SUPPORTING INFORMATION

A Direct Comparison of the Anticancer Activities of Digitoxin *MeON*-Neoglycosides and *O*-Glycosides: Oligosaccharide Chain Length-Dependent Induction of Caspase-9-Mediated Apoptosis

Anand Iyer, [§] Maoquan Zhou, [†] Neelam Azad, [§] Hosam Elbaz, [#] Leo Wang, [†] Derek K. Rogalsky, [‡] Yon Rojanasakul, ^{*#} George A. O'Doherty, ^{*†} and Joseph M. Langenhan^{*,‡}

[§]Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668,
[†]Department of Chemistry, West Virginia University, Morgantown, West Virginia, 26506,
[#]Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, [‡]Department of Chemistry, Seattle University, Seattle, WA 98122.

To whom correspondence should be addressed. Apoptosis assays: <u>yrojan@hsc.wvu.edu</u>; digitoxin *O*-glycosides: <u>george.odoherty@mail.wvu.edu</u>; digitoxin *MeON*-glycosides: <u>langenha@seattleu.edu</u>.

Table of Contents

Section A: Growth inhibition assays	S2-4
Section B: Cytotoxicity assays	S 5
Section C: Apoptosis assays	S6-8
Section D: Caspase assays	S9-10
Section E: Synthetic Procedures	S11-49
Section F: References	S50

Growth Inhibition Assays.¹ The human tumor cell lines were grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine. Cells are inoculated into 96 well microtiter plates in 100 µL at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates are incubated at 37° C, 5 % CO2, 95 % air and 100 % relative humidity for 24 h prior to addition of experimental drugs. After 24 h, two plates of each cell line are fixed in situ with TCA, to represent a measurement of the cell population for each cell line at the time of drug addition (Tz). Experimental drugs are solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate is thawed and diluted to twice the desired final maximum test concentration with complete medium containing 50 µg/ml gentamicin. Additional four, 10-fold or 1/2 log serial dilutions are made to provide a total of five drug concentrations plus control. Aliquots of 100 µl of these different drug dilutions are added to the appropriate microtiter wells already containing 100 µl of medium, resulting in the required final drug concentrations. Following drug addition, the plates are incubated for an additional 48 h at 37°C, 5 % CO2, 95 % air, and 100 % relative humidity. For adherent cells, the assay is terminated by the addition of cold TCA. Cells are fixed in situ by the gentle addition of 50 µl of cold 50 % (w/v) TCA (final concentration, 10 % TCA) and incubated for 60 minutes at 4°C. The supernatant is discarded, and the plates are washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 µl) at 0.4 % (w/v) in 1 % acetic acid is added to each well, and plates are incubated for 10 minutes at room temperature. After staining, unbound dye is removed by washing five times with 1 % acetic acid and the plates are air dried. Bound stain is subsequently solubilized with 10 mM trizma base, and the absorbance is read on an automated plate reader at a wavelength of 515 nm. For suspension cells, the methodology is the same except that the assay is terminated by fixing settled cells at the bottom of the wells by gently adding 50 µl of 80 % TCA (final concentration, 16 % TCA). Using the seven absorbance measurements [time zero, (Tz), control growth, (C), and test growth in the presence of drug at the five concentration levels (Ti)], the percentage growth is calculated at each of the drug concentrations levels. Percentage growth inhibition is calculated as:

[(Ti-Tz)/(C-Tz)] x 100 for concentrations for which Ti>/=Tz

 $[(Ti-Tz)/Tz] \times 100$ for concentrations for which Ti<Tz.

Growth inhibition of 50 % (GI50) is calculated from $[(Ti-Tz)/(C-Tz)] \times 100 = 50$, which is the drug concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation.

			Compound	
Cell Type	Cell Line	1	2	3
	MOLT-4	0.0024	0.0046	0.0051
ia	HL-60(TB)	0.0036	0.0152	0.0182
em	SR	0.0046	0.0168	0.0155
h	CCRF-CEM	0.0047	0.0155	0.0177
Γ	RPMI-8226	0.0179	0.0455	0.0399
	K-562	0.0254	0.0380	0.0267
F 0	NCI-H460	0.0038	0.0102	0.0128
Bun	NCI-H522	0.0040	0.0059	0.0085
11L	A549/ATCC	0.0043	0.0113	0.0109
Cel	EKVX	0.0048	0.0114	0.0120
all (anc	HOP-62	0.0078	0.0147	0.0184
C	NCI-H23	0.0087	0.0177	0.0176
J-U	NCI-H322M	0.0132	0.0416	0.0332
No	NCI-H226	0.0333	0.0670	0.0773
	HOP-92	0.0598	0.1850	0.1450
	HCT-116	0.0054	0.0147	0.0250
čer	SW-620	0.0075	0.0261	0.0271
anc	HT29	0.0149	0.0343	0.0327
J C	HCT-15	0.0222	0.0403	0.0439
lolo	KM12	0.0264	0.0359	0.0479
Ŭ	HCC-2998	0.0548	0.0841	0.0485
	COLO 205	0.0655	0.0612	0.0672
er	SF-268	0.0067	0.0249	0.0240
anc	SF-539	0.0068	0.0178	0.0232
Ŭ	SNB-75	0.0123	0.0360	0.0362
SN	SF-295	0.0145	0.0401	0.0399
Ŭ	U251	0.0166	0.0355	0.0372

Table S1. GI₅₀s (μ M) for O-glycosides against 58 cell lines.

