Supplementary Information

DJ-1 contributes to adipogenesis and obesity-induced inflammation

Jung-Min Kim^{1,*}, Hyun-Jun Jang^{1,2}, Soo Youn Choi¹, Soo-Ah Park¹, Il Shin Kim¹, Yong Ryoul Yang¹, Yong Hwa Lee¹, Sung Ho Ryu² and Pann-Ghill Suh¹

¹School of Nano-Bioscience & Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
²Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea

* Present address: Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA

Inventory of Supplementary Information

1. Supplementary Figures and Legends

Figure S1, related to Figure 2

Figure S2, related to Figure 3

Figure S3, related to Figure 3

Figure S4, related to Figure 3

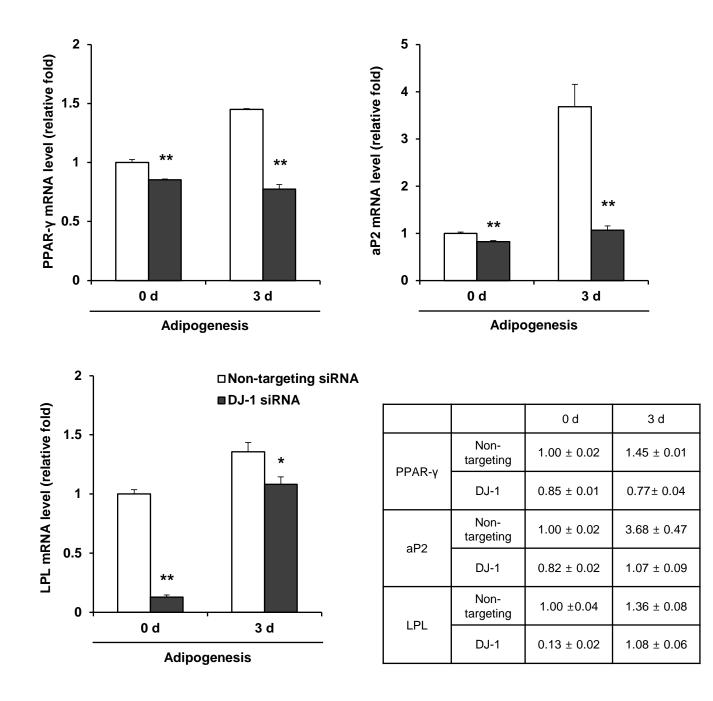
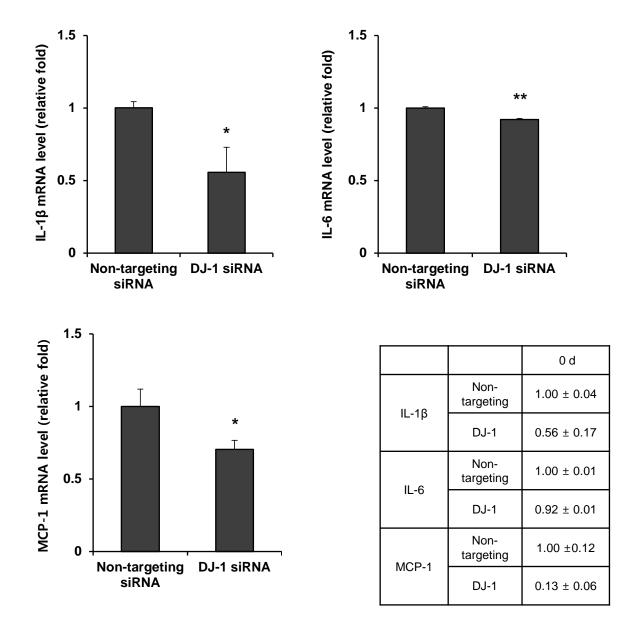
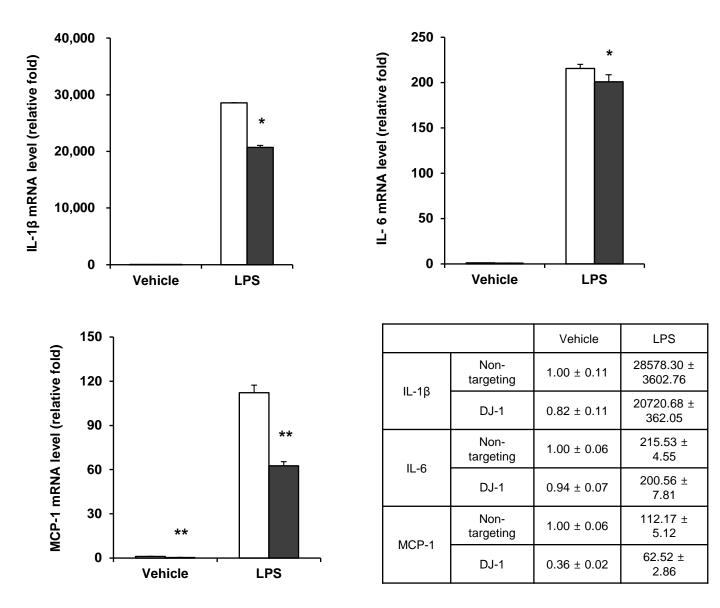

