Supplementary materials

Human umbilical cord tissue-derived MSCs (UCX[®]) attenuate
remodeling following myocardial infarction by pro-angiogenic,
anti-apoptotic and endogenous cell activation mechanisms
D. S. Nascimento^{1,1}, D. Mosqueira^{1,1}, L. M. Sousa^{1,2,}, M. Teixeira³, M. Filipe³,
T. P. Resende¹, A. F. Araújo^{1,4}, M. Valente^{1,2}, J. Almeida³, J. P. Martins³, J.
M. Santos³, R. N. Barcia³, P. Cruz³, H. Cruz³ and P. Pinto-do-Ó^{1,2}
¶ These authors contributed equally to this work.

Supplementary Methods

UCX[®] characterization

Cells were characterized by their capacity to adhere to plastic in standard MSCs culture conditions. Surface marker expression was analyzed by flow cytometry in a Gallios imaging flow cytometer (Beckman Coulter Inc., CA, USA). Tryple Select-detached cells were passed through a 70µm filter (BD Falcon) and the single cell suspensions stained by 1 h incubation at 4°C with the antibodies in 2% (w/v) BSA (Sigma-Aldrich) and washed in PBS (Sigma-Aldrich). The following anti-human antibodies (Biolegend, Inc. unless stated otherwise) were used: conjugated phycoerythrin (PE)-CD105 (eBioscience), -CD90, conjugated allophycocyanin (APC)-CD73, conjugated PerCp/Cy5.5-CD14 and -CD45, conjugated fluorescein isothiocyanate (FITC)-CD34, conjugated pacific blue-CD19 and -HLA-DR. The isotype-matching control antibodies were: pacific blue-IgG1, -IgG2a, PerCp/Cy5.5-IgG1k, APC-IgG1k and FITC-IgG1k.

Immunohistochemistry

Immunostaining of heart sections for human nuclei detection was performed following antigen recovery, permeabilization with 0,2% Triton X-100 for 5 minute and 1 hour incubation in M.O.M. blocking solution (M.O.M.[™] Immunodetection Kits, Vector Labs). Sections were incubated with primary antibody (MAB4383, mouse anti-human nuclei, Milipore), diluted 1:400 in the blocking solution, for 2 hours at RT. Thereafter, sections were incubated with biotin-MOM IgG secondary antibody (1:250) 15 min at RT and the signal was amplified by incubation with 488-Streptavidin (1:500, Invitrogen) 30 min, RT. Sections were then mounted using Fluoroshield containing DAPI (F6057, Sigma-Aldrich).

Gene array

RNA from UCX[®] cells cultivated in MSC-medium was isolated using the RNeasy Mini Kit, Qiagen, Hilden, Germany, following the protocols of the manufacturer. Nearly 5x10⁶ cells were collected after trypsinization. After cell lysis homogenization was performed by passing the lysate 5 times through a 20 gauge syringe and DNAse digestion was used to eliminate DNA contamination. Quality and integrity of the total RNA isolated was controlled on a bioanalyzer (Agilent Technologies; Waldbronn, Germany). 5 µg of total RNA was used for biotinylated target synthesis according to standard protocols supplied by the manufacturer (Affymetrix; Santa Clara, CA). Briefly, RNA was converted to dsDNA using 100 pmol of a T7T23V primer (Eurogentec; Seraing, Belgium) containing a T7 promoter. The cDNA was then used directly in an *in vitro* transcription reaction in the presence of biotinylated nucleotides. The concentration of biotin-labeled cDNA was determined by UV absorbance. For hybridization, 10 µg of each biotinylated

cDNA preparation were fragmented and placed in a hybridization cocktail containing also 4 biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as recommended by the manufacturer. Samples were hybridized for 16 hours to Affymetrix Gene Chip HG_U133 Plus 2.0, representing about 47000 human transcripts. After hybridization the GeneChips were washed, stained with SA-PE and read using an Affymetrix GeneChip fluidic station and scanner. Analysis of microarray data [GEO:GSE51869] was performed using the Affymetrix Microarray Suite 5.0, and BRB Array Tools 4.2. All array experiments were normalized using RMA.

Supplementary Figures

Supplemental Figure 1 – UCX[®] display a mesenchymal affiliated profile compliant with ISCT guidelines for the definition of MSC. (A) UCX[®] displayed plastic adherence and fibroblast-like morphology (100x). (B) Flow cytometry analysis of cell surface markers revealed that over 95% of the cells expressed CD105, CD73, CD90 and CD44 and less than 2% of the cells expressed CD14, CD45, CD34, CD31, CD19 and HLA-DR (UCX[®] in blue and isotype control in light grey).

Supplemental Figure 2 – Fourteen-days following infarction, murine hearts transplanted with UCX[®] (A) do not display human nuclei indicating that the engraftment of transplanted cells of human origin did not occur. As a positive control, human muscle tissue was used (B). Scale bar = $20 \mu m$.

Supplemental Figure 3 – UCX[®] gene expression profile

Relative gene expression of known MSC-and angiogenic-related genes in UCX[®] derived from 3 different umbilical cords are represented as mean \pm s.e.m. Dotted line was positioned on the average negative known markers of MSCs. Genes with relative expression values above this line were considered as up-regulated. Gene expression array of UCX[®] from 3 different umbilical cords relative to that of positive (CD105, CD73, CD90 and CD44) and negative (CD14, CD19, CD34, CD45, CD31 and HLA-DR) markers of MSCs reveal that several angiogenic factors (VEGF, angiopoietins, HGF, CmET, bFGF, TGF- β and PDGF-AB) are expressed in high levels, which could explain the observed paracrine effects.