	SNB-19	0.0439	0.0575	0.0640
	SK-MEL-5	0.0055	0.0205	0.0371
	MALME-3M	0.0162	0.0358	0.0307
na	LOX IMVI	0.0164	0.0318	0.0368
nor	UACC-62	0.0252	0.0382	0.0427
ela	UACC-257	0.0305	0.0845	0.0603
М	M14	0.0393	0.0858	0.0746
	SK-MEL-28	0.0425	0.0608	0.0784
	NCI/ADR-RES	0.0115	0.0254	0.0236
er	OVCAR-5	0.0132	0.0307	0.0360
anc	OVCAR-4	0.0166	0.0340	0.0282
Ü	OVCAR-8	0.0166	0.0436	0.0375
ian	OVCAR-3	0.0206	0.0369	0.0364
var	IGROV1	0.0236	0.0566	0.0493
0	SK-OV-3	0.0252	0.0369	0.0481
	ACHN	0.0029	0.0052	0.0106
ŗ	SN12C	0.0044	0.0112	0.0157
JCe	RXF 393	0.0045	0.0236	0.0301
Сал	CAKI-1	0.0055	0.0293	0.0246
lal	UO-31	0.0071	0.0338	0.0325
Ren	A498	0.0128	0.0313	0.0337
Π	786-0	0.0160	0.0273	0.0285
	TK-10	0.0199	0.0345	0.0270
Prostate Cancer	DU-145	0.0044	0.0137	0.0167
Tiostate Calleei	PC-3	0.0119	0.0287	0.0291
r	HS 578T	0.0025	0.0062	0.0096
nce	BT-549	0.0029	0.0047	0.0112
Ca	MCF7	0.0195	0.0328	0.0411
ast	T-47D	0.0229	0.0253	0.0429
Bre	MDA-MB-435	0.0289	0.0488	0.0382
	MDA-MB-231	0.1040	0.1910	0.2230

Cytotoxicity Assays. All cell lines were maintained as previously reported.² Cells were harvested by trypsinization using 0.25% trypsin and 0.1% EDTA and then counted in a Cellometer Auto T4 cell counter (Nexcelom, inc), before dilution for assay plating. Cell plating, compound handling and assay set up were performed as previously reported¹² except the cells were plated in 50 μ L volumes in 384 well clear bottom, tissue culture plates (Corning-Costar, Inc). Compounds were added from the 384-well compound stock plates at a 1:100 dilution (water) using a Biomek FX liquid handler equipped with a 384 channel head (Beckman Coulter, Inc.). Cell titer-glo reagent (15 μ L) (Promega Corporation, Inc.) was added and incubated for 10 min at room temperature with gentle agitation to lyse the cells. Each plate was read for luminescence. The IC₅₀ value for each compound represents four replicates of dose-response experiments conducted over six concentrations at two-fold serial dilutions. Within each experiment, percent inhibition values at each concentration were expressed as a percentage of the maximum luminescence signal observed for a 0 nM control. IC₅₀ values were determined using XLFit 4.0 as previously reported.²

	Compound		1	2	3	4	5	6
	SKOV-3	IC ₅₀	0.05	0.07	0.097	0.98	5.92	0.86
		SE	0.02	0.03	0.004	0.03	0.09	0.03
ell Line	NCI-H460	IC ₅₀	0.011	0.2	0.07	0.24	1.2	1.4
		SE	0.001	0.1	0.01	0.03	0.1	0.1
	NCI/ADR-	IC ₅₀	0.037	0.05	0.069	4.2	1.1	3.2
0	RES	SE	0.003	0.01	0.006	0.4	0.1	0.2
	UT 20	IC ₅₀	0.05	0.09	0.7	0.45	1.6	1.41
	П1-29	SE	0.02	0.01	0.1	0.08	0.3	0.09

Table S2. IC₅₀s (µM) and standard errors for neoglycoside cytotoxicity against four cell lines.

Apoptosis Assays. Sub-confluent (80%) densities of NCI-H460 cells were treated with different doses of drug for 12 h, and incubated with 10 μ g/mL Hoechst 33342 nuclear stain for 30 min at 37°C. The percentage of cells having intensely condensed chromatin and/or fragmented nuclei was scored by fluorescence microscopy (Axiovert 100; Carl Zeiss) using Pixera software. Data from at least ten separate fields (~ 200 cells per field) were recorded and plotted. The data represent mean \pm SD from three or more independent experiments; statistical significance for differences between data points was determined using the Student's t-test. Percent apoptotic cells in no treatment controls was < 1 %.

Figure S1. Fluorescence microscopy images from apoptosis assays.

	Cisplatin		
	0 nM	% Apoptotic Cells	5.2
	U IIIVI	SD	0.7
	100 nM	% Apoptotic Cells	28
<u>i 100 mvi</u>		SD	2
Cor	200 nM	% Apoptotic Cells	52
gu.	200 1111	SD	3
Dı	200 nM	% Apoptotic Cells	76
	500 IIM	SD	9
	300 nM +	% Apoptotic Cells	18
	ZV	SD	2

Table S3. Percent apoptotic cells and standard deviation in NCI-H460 cells as a function of cisplatin concentration (nM).

Table S4. Percent apoptotic cells and standard deviation in NCI-H460 cells as a function of drug concentration (nM).

Compound		1	2	3	4	5	6	
	25 nM	% Apoptotic Cells	21	5	3	5	4	2
	23 mvi	SD	2	1	0	1	1	1
	50 nM	% Apoptotic Cells	36	22	9	11	10	6
ıc.	50 IIIvi	SD	1	2	1	1	0	1
Cor	75 nM	% Apoptotic Cells	54	40	20	19	17	11
ßn.	7.5 1111	SD	3	2	1	2	2	1
DI	100 nM	% Apoptotic Cells	72	62	33	30	24	18
		SD	3	3	1	1	1	1
	$100 \text{ pM} \pm 7\text{V}$	% Apoptotic Cells	3	2	2	2	1	1
	100 mVI + 2 V	SD	0	0	0	0	0	0

Concentration	Comparison				
Concentration	4 vs 5	4 vs 6	1 vs 2	2 vs 3	
25 nM	0.19	0.05	0.003	0.001	
50 nM	0.05	0.001	0.009	0.007	
75 nM	0.06	0.03	0.01	0.002	
100 nM	0.04	0.007	0.006	0.005	

 Table S5. P-values from Student's t-test for selected comparisons of percent apoptotic cells.

