca	aadtocadd
2581	atomactaco	antaacceto	dadcaadc++	tacactatat	atcaaaacaa	dactccacat
2641	tagaacatag	acactoacc	caccttoto	actagacete	accttorate	agaaagaaat
2701	tacattatt	ttactttcaa	atatatta	raataaa+++	tacttaaata	tattotatat
2761	tcaat c/a ca	tatgcccact	actagagact	gaatattat	atttacacc	aaaatttett
2 / VI	ttgaaaccta	agecetaage	agetageate	aggaatag	attattaase	ataattaat
	elguddeeld	agececuagy	agecugeace	agguugeggg	geegeeggaa	gegueeugge

Fig. S1

4T1

Cyt Nuc

g h i U99 MT-RNR1 1.0 1.0 Relative expression level 1.0 Level of BORG Level of BORG 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.2 0.2 0.2 Nuc-Nuc-Nuc-Nuccytcyt. Cyt Cyt 0.0 10h-1h 3h-10h -5h. - h - 46 . Ч9 - H6 lh Зh 6h 8h 5 Υh 8 +BORG clone2 +BORG clone1 Hours after DRB Hours after DRB

Figure S3

С

d

а

d С U99 MT-RNR1 Relative level expression level 1.0 GAS5 relative 4 3 0.6 2 0.2 1 Nuc Nuc - Nuc Cyt Nuc Cyt Nuc Cyt Nuc Cyt Nuc Cyt Cyt Cyt Hours after heat shock Hours after cycloheximide $\tilde{2}$ 3 6 0 1 0 9

+cycloheximide

Cyt-

Figure S4

q

σ

υ

е

d

С

f

Figure S6

ത

Figure S8

8000 4000 0

Transcript length

sANЯm

92n92ifnA

sANA3nil

Φ

0

 \sim

Copies/transcript

40

sAИЯm

Antisense

eANAonil

C

0

υ

40 30 20 10 0

of Introns

σ

sAИЯm

esnesitnA

sANAonil

Table S1: BORG constructs used in this study

Construct name	Corresponding sequence on BORG	Length	# of AGCCC sequence motifs including -3 and -8 restrictions
BORG, full length	1-2766	2766	5
Mutant 1	1-353+536-2766	2584	4
Mutant 2	1-535+705-2766	2597	4
Mutant 3	1-704+1043-2766	2428	5
Mutant 4	1-1042+1350-2766	2459	5
Mutant 5	1-1349+2040-2766	2076	3
Mutant 6	1-2039+2512-2766	2294	4
Exon2	536-1042+2604-2766	670	1
Exon3	1043-2766	1724	3
Exons1+3	1-535+1043-2766	2259	4
Frag1	1-120+354-535+2604-2766	465	1
Frag2	1-120+536-704+2604-2766	452	1
Frag3	1-120+705-1042+2604-2766	621	0
Frag4	1-120+1043-1349+2604-2766	590	0
Frag5	1-120+1350-2039+2604-2766	973	2
Frag6	1-120+2040-2511+2604-2766	755	1
Frag5-Reverse+comple ment	1-120+2039-1350+2604-2766	973	0
Ex2-mut1	581-1042+2604-2766	625	1
Ex2-mut2	631-1042+2604-2766	575	1
Ex2-mut3	671-1042+2604-2766	535	1
Ex3-mut1	1043-2139+2604-2766	1260	2
Ex3-mut2	1043-1990+2604-2766	1111	2
Ex3-mut3	1043-1880+2604-2766	1001	2
Ex3-mut4	1043-1730+2604-2766	851	1
Ex3-mut5	1043-1580+2604-2766	701	1
Ex3-mut6	1043-1540+2604-2766	661	1
Ex3-mut7	1043-1430+2604-2766	551	0

Name	Length	N/C ratio	-8,-3,AGCCC copy #
hsf1	2018	0.7905158315	5
actb	1920	0.1220105646	0
gapdh	1272	0.2230156096	1
stat3	2927	0.5363502412	4
hspb1	930	0.3012853625	1
hspa8	2019	0.1744099735	0
met	4140	0.5456501422	2
rpa1	2942	0.3169825455	1
thoc2	7622	0.069348092	0
casp6	1456	0.1560855027	0
hdac1	2038	0.1058533347	0
stat2	4397	0.7170465199	4

Table S2: Sequence features of protein-coding RNAs analyzed in Figs. 6d and e.

TABLE S3: Sequence of PCR primers used in this study. Primer sequences are shown in a 5' to 3' orientation. The rightmost column indicates whether the primers flank an exon-exon junction and thus, whether they are specific to the spliced message. Y: yes, N: No, NA: not applicable.

