Table S4. Comparison of *mtID* gene expressing plant species reported in the literature with their correspondingwild-type plants for their abiotic stress tolerance.

	Increase in tolerance level (%) over wild-type*						
Plant	Parameter	Drought	Salinity	Oxidative	Treatment details, possible mechanism	Reference	
species	used for	stress	stress	stress	and other comments		
	assessing						
	tolerance						
	level**						
C3 plant species							
Tobacco	Stem length	54	-		Increased osmotic adjustment played a	[1]	
	CO ₂				role in drought tolerance		
	assimilation			2.8	High light induced oxidative stress		
	Membrane			37.5	Methylviologen-mediated oxidative stress		
	leakage				Increase in chilling tolerance was 10.4		
Tobacco	CO ₂	33	-	-	Oxidative stress by methylviologen coupled	[2]	
	assimilation				with drought stress also showed similar		
					results		
Tobacco	Plant growth	-	53.3	-	One of the earliest reports demonstrating	[3]	
	(biomass)				possibility of increasing abiotic stress		
					tolerance in plants by expressing <i>mtlD</i> gene		

Tobacco	Total	-	-	13.9	Plant level experiment	[4]	(this
(var.	chlorophyll					study)	
KST19)	reduction						
Egg plant	Seedling	66.6-82.3	50-88.8	-	10% PEG was used	[5]	
	weight				200 mMNaCI was used		
Arabidopsis	Seed	-	45	-	200 mMNaCI was used	[6]	
	germination						
Tomato	Biomass	28.5		-	10% PEG was used	[7]	
	Seed						
	germination		42		50 mMNaCI was used		
Potato		-	59.2	-	100 mMNaCl was used	[8]	
					Cellular protection (via free radical		
					removal or macro molecules protection)		
					might be reason for increased tolerance		
					of transgenic seedlings		
Petunia	Root/shoot	-	-	-	Increase in chilling stress tolerance was	[9]	
	dry weight				5.19-16.33; Increased osmotic adjustment		
					played a role		
Wheat	Shoot dry	54.1	50	-	• Osmotic adjustment did not play role in	[10]	
	weight				drought tolerance		
					• Protection from free radical might be		
					reason for increased tolerance		
		1	1				

Rice	Shoot height	-	77-141	-	-	[11]			
	Biomass		17-50						
C4 plant species									
Sorghum	Leaf water	2.6		-	PEG assay	[12]			
	content								
	Biomass		17-23		200 mMNaCl stress				
Finger	Seedling	8-10	4-7	5-6	Seedling experiment [mtID-5-1 T2]	[4]	(this		
millet	growth					study)			

*calculated value

**also indicate the experimental data in the manuscript considered for calculations of increased tolerance

References

- 1. Macaluso L, Lo Bianco R, Rieger M (2007) Mannitol-producing tobacco exposed to varying levels of water, light, temperature and paraquat. Journal of Horticultural Science & Biotechnology 82: 979-985.
- 2. Alam B, Jacob J, Earl HJ (2010) Photosynthetic efficiency of transgenic tobacco plants (*Nicotiana tabacum* l.) over-expressing *mtld* gene under drought and paraquat stress. Indian Journal of Plant Physiology 15: 186-191.
- 3. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508-510.
- 4. Hema R (2006) Relevance of mannitol in dehydration stress tolerance: development and analysis of the transgenics expressing mtlD in model systems and finger millet (*Eleusine coracana* (l.) gaertn) [PhD]. Bangalore: University of Agricultural Sciences. 197 p.
- 5. Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (*Solanum melongena* L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Molecular Breeding 9: 137-147.
- 6. Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in *Arabidopsis thaliana*. Plant, Cell & Environment 18: 801-806.
- 7. Khare N, Goyary D, Singh NK, Shah P, Rathore M, et al. (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue and Organ Culture 103: 267-277.

- 8. Rahnama H, Vakilian H, Fahimi H, Ghareyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (*Solanum tuberosum* L.) expressing a bacterial *mtlD* gene. Acta Physiologiae Plantarum 33: 1521-1532.
- Chiang YJ, Stushnoff C, McSay AE (2005) Overexpression of mannitol-1-phosphate dehydrogenase increases mannitol accumulation and adds protection against chilling injury in petunia. Journal of the American Society for Horticultural Science 130: 605-610.
- 10. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiology 131: 1748-1755.
- 11. Su J, Chen P, Wu R (1999) Transgene expression of mannitol-1-phosphate dehydrogenase enhanced the salt-stress tolerance of the transgenic rice seedlings. Scientia Agricultura Sinica 32: 101-103.
- 12. Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, et al. (2010) Metabolic engineering using *mtlD* gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum 54: 647-652.