Caspase Assays. Caspase activity was determined by fluorometric assay using the enzyme substrate IETD-AMC for caspase-8 and LEHD-AMC for caspase-9, which are specifically cleaved by the respective enzymes at the aspartate residue to release the fluorescent group, AMC. Following treatment with drug (12 h), NCI-H460 cell extracts containing 50 μ g of protein were incubated with 100 mM HEPES containing 10% sucrose, 10 mM dithiothreitol, 0.1% 3-((3-cholamidiopropyl)-1) propane sulfonate, and 50 μ M caspase substrate in a total reaction volume of 0.25 ml. The reaction mixture was incubated for 60 min at 37 °C and quantified fluorometrically at the excitation and emission wavelengths of 380 and 460 nm, respectively. The data represent mean ± SD from three or more independent experiments.

	Compound				4
		25 mM	Caspase act.	1.4	1.38
	23 III vi	SD	0.3	0.09	
	ت 50 nM	Caspase act.	1.6	1.5	
		SD	0.1	0.3	
2	00 son 075 nM 100 nM 100 nM + ZV	Caspase act.	1.8	1.4	
		SD	0.5	0.2	
6		Caspase act.	1.9	1.7	
		SD	0.3	0.4	
		$100 \text{ mM} \pm 7 \text{V}$	Caspase act.	1.2	1.1
		SD	0.2	0.1	

Table S5. Caspase-8 activity and standard deviation in NCI-H460 cells as a function of drug concentration. Activity reported is normalized to a no-treatment control (defined as 1).

	Compou	1	4	
	25 mM	Caspase act.	4.1	2.3
	23 III vi	SD	0.3	0.2
	50 nM	Caspase act.	5.09	3.4
ıc.	30 IIIvi	SD	0.08	0.1
Cor	75 nM	Caspase act.	7.3	3.7
gu.		SD	0.4	0.3
DI	100 nM	Caspase act.	7.4	4.4
		SD	0.5	0.4
	$100 \text{ mM} \pm 700$	Caspase act.	1.19	1.09
100 nNI + Z V		SD	0.08	0.2

Table S6. Caspase-9 activity and standard deviation in NCI-H460 cells as a function of drug concentration. Activity reported is normalized to a no-treatment control (defined as 1).

Table S7. P-values from Student's t-test for selected comparisons of caspase-8 activity (Ntx = notreatment).

Concentration	Comparison		
Concentration	4 vs Ntx	1 vs Ntx	
25 nM	0.02	0.12	
50 nM	0.08	0.02	
75 nM	0.05	0.08	
100 nM	0.10	0.03	

Table S8. P-values from Student's t-test for selected comparisons of caspase-9 activity (Ntx = notreatment).

Concentration	Comparison			
Concentration	4 vs Ntx	1 vs Ntx		
25 nM	0.019	0.004		
50 nM	0.001	0.0002		
75 nM	0.007	0.002		
100 nM	0.001	0.003		

Section E: Synthetic Procedures

General methods.

Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon or nitrogen using oven-dried glassware and standard syringe/septa techniques. Ether, tetrahydrofuran, methylene chloride and methanol were dried by passing through activated alumina column with argon gas pressure. Hexanes refer to the petroleum fraction bp 40-60 °C. Commercial reagents were used without purification unless otherwise noted. Flash chromatography was performed using the indicated solvent system on silica gel standard grade 60 (230-400 mesh). R_f values are reported for analytical TLC using the specified solvents and 0.25 mm silica gel 60 F254 plates that were visualized by UV irradiation (254 nm) or by staining with KMnO₄ stain or anisaldehyde stain (465 mL of 95% EtOH, 17 mL conc. H₂SO₄, 5 mL acetic acid, and 13 mL anisaldehyde). Optical rotations were obtained using a digital polarimeter at sodium D line (589 nm) and were reported in concentration of g / 100 mL at 21 °C. ¹H and ¹³C NMR spectra were recorded on 300, 400, or 600 MHz spectrometer. Chemical shifts are reported relative to CHCl₃ (δ 7.26 ppm) for ¹H and CDCl₃ (δ 77.0 ppm) for ¹³C. IR spectra were recorded on a FT-IR ppectrometer; thin film was formed in CHCl₃ solution. Melting points are uncorrected.

Tert-butyl (2S,6R)-5,6-dihydro-6-methyl-5-oxo-2H-pyran-2-yl carbonate (7):

To a benzene solution (300 mL) of (5*R*)-1-Hydroxy-5-*tert*-butyl dimethylsilanyloxymethyl-5*H*-pyran 4-(1*H*)-one (18.5 g, 0.144 mol) and (Boc)₂O (47.3 g, 0.22 mol) was added sodium acetate (13.2 g, 0.16 mol). After stirring at 80 °C for 2 hours, the mixture was cooled down to room temperature. The reaction was quenched by adding of 300 mL of saturated NaHCO₃ solution, extracted (3 x 300 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 7% EtOAc/hexanes to give two diastereomers of *tert*-butyl 5,6-dihydro-6-methyl-5-oxo-2H-pyran-2-yl carbonate (29.0 g, 0.127 mol, 88%) of 7 α and 7 β (7 α : 7 β = 1:1.3). 7 α : *Rf* (20% Et₂O/hexanes) = 0.43; [α]²¹_D -97.1 (c 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2986, 1752, 1703, 1633, 1278, 1258, 1159, 1090, 1058, 1029, 944 ; ¹H NMR (270 MHz, CDCl₃) δ 6.86 (dd, *J* = 10.3, 3.8 Hz, 1H), 6.31 (d, *J* = 3.8 Hz, 1H), 6.17 (d, *J* = 10.3 Hz, 1H), 4.63 (q, *J* = 6.7 Hz, 1H), 1.50 (s, 9H), 1.39 (d, *J* = 6.7 Hz, 3H) ; ¹³C NMR (67.5 MHz, CDCl₃) δ 195.7, 151.8, 140.9, 128.4, 89.1, 83.5, 72.1, 27.6(3C), 15.2; CLHRMS Calcd for [C₁₁H₁₆O₅Na]⁺: 251.0890, Found 251.0884.