Target construct	Sequence of 5' primer	Sequence of 3' primer	Flanks exon-exon junction?
Full length mouse borg	GACAGATCAAGATCACCAGGGCTG GGAAGTTTTCT	GGAAGCACGAAAGCTTGAAGGCAG GCAGACAGGAT	Y
Mutant-1	AGGAGCGAGATCCCAGTGTA	TGAGGTTCAGTCCGTTGTCA	NA
Mutant-2	GGAGACAAAGTGCCAAGCTC	TTCCACTGCTTTCCAAATCC	NA
Mutant-3	CCATGATGACAACGGACTGA	TTTTTGCTGGTTGCTGATTG	NA
Mutant-4	GTCTGCCTGAGGCTCAAGTG	CCCACCACCCTCTCTTACTG	NA
Mutant-5	TAGTCAGCTG CTGTGGACAA TC	TTGCAGAGAGAAGCCTGCTTCT	NA
Mutant-6	ATATAACCAC GTCCATAACC AA	TCTTGTTTTGATACACAGTGCA	NA
U6	GTGCTCGCTTCGGCAGCACA	GGAACGCTTCACGAATTTGCGTGTC AT	N
U99	CCTCCTTTTCTTGGCGGGGA	CGTCTGAGGATAGAACCCGC	Ν
MT-RNR1	ATTTCATTGGCCGACAGCTA	AGGTAGAGCGGGGTTTATCG	Ν
18S	TTGACGGAAGGGCACCACCAG	GCACCACCACCACGGAATCG	N
GAS5	TCTCACAGCCAGTTCTGTGG	CAGCCTCAAACTCCACCATT	Y
Human BORG	CGATGGGTCACATGACAAAG	TTCTCCTGGGGGAAAAATAGA	Ν
Frag1	GGAGACAAAGTGCCAAGCTC	TCTTGTTTTGATACACAGTGCA	NA
Frag2	CCATGATGACAACGGACTGA	TCTTGTTTTGATACACAGTGCA	NA
Frag3	GTCTGCCTGAGGCTCAAGTG	TCTTGTTTTGATACACAGTGCA	NA
Frag4	TAGTCAGCTG CTGTGGACAA TC	TCTTGTTTTGATACACAGTGCA	NA

Target construct	Sequence of 5' primer	Sequence of 3' primer	Flanks exon-exon junction?
Frag5	ATATAACCAC GTCCATAACC AA	TCTTGTTTTGATACACAGTGCA	N
Frag6	GCTCCAACAGCAAACTGACA	TCTTGTTTTGATACACAGTGCA	NA
Frag5-reverse+	CCCACCACCCTCTCTTACTG	TCTTGTTTTGATACACAGTGCA	NA
complement			
Exon2	GTCTGCCTGA GGCTCAAGT	GGTGGCCTCAGTGTGGATG	NA
Ex2-mut1	GTCTGCCTGA GGCTCAAGT	GGTGGCCTCAGTGTGGATG	NA
Ex2-mut2	GTCTGCCTGA GGCTCAAGT	GGTGGCCTCAGTGTGGATG	NA
Ex2-mut3	GTCTGCCTGA GGCTCAAGT	GGTGGCCTCAGTGTGGATG	NA
Exon3	GCTCCAACAGCAAACTGACA	AAGAAGGAGCGCTGTGATTC	NA
Ex3-Mut1	CCTGAAGGCAAGAAAACCACTC	GGTGGCCTCAGTGTGGATG	NA
Ex3-Mut2	GTCAGCTGA GGTGCTACAGG	GGTGGCCTCAGTGTGGATG	NA
Ex3-Mut3	GCAGGCATTACAGGGGCA	GGTGGCCTCAGTGTGGATG	NA
Ex3-Mut4	TCCTGATGAGGGAACCAGCT	GGTGGCCTCAGTGTGGATG	NA
Ex3-Mut5	GAAGCTAAGCCCCAGGGATA	GGTGGCCTCAGTGTGGATG	NA
Ex3-Mut6	GAAGCTAAGCCCCAGGGATA	GGTGGCCTCAGTGTGGATG	NA
Ex3-Mut7	TAGTCAGCTG CTGTGGACAA TC	GGTGGCCTCAGTGTGGATG	NA
Hsf1	GGGAAACAGGAGTGTATGGACT	CTTGTTGACAACTTTTTGCTGCT	Y
Actb	GAA ATC GTG CGT GAC ATC AAA G	TGT AGT TTC ATG GAT GCC ACA G	Y
gapdh	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA	Y
Stat3	CACCTTGGATTGAGAGTCAAGAC	AGGAATCGGCTATATTGCTGGT	Y
Hspb1	CACTGGCAAGCACGAAGAAAG	GCGTGTATTTCCGGGTGAAG	Y

Target construct	Sequence of 5' primer	Sequence of 3' primer	Flanks exon-exon junction?
Hspa8	TCTCGGCACCACCTACTCC	CCCGATCAGACGTTTGGCA	Y
Met	CGCAGAAGTTCACCACCAAGTC	AGCATCACTTCGTACAAGGCGT	Y
Rpa1	ACATCCGTCCCATTTCTACAGG	CTCCCTCGACCAGGGTGTT	Y
Thoc2	CACATAACCGTTGAGCCTCTC	ACTTGCTTCGGTGCTCTCTTG	Y
Casp6	GTTTACGCATACGACGCCAAA	CCACGGGTACGTCATGCTG	Y
Hdac1	TTCTGTTACGTCAATGACATCGT	GACCCGGTCTGTAGTATAGAAGG	Y
Stat2	CTGAAGGACGAACAGGATGTC	CAGGGTGGTTAATCGGCCAA	Y
Bc1	GGGTTGGGGATTTAGCTCAG	AGGTTGTGTGTGCCAGTTACC	N
Hotair	GCGCTAAGTCCTTCCAGAGA	GACTTCCTTCCTTCCGCTCT	Y
Tsix	TCTCGTTGATTCACGCTGAC	TGGCACTTTGATCGTCCATA	N
Xist	CTTTGGGCTTAGGTGAGCAG	CACCAAATTACTCGGCCACT	N
Tug1	CTG TTG ATC TTG CCG TGA GA	TCA CCA TGG ACA AAA ATC CA	Y

Table S4. The number of -8A/T,-3G/C,AGCCC motifs in lncRNAs analyzed in Fig. 6D in mouse and human.

* The 5' end of human BORG RNA has not yet been determined. The shown number refers to the number of motifs found in the sequences that we have been able to confirm as part of the human BORG RNA (unpublished data).

IncRNA	# of motifs in mouse RNA	# of motifs in human RNA
Xist	15	4
HOTAIR	1	2
TUG1	1	2
TSIX	2	6
BORG	5	1*
GAS5	0	0