Figure S5, related to Figure 4

Figure S6, related to Figure 4

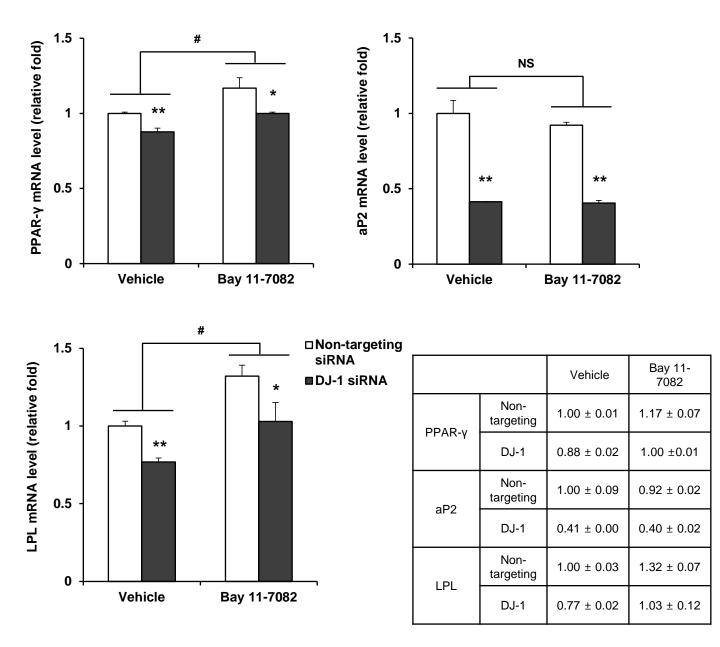
Figure S7, related to Figure 4


2. Supplementary Table

3. Supplementary Methods


Supplementary Figure S1 (related to Figure 2). Knock-down of DJ-1 results in reduced expression of adipogenic marker genes.

The gene expression levels of PPAR- γ , aP2 and LPL were determined by quantitative RT-PCR. 3T3-L1 cells were transfected with non-targeting or anti-DJ-1 siRNA (10 nM). After 48 h, the cells were confluent and grown under adipogenesis induction conditions. *, p < 0.05 and **, p < 0.01 versus the control. All data are presented as the mean ± s.d.

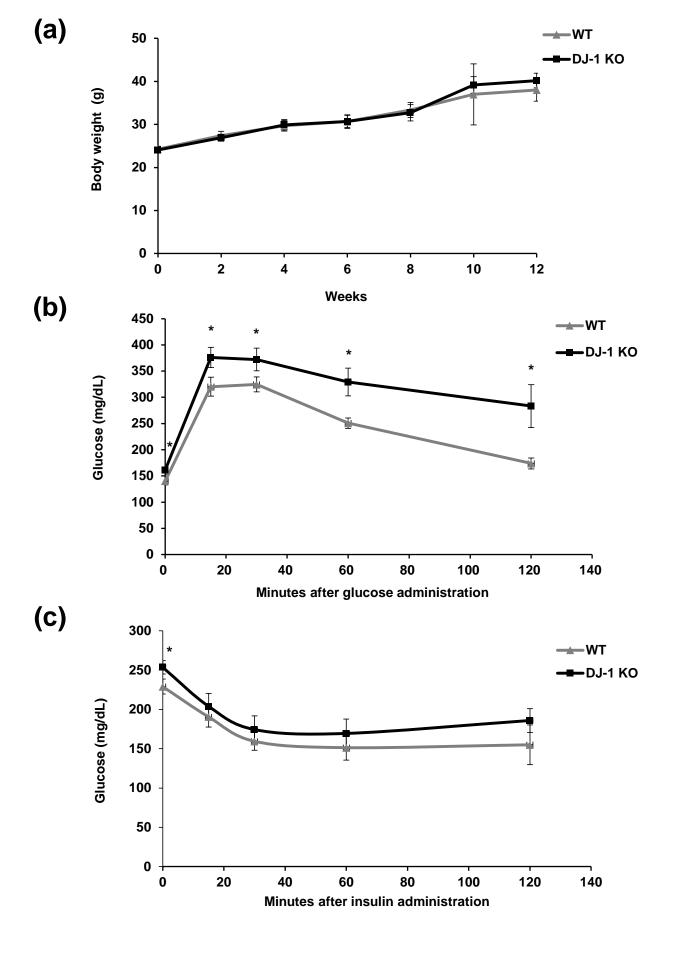

Supplementary Figure S2 (related to Figure 3). DJ-1 regulates the expression of pro-inflammatory cytokines in 3T3-L1 cells.