7β: *Rf* (20% EtOAc/hexanes) = 0.50; mp: 43-43.5 °C; $[\alpha]_D^{21}$ + 42.3 (c 1.3, CHCl₃); IR (thin film, cm⁻¹) 2986, 1752, 1703, 1633, 1278, 1258, 1159, 1090, 1058, 1029, 944; ¹H NMR (270 MHz, CDCl₃) δ 6.88 (dd, *J* = 10.3, 2.6 Hz, 1H), 6.40 (dd, *J* = 2.6, 1.4 Hz, 1H), 6.20 (dd, *J* = 10.3, 1.2 Hz, 1H), 4.37 (q, *J* = 6.9 Hz, 1H), 1.51 (s, 9H), 1.49 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 195.9, 151.7, 142.8, 128.3, 89.8, 83.7, 75.7, 27.6(3C), 18.6 ; CLHRMS Calcd for $[C_{11}H_{16}O_5Na]$ +: 251.0890, Found 251.0883.

(2R,6R)-2-Methyl-6-(phenylmethoxy)-2H-pyran-3(6H)-one (8)

A CH₂Cl₂ (3 mL) solution of Boc pyranone **7β** (716 mg, 3.14 mmol) and benzyl alcohol (678 mg, 6.28 mmol) was cooled to 0 °C. A CH₂Cl₂ (2 mL) solution of Pd₂(dba)₃•CHCl₃ (81 mg, 2.5 mol%) and PPh₃ (82 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 2 hours and was quenched with 10 mL of saturated NaHCO₃ solution, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 8% EtOAc/hexanes to give **8** (582 mg, 2.67 mmol, 85%) as a viscous oil: R_f (15% EtOAc/hexanes) = 0.23; $[\alpha]_D^{21}$ – 41.8 (*c* 1.20, CHCl₃); IR (thin film, cm⁻¹) 2933, 1698, 1453, 1373, 1163, 1057, 1023, 903, 800, 733, 697; ¹H NMR (270 MHz, CDCl₃) δ 7.37 (m, 5H), 6.92 (dd, *J* = 10.3, 2.0 Hz, 1H), 6.14 (dd, *J* = 10.3, 1.6 Hz, 1H), 5.40 (m, 1H), 4.95 (d, *J* = 11.7 Hz, 1H), 4.69 (d, *J* = 11.7 Hz, 1H), 4.24 (q, *J* = 6.9 Hz, 1H), 1.53 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 196.8, 146.4, 136.8, 128.5 (2C), 128.1(3C), 128.0, 94.3, 75.2, 70.1, 17.2; CLHRMS Calcd for [C₁₃H₁₄O₃Na⁺]: 241.0835, Found 241.0843.

(2R,6R)-2-Methyl-6-(Digitoxigenoxy)-2H-pyran-3(6H)-one (9)

A CH₂Cl₂ /THF solution (8 mL, 4:1 V/V) of Boc pyranone 7β (544 mg, 2.39 mmol) and digitoxigenin (1.34 g, 3.58 mmol) was cooled to 0 °C. A CH₂Cl₂ (1 mL) solution of Pd₂(dba)₃•CHCl₃ (72 mg, 2.5 mol%) and PPh₃ (73 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 8 hours and was quenched with 20 mL of saturated NaHCO₃ solution, extracted (3 x 20 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 40% EtOAc/hexanes to give 9 (993 mg, 2.05 mmol, 86%) as a white solid: R_f (40% EtOAc/hexanes) = 0.17; mp: 211-212 °C; $[\alpha]_D^{21}$ + 17.6 (*c* 3.60, CHCl₃); IR (thin film, cm⁻¹) 3498, 2937, 2875, 1780, 1741, 1698, 1620, 1448, 1374, 1164, 1144, 1053, 1025, 958, 754; ¹H NMR (600 MHz, CDCl₃) δ 6.86 (dd, J = 10.2, 1.8 Hz, 1H), 6.09 (dd, J =10.2, 1.8 Hz, 1H), 5.86 (m, 1H), 5.38 (dd, J = 2.4, 1.8 Hz, 1H), 4.98 (dd, J = 18.0, 1.8 Hz, 1H), 4.79 (dd, J = 18.0, 1.8 Hz, 1H), 4.16 (q, J = 6.6 Hz, 1H), 4.15 (m, 1H), 2.76 (dd, J = 9.6, 6.0 Hz, 1H), 2.20-2.08 (m, 3H), 1.44 (d, *J* = 7.2 Hz, 3H), 1.92-1.16 (m, 18H), 0.93 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.0, 174.6, 174.5, 147.8, 128.0, 117.6, 93.9, 85.5, 75.1, 73.5, 73.4, 50.9, 49.6, 41.8, 40.0, 36.4, 35.7, 35.2, 33.1, 30.1, 29.9, 26.9, 26.56, 26.53, 23.6, 21.3, 21.1, 16.9, 15.7; HRESIMS Calcd for $[C_{29}H_{40}O_6Na^+]$: 507.2717, Found 507.2717.

(2R,6R)-3,6-Dihydro-2-methyl-6-(phenylmethoxy)-2H-pyran-3-ol (8i)

A CH₂Cl₂ (2 mL) solution of enone 8 (435 mg, 2.0 mmol) and CeCl₃ in MeOH solution (1.7 mL) was cooled to -78 °C. NaBH₄ (75 mg, 2.0 mmol) was added and the reaction mixture was stirred at -78°C for 3 hours. The reaction mixture was diluted with Et₂O (5 mL) and was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 20% EtOAc/hexanes to give allylic alcohols 8i (374 mg, 1.70 mmol, 85%) as a viscous oil (diastereometric ratio I:II = 1.5:1, inseparable by silica gel chromatography): R_f (40% EtOAc/hexanes) = 0.30; IR (thin film, cm⁻¹) 3397, 2978, 2933, 2869, 1498, 1455, 1378, 1053, 1010, 808, 738, 698; ¹H NMR (600 MHz, CDCl₃): isomer I: δ 7.35 (m, 5H). 6.16 (ddd, *J* = 10.2, 5.4, 1.2 Hz, 1H), 5.86 (d, *J* = 10.2 Hz, 1H), 5.14 (ddd, *J* = 1.8, 1.8, 1.2 Hz, 1H), 4.92 (d, J = 12.0 Hz, 1H), 4.66 (d, J = 12.0 Hz, 1H), 3.75 (qd, J = 6.0, 2.4 Hz, 1H), 3.68 (m, 1H), 2.0 (d, J = 10.2 Hz, 1H), 1.34 (d, J = 6.0 Hz, 3H); isomer II: δ 7.30 (m, 5H), 5.95 (ddd, J = 10.2, 2.4, 1.8 Hz, 1H), 5.79 (ddd, J = 10.2, 1.8, 1.2 Hz, 1H), 5.18 (ddd, J = 1.8, 1.8, 1.2 Hz, 1H), 4.86 (d, *J* = 12.0 Hz, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 3.90 (m, 1H), 3.64 (dq, *J* = 6.6, 6.0 Hz, 1H), 2.10 (d, J = 6.6 Hz, 1H), 1.38 (d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) isomer I : δ 137.5, 131.3, 130.6, 128.4 (2C), 127.9 (2C), 127.7, 97.0, 71.4, 69.9, 64.7, 16.6; isomer II: δ 137.7, 132.1, 128.7, 128.3 (2C), 127.9 (2C), 127.6, 95.5, 74.4, 69.2, 68.3, 17.8; CIHRMS Calcd for $[C_{13}H_{16}O_3Na^+]$: 243.0992, Found 243.0983.

(2R,6R)-3,6-Dihydro-2-methyl-6-(Digitoxigenoxy)-2H-pyran-3-ol (9i)

A CH₂Cl₂ (4 mL) solution of enone 9 (990 mg, 2.04 mmol) and CeCl₃ in MeOH solution (0.4 M, 4 mL) was cooled to -78 °C. NaBH₄ (77 mg, 2.04 mmol) was added and the reaction mixture was stirred at -78°C for 3 hours. The reaction mixture was diluted with Et₂O (30 mL) and was quenched with 30 mL of saturated aqueous NaHCO₃, extracted (3 x 30 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 55% EtOAc/hexanes to give allylic alcohols 9i (893 mg, 1.84 mmol, 90%) as a white solid (diastereometric ratio I:II = 1.5:1, inseparable by silica gel chromatography): R_f (60% EtOAc/hexanes) = 0.22; IR (thin film, cm⁻¹) 3448, 2933, 2871, 1780. 1741, 1618, 1446, 1378, 1320, 1180, 1135, 1049, 1024, 1004, 958, 751; ¹H NMR (600 MHz, CDCl₃): isomer I: δ 6.12 (ddd, J = 10.2, 4.8, 1.2 Hz, 1H), 5.86 (m, 1H), 5.80 (d, J = 10.2 Hz, 1H), 5.07 (m, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.80 (dd, J = 18.0, 1.8 Hz, 1H), 4.12 (dd, J = 18.0, 18.0 Hz, 1H), 4. 4.2, 1.8 Hz, 1H), 4.114(s, 1H), 3.70 (qd, J = 6.6, 2.4Hz, 1H), 3.64 (br, 1H), 2.77 (dd, J = 9.6, 6.0Hz, 1H), 2.25-2.05 (m, 3H), 1.29 (d, J = 6.0 Hz, 3H), 1.80-1.05 (m, 18H), 0.94 (s, 3H), 0.87 (s, 1.2 Hz, 1H), 5.14 (ddd, J = 1.8, 1.8, 1.8 Hz, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.80 (dd, J = 1.8, 1.8, 1.8 Hz, 1H), 4.98 (dd, J = 1.8, 1.2 Hz, 1H), 4.80 (dd, J = 1.8, 1.8, 1.8 Hz, 1H), 4.98 (dd, J = 1.8, 1.8, 1.8 Hz, 1H), 4.98 (dd, J = 1.8, 1.8 Hz, 1H), 4.80 (dd, J = 1.8, 1.8 Hz, 1H), 1.8 18.0, 1.2 Hz, 1H), 4.09 (m, 1H), 4.109 (s, 1H), 3.93 (br, 1H), 3.59(dq, J = 6.6, 6.6 Hz, 1H), 2.77(dd, J = 9.6, 6.0 Hz, 1H), 2.25-2.05 (m, 3H), 1.35 (d, J = 6.0 Hz, 3H), 1.80-1.05 (m, 18H), 0.94 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) isomer **I** : δ 174.50, 174.46, 131.8, 130.9, 117.67, 96.1, 85.591, 73.43, 72.9, 71.4, 64.9, 50.90, 49.6, 41.9, 40.045, 36.4, 35.77, 35.19, 33.12, 30.20, 30.04, 26.9 (2C), 26.62, 23.64, 21.384, 21.151, 16.7, 15.8; isomer II: δ 174.52, 174.46, 131.7, 129.9, 117.66, 94.8, 85.598, 73.38, 73.4, 72.4, 68.7, 50.91, 49.6, 41.9, 40.052, 36.3, 35.76, 35.18, 33.13, 30.18, 30.06, 26.7 (2C), 26.66, 23.62, 21.380, 21.147, 18.4, 15.8; HRESIMS Calcd for $[C_{29}H_{42}O_6Na^+]$: 509.2879, Found 509.2880.