The expression levels of IL-1 β , IL-6 and MCP-1 were determined by quantitative RT-PCR. 3T3-L1 cells were transfected with non-targeting or anti-DJ-1 siRNA (10 nM). After 48 h, the cells were reached confluence, and the mRNA level was analyzed. *, p < 0.05 and **, p < 0.01 versus the control. All data are presented as the mean ± s.d.

Supplementary Figure S3 (related to Figure 3). DJ-1 knock-down reduces the expression of proinflammatory cytokine genes in macrophage cells.

The gene expression levels of IL-1 β , IL-6 and MCP-1 were determined in non-targeting or anti-DJ-1 siRNA-treated RAW264.7 cells. The cells were transfected with non-targeting or anti-DJ-1 siRNA (10 nM) for 48 h. Subsequently, the cells were treated with LPS (100 ng/ml) for 8 h. The mRNA levels were determined by RT-PCR. *, p < 0.05 and **, p < 0.01 versus the control. All data are presented as the mean ± s.d.

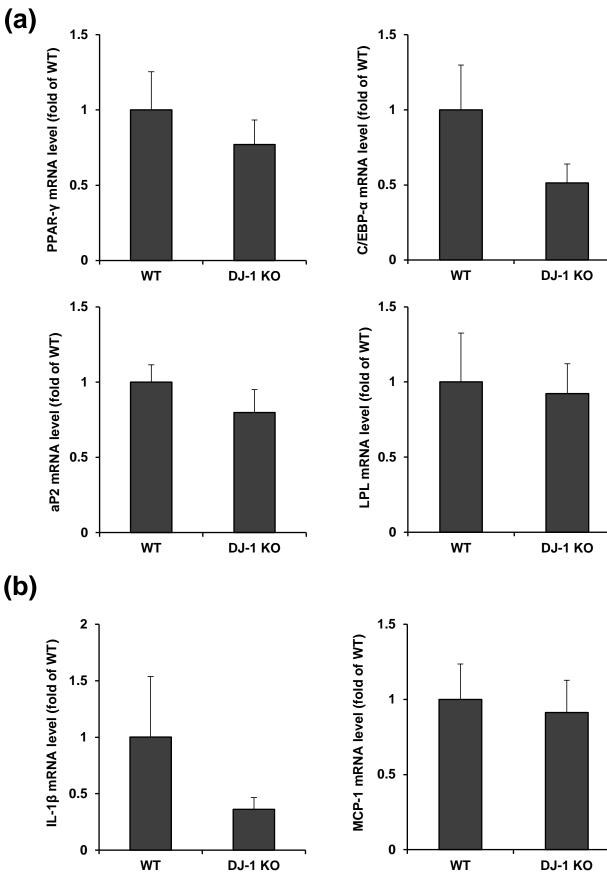
Supplementary Figure S4 (related to Figure 3). The effect of NF-κB inhibitor on the expression of adipogenic markers.


3T3-L1 cells were transfected with non-targeting or anti-DJ-1 siRNA and treated with an inhibitor of NF- κ B (Bay 11-7082, 1 μ M) for 6 d under adipogenic differentiation conditions. The mRNA levels were examined by RT-PCR. *, p < 0.05 and **, p < 0.01 versus the control. #, p < 0.05 versus the vehicle treatment. NS, not significant. All data are presented as the mean ± s.d.

(a)

Supplementary Figure S5 (related to Figure 4). Glucose homeostasis and insulin sensitivity in WT and DJ-1 KO mice.

(a) A glucose tolerance test (GTT) was performed in male HFD-fed WT and DJ-1 KO mice at 6 weeks.
(b) An insulin tolerance test (ITT) was performed at 6 weeks after HFD. n = 9 per group. All data are presented as the mean ± s.e.m.


Supplementary Figure S6 (related to Figure 4). DJ-1 KO mice show glucose intolerance in the HFD-induced obesity model.

(a) The body weight changes of WT and DJ-1 KO mice fed an HFD. n = 9 per group. (b) A glucose tolerance test (GTT) was performed in male HFD-fed WT and HFD-fed DJ-1 KO mice at 12 weeks. *, p < 0.05 versus the WT mice. n = 9 per group. (c) An insulin tolerance test (ITT) was performed at 12 weeks after HFD. *, p < 0.05 versus the WT mice. n = 9 per group. All data are presented as the mean \pm s.e.m.