Cis-3,6-dihydro-6-methyl-2-(phenylmethoxy)-2H-pyran (8ii)

A flask was charged with dry N-methyl morpholine (NMM) 3.0 mL, triphenyl phosphine (1.45 g, 5.54 mmol) and was cooled to -30°C under Ar atmosphere. Diethylazodicarboxylate (0.8 mL, 5.05 mmol) was added and the reaction was stirred for 5 minutes, allylic alcohol 8i (370 mg, 1.68 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 minutes, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (1.02 g, 5.05 mmol). The reaction was stirred at -30 °C for 2 hours and was monitored by TLC. Upon consumption of starting material, the reaction was warmed up to room temperature and stirred for another 2 hours. The reaction mixture was diluted with Et₂O (10 mL) and was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et_2O , dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 2% Et₂O/hexanes to give product **8ii** (293 mg, 1.44 mmol, 84%) as a viscous oil: R_f $(15\% \text{ EtOAc/hexanes}) = 0.48; \ [\alpha]_{D}^{21} -128.5 \ (c \ 1.80, \text{ CHCl}_3); \text{ IR (thin film, cm}^{-1}) 2973, 2927,$ 1453, 1366, 1158, 1080, 1028, 880, 777, 733. ¹H NMR (600 MHz, CDCl₃) δ 7.35 (m, 5H), 5.69 (ddd, J = 10.2, 4.8, 2.4 Hz, 1H), 5.60 (ddd, J = 10.2, 1.2, 1.2 Hz, 1H), 4.95 (d, J = 12.0 Hz, 1H), 4.75 (dd, J = 9.0, 3.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.35 (m, 1H), 2.27 (dddd, J = 17.4, 8.4, 3.6, 2.4 Hz, 1H), 2.19 (dddd, J = 17.4, 6.6, 2.4, 1.2 Hz, 1H), 1.33 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.9, 130.9, 128.3 (2C), 127.9 (2C), 127.6, 122.5, 97.7, 70.6, 69.8, 30.9, 21.1; CLHRMS Calcd for [C₁₃H₁₆O₂Na⁺]: 227.1042, Found 227.1045.

Cis-3,6-dihydro-6-methyl-2-(Digitoxigenoxy)-2H-pyran (9ii)

A flask was charged with dry N-methyl morpholine (NMM) 3.0 mL, triphenyl phosphine (1.75 g, 6.67 mmol) and was cooled to -30°C under Ar atmosphere. Diethylazodicarboxylate (0.95 mL, 6.06 mmol) was added and the reaction was stirred for 5 minutes, allylic alcohol 9i (985 mg, 2.02 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 minutes, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (1.23 g, 6.06 mmol). The reaction was stirred at -30 °C for 6 hours and was monitored by TLC. Upon consumption of starting material, the reaction was warmed up to room temperature and stirred for another 1 hour. The reaction mixture was diluted with Et₂O (30 mL) and was guenched with 30 mL of saturated aqueous NaHCO₃, extracted (3 x 30 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 25% EtOAc/hexanes to give product **9ii** (760 mg, 1.61 mmol, 80%) as a white solid: R_f $(30\% \text{ EtOAc/hexanes}) = 0.20; \text{ mp: } 157-158 \text{ }^{\circ}\text{C}; [\alpha]_{D}^{21} = -30.0 \text{ } (c = 0.10, \text{ CHCl}_3); \text{ IR (thin film, } (c = 0.10, \text{ CHCl}$ cm⁻¹) 3494, 2936, 2871, 1778, 1742, 1621, 1447, 1368, 1264, 1158, 1133, 1102, 1072, 1026, 974, 888, 781. ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.66 (dddd, J = 10.2, 4.8, 2.4, 2.418.0, 1.2 Hz, 1H), 4.70 (dd, J = 8.4, 3.0 Hz, 1H), 4.06 (m, 1H), 4.29 (m, 1H), 2.76 (m, 1H), 2.24-2.04 (m, 4H), 1.90-1.08 (m, 19H), 1.24 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) & 174.6, 174.5, 131.1, 123.0, 117.6, 96.7, 85.6, 73.4, 72.1, 70.7, 50.9, 49.6, 41.9, 40.1, 36.3, 35.7, 35.2, 33.1, 31.6, 30.2, 29.8, 26.9, 26.73, 26.65, 23.6, 21.4, 21.1, 21.03, 15.8; HRESIMS Calcd for [C₂₉H₄₂O₅Na⁺]: 493.2929, Found 493.2924.

Phenylmethyl 2,6-dideoxy- β -D-ribo-hexopyranoside (10)

To a CH₂Cl₂ (3 mL) solution of olefin **8ii** (291 mg, 1.43 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (0.67 mL). Crystalline OsO₄ (3.6 mg, 1 mol %) was added and the reaction was stirred for 3 hours. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 35% EtOAc/hexanes. Pure fractions were combined and concentrated to afford diol **10** as a viscous oil (313 mg, 1.31 mmol, 92%): R_f (50% EtOAc/hexanes) = 0.23; $[\alpha]_D^{21} - 85.9$ (*c* 1.30, CHCl₃); IR (thin film, cm-1) 3426, 2883, 1496, 1454, 1364, 1164, 1137, 1072, 1007, 867, 731, 698; ¹H NMR (600 MHz, CDCl₃) δ 7.34 (m, 5H), 4.90 (dd, *J* = 9.0, 1.8 Hz, 1H), 4.88 (d, *J* = 11.4 Hz, 1H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.09 (m, 1H), 3.74 (dq, *J* = 9.0, 6.0 Hz, 1H), 3.32 (m, 1H), 2.51(s, 1H), 2.35(s, 1H), 2.12 (ddd, *J* = 13.8, 3.6, 2.4 Hz, 1H), 1.78 (ddd, *J* = 13.8, 9.0, 3.0 Hz, 1H), 1.33(d, *J* = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.7, 128.4 (2C), 127.9 (2C), 127.7, 96.9, 73.0, 70.5, 69.5, 67.9, 37.7, 18.1; CLHRMS Calcd for [C₁₃H₁₈O₄Na⁺]: 261.1097, Found 261.1087.

Digitoxigen 2,6-dideoxy- β -D-ribo-hexopyranoside (1)

To a *t*-BuOH/acetone (4 mL) solution of olefin **9ii** (753 mg, 1.60 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (1.0 mL). Crystalline OsO₄ (4 mg, 1 mol %) was added and the reaction was stirred for 4 hours. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 90% EtOAc/hexanes. Pure fractions were combined, concentrated, and crystallized from CHCl₃/Et₂O to afford alcohol **1** as a white solid (868 mg, 1.72 mmol, 93%), > 99 % pure by LCMS. R_f (EtOAc) = 0.25; $[\alpha]_D^{21}$ –6.8 (*c* 0.65, MeOH); mp: 202-203 °C; IR (thin film, cm⁻¹) 3453, 2925, 2856, 1775, 1736, 1623, 1449, 1454, 1378, 1160, 1076, 1024, 951, 822; ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 4.98 (d, *J* = 18.0 Hz, 1H), 4.87 (dd, *J* = 9.0, 1.8 Hz, 1H), 4.80 (d, *J* = 18.0 Hz, 1H), 4.13 (ddd, *J* = 3.0, 3.0, 3.0 Hz, 1H), 4.03 (m, 1H), 3.71 (dq, *J* = 9.0, 6.0 Hz, 1H), 3.34 (m, 1H), 2.77 (m, 1H), 2.33 (s, 1H), 2.20-2.00 (m, 4H), 1.29 (d, *J* = 6.0 Hz, 3H), 1.90-1.10 (m, 19H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.56, 174.52, 117.7, 95.4, 85.6, 73.5, 73.1, 72.7, 69.2, 68.3, 50.9, 49.6, 41.9, 40.1, 38.3, 36.3, 35.8, 35.2, 33.2, 30.2, 29.9, 26.9, 26.7, 26.6, 23.6, 21.4, 21.2, 18.1, 15.8; HRESIMS Calcd for [C₂₉H₄₄O₇Na⁺]: 527.2979, Found 527.2979.

Phenylmethyl 3-O-acetyl-2,6-dideoxy- β -D-ribo-hexopyranoside (11)

A round bottom flask containing a 0.5 M solution of diol 10 (300 mg, 1.26 mmol) in benzene (2.5 mL) was stirring at room temperature. To this solution were added trimethylorthoacetate (0.8 mL, 6.29 mmol) and a catalytic amount of p-toluenesulfonic acid (12 mg, 63 µmol). The reaction was allowed to stir until starting material is gone. The solvent was removed under reduced pressure and the residue was dissolved in 3 mL THF/H₂O (1:1,v/v) solution. Then ptoluenesulfonic acid (600 mg, 3.15 mmol) was added. Stirring was continued until hydrolysis was complete as seen by TLC. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 30% EtOAc/hexanes. Pure fractions were combined and concentrated to afford compound **11** (335 mg, 1.20 mmol, 95%): R_f (50% EtOAc/hexanes) = 0.38; $[\alpha]_D^{21}$ -52.4 (c 1.40, CHCl₃); IR (thin film, cm-1) 3471, 2975, 2934, 1740, 1498, 1455, 1372, 1242, 1164, 1075, 1006, 698; ¹H NMR (600 MHz, CDCl₃) δ 7.34 (m, 5H), 5.29 (ddd, J = 3.6, 3.0, 3.0 Hz , 1H), 4.91 (d, J = 12.0 Hz ,1H), 4.83 (dd, J = 9.0, 2.4 Hz, 1H), 4.57 (d, J = 12.0 Hz , 1H), 3.73 (dq, J = 12.0 Hz , 1H), 3.73 (dq 9.0, 6.0 Hz, 1H), 3.46 (dd, J = 9.0, 3.0 Hz, 1H), 2.14 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 2.10 (s, 3H), 1.87 (ddd, J = 14.4, 9.0, 3.0 Hz , 1H), 1.36 (d, J = 6.0 Hz, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 171.2, 137.5, 128.3(2C), 127.8 (2C), 127.7, 97.0, 72.2, 71.0, 70.4, 70.3, 35.6, 21.1, 18.0; CLHRMS Calcd for [C₁₅H₂₀O₅Na⁺]: 303.1203, Found 303.1201.

Digitoxigen 3-O-acetyl-2,6-dideoxy-β-D-ribo-hexopyranoside (12)

A round bottom flask containing a 0.5 M solution of diol 1 (620 mg, 1.23 mmol) in CH₂Cl₂ (3 mL) was stirring at room temperature. To this solution were added trimethylorthoacetate (0.47 mL, 3.69 mmol) and a catalytic amount of p-toluenesulfonic acid (12 mg, 61.5 µmol). The reaction was allowed to stir until starting material is gone. The solvent was removed under reduced pressure and the residue was dissolved in 6 mL THF/H₂O (1:1,v/v) solution. Then ptoluenesulfonic acid (120 mg, 0.62 mmol) was added. Stirring was continued until hydrolysis was complete as seen by TLC. The reaction mixture was quenched with 10 mL of saturated aqueous NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. It was purified by a silica gel column using 60% EtOAc/hexanes. Pure fractions were combined and concentrated to afford compound 12 (675 mg, 1.20 mmol, 98%) as a white solid: R_f (60% EtOAc/hexanes) = 0.14; $[\alpha]_D^{21} = +1.7$ (c = 1.15, CHCl₃); mp: 111-112 °C; IR (thin film, cm⁻¹) 3499, 2934, 2876, 1780, 1740, 1618, 1449, 1377, 1243, 1169, 1080, 1065, 1026, 1002, 948, 753, 666; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.28 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.97 (d, J = 18.0 Hz, 1H), 4.80 (d, J = 18.0 Hz, 1H), 4.75 (dd, J = 9.0, 2.4Hz, 1H), 4.01 (m, 1H), 3.67 (dq, J = 9.0, 6.0 Hz, 1H), 3.43 (dd, J = 9.6, 2.4 Hz, 1H), 2.76 (m, 1H), 2.20-2.00 (m, 4H), 2.13 (s, 3H), 1.90-1.10 (m, 19H), 1.29 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.59, 174.51, 171.3, 117.6, 95.8, 85.6, 73.4, 73.1, 72.3, 71.4, 70.2, 50.9, 49.6, 41.8, 40.0, 36.3 (2C), 35.7, 35.2, 33.1, 30.1 (2C), 26.9, 26.64, 26.61, 23.6, 21.36, 21.2, 21.1, 18.1, 15.7; HRESIMS Calcd for [C₃₁H₄₆O₈Na⁺]: 569.3085, Found 569.3085.