Weight		
Weeks	WT	DJ-1 KO
0	24.26 ± 0.64	24.04 ± 0.69
2	27.42 ± 0.95	26.91 ± 0.80
4	29.70 ± 1.23	29.91 ± 1.19
6	30.68 ± 1.58	30.69 ± 1.40
8	33.34 ± 1.74	32.70 ± 1.90
10	36.98 ± 7.08	39.17 ± 1.90
12	38.03 ± 2.60	40.19 ± 1.70

GTT		
min	WT	DJ-1 KO
0	140.02 ± 7.55	161.22 ±7.90
15	320.22 ± 18.17	376.00 ±19.44
30	324.67 ± 14.24	372.11 ± 21.58
60	250.78 ± 9.81	329.44 ± 26.46
120	173.89 ± 10.59	283.33 ± 40.87

ІТТ		
min	WT	DJ-1 KO
0	229.00 ± 9.44	253.56 ± 8.55
15	190.44 ± 12.94	203.89 ± 16.47
30	159.44 ± 11.51	174.33 ± 17.34
60	151.33 ± 15.85	169.44 ± 18.20
120	155.00 ± 25.20	185.89 ± 15.05

DJ-1 KO

Supplementary Figure S7 (related to Figure 4). The expression of adipogenic genes and proinflammatory cytokines in WAT.

(a) The expression levels of adipogenic genes, such as PPAR- γ , c/EBP- α , aP2 and LPL, were determined by RT-PCR in the white adipose tissue (WAT) from WT and DJ-1 KO mice fed an HFD for 12 weeks. (b) The mRNA levels of IL-1 β and MCP-1 were determined in the WAT from HFD-fed WT and HFD-fed DJ-1 KO mice. All data are presented as the mean \pm s.e.m.

	WT	DJ-1 KO
PPAR-γ	1.00 ± 0.25	0.76 ± 0.16
C/EBP-α	1.00 ± 0.30	0.51 ± 0.13
aP2	1.00 ± 0.12	0.80 ± 0.15
LPL	1.00 ± 0.33	0.92 ± 0.2
IL-1β	1.00 ± 0.54	0.36 ± 0.10
MCP-1	1.00 ± 0.24	0.91 ± 0.21

Supplementary Table S1: RT-PCR Primer sequence

Gene	Forward	Reverse
DJ-1 (<i>PARK7</i>)	5'- tatctgagtcgctggtgaa-3'	5'-ccttgcatccaaaacctacttc-3'
peroxisome-proliferator- activated receptor-γ (PPAR-γ)	5'-ggtgtgatcttaactgccg-3'	5'-cagatcagcagactctgggt-3'
CCAAT/enhancer binding protein-α (C/EBP-α)	5'-aacaacgcaagggcggcatgg-3'	5'-atttcggtttgttgcgttgcacctc-3'
adipocyte protein 2 (<i>aP2</i>)	5'-aaacaccgagatttccttcaaa-3'	5'-cacgcctttcataacacattc-3'
lipoprotein lipase (LPL)	5'-aacgtccacctcttagggtaca-3'	5'-gctggatccaaaccagtaattc-3'
glucose transporter type 4 (GLUT4)	5'-caatggttgggaaggaaaagggcta-3'	5'-gtaggcgccaatgaggaaccgtc-3'
Interleukin-1 β (<i>IL-1β</i>)	5'-gggctgcttccaaacctttgac-3'	5'-atgggaacgtcacacaccagca-3'
interlukin-6 (<i>IL-6</i>)	5'-acttcacaagtcggaggctt-3'	5'-ctgaaggactctggctttgtct-3'
monocyte chemotactic protein-1 (MCP-1)	5'-aactgcatctgccctaaggt-3'	5'- agtgcttgaggtggttgtggaaa-3'
ribosomal protein large P0 (36B4)	5'-tggccaataaggtgccagctgctg-3'	5'-cttgtctccagtctttatcagctgcac-3'

Supplementary Methods

Glucose tolerance test (GTT) and insulin tolerance test (ITT)

For glucose tolerance tests, HFD-fed male mice were fasted for 16 h before an i.p. injection of 10% dglucose (10 mg/g body weight). Blood glucose was measured by tail vein bleeds at the indicated intervals using an ACCU-CHEK® Mobile system (Hoffmann-La Roche Ltd.). For insulin tolerance tests, HFD-fed male mice were fasted 4 h before an i.p. injection of insulin (0.75 U/kg body weight). All animal experiments were performed according to procedures approved by the Ulsan National Institute of Science and Technology's Institutional Animal Care and Use Committee.