Phenylmethyl 3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-6-methyl-5-oxo-2*H*-pyran-2-yl]-β-D-ribo-hexopyranoside (11i)

A CH₂Cl₂ (0.8 mL) solution of Boc pyranone 7 (337 mg, 1.48 mmol) and alcohol 11 (207 mg, 0.74 mmol) was cooled to 0 °C. A CH₂Cl₂ (0.4 mL) solution of Pd₂(dba)₃•CHCl₃ (19 mg, 2.5 mol%) and PPh₃ (20 mg, 10 mol%) was added to the reaction mixture at 0 $^{\circ}$ C. The reaction mixture was stirred at 0 °C for 2 hours and was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 22% EtOAc/hexanes to give enone 11i (228 mg, 0.58 mmol, 78%) as a viscous oil: R_f (30%) EtOAc/hexanes) = 0.23; $[\alpha]_{D}^{21}$ +20.0 (c 0.55, CHCl₃); IR (thin film, cm⁻¹) 2931, 1739, 1698, 1454, 1373, 1256, 1242, 1155, 1050, 1004, 787, 698; ¹H NMR (600 MHz, CDCl₃) δ 7.34 (m, 5H), 6.89 (dd, J = 10.2, 1.2 Hz, 1H), 6.13 (dd, J = 10.2, 1.2 Hz, 1H), 5.44 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.42 (d, J = 1.2 Hz, 1H), 4.90 (d, J = 11.4 Hz, 1H), 4.83 (dd, J = 9.0, 2.4 Hz, 1H), 4.57 (d, J = 11.4 Hz, 1H), 4.16 (q, J = 6.6 Hz, 1H), 3.96 (dq, J = 9.0, 6.6 Hz, 1H), 3.55 (dd, J3.0 Hz, 1H), 2.19 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 2.06 (s, 3H), 1.85 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.40 (d, J = 6.6 Hz, 3H), 1.37 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.2, 170.1, 146.3, 137.6, 128.8, 128.4 (2C), 127.8 (2C), 127.7, 97.1, 97.0, 79.4, 75.2, 70.5, 69.4, 69.3, 35.6, 21.2, 18.3, 16.3; CLHRMS Calcd for [C₂₁H₂₆O₇Na⁺]: 413.1571, Found 413.1558.

Digitoxigen 3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-6-methyl-5-oxo-2*H*-pyran-2yl]-*β*-D-ribo-hexopyranoside (12i)

A CH₂Cl₂ (2 mL) solution of Boc pyranone 7 (560 mg, 2.45 mmol) and alcohol 12 (670 mg, 1.23 mmol) was cooled to 0 °C. A CH₂Cl₂ (0.5 mL) solution of Pd₂(dba)₃•CHCl₃ (63 mg, 2.5 mol%) and PPh₃ (64 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 8 hours and was with 10 mL of saturated aqueous NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 50% EtOAc/hexanes to give enone **12i** (643 mg, 0.98 mmol, 80%) as a white solid: R_f (60% EtOAc/hexanes) = 0.24; mp: 119-120 ^oC; $[\alpha]_{\mathbf{D}}^{21}$ + 37.8 (*c* 1.40, CHCl₃); IR (thin film, cm⁻¹) 3495, 2937, 2876, 1780, 1743, 1700, 1621, 1448, 1374, 1244, 1154, 1096, 1068, 1051, 1027, 1004, 755, 695; ¹H NMR (600 MHz, $CDCl_3$) δ 6.88 (dd, J = 10.2, 1.2 Hz, 1H), 6.11 (dd, J = 10.2, 1.2 Hz, 1H), 5.86 (m, 1H), 5.41 (ddd, J = 3.6, 2.4, 2.4 Hz, 1H), 5.40 (dd, J = 1.2, 1.2 Hz, 1H), 4.97 (dd, J = 18.0, 1.2 Hz, 1H),4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.76 (dd, J = 9.0, 1.8 Hz, 1H), 4.15 (q, J = 6.6 Hz, 1H), 4.01 (m, 1H), 3.90 (dq, J = 9.0, 6.0 Hz, 1H), 3.51 (dd, J = 9.0, 3.0 Hz, 1H), 2.77 (m, 1H), 2.20-2.02 (m, 4H), 2.09 (s, 3H), 1.90-1.18 (m, 19H), 1.39 (d, J = 6.6 Hz, 3H), 1.31 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.2, 174.5, 174.4, 170.2, 146.4, 128.8, 117.7, 97.0, 96.0, 85.6, 79.5, 75.2, 73.4, 73.1, 69.8, 69.0, 50.9, 49.6, 41.9, 40.1, 36.30, 36.26, 35.8, 35.2, 33.1, 30.15, 30.13, 26.9, 26.63, 26.60, 23.6, 21.4, 21.3, 21.1, 18.3, 16.3, 15.8; HRESIMS Calcd for [C₃₇H₅₂O₁₀Na⁺]: 679.3458, Found 679.3453.

Phenylmethyl 3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-5-hydroxy-6-methyl-2*H*pyran-2-yl]-β-D-ribo-hexopyranoside (11ii)

A CH₂Cl₂ (0.6 mL) solution of enone **11i** (228 mg, 0.584 mmol) and CeCl₃ in MeOH solution (0.6 mL) was cooled to -78 °C. NaBH₄ (22 mg, 0.585 mmol) was added and the reaction mixture was stirred at -78°C for 3 hours. The reaction mixture was diluted with Et₂O (5 mL) and was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na_2SO_4) , and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 35% EtOAc/hexanes to give allylic alcohols **11ii** (211 mg, 0.538 mmol, 92%) as a viscous oil (diastereometric ratio I:II = 1.6:1, inseparable by silica gel chromatography): R_f (40% EtOAc/hexanes) = 0.15; IR (thin film, cm⁻¹) 3471, 2980, 2934, 2875, 1740, 1498, 1455, 1372, 1243, 1154, 1057, 1009, 736, 698; ¹H NMR (600 MHz, CDCl₃): isomer I: δ 7.28 (m, 5H), 6.17 (dd, J = 10.2, 5.4 Hz, 1H), 5.75 (d, J = 10.2 Hz, 1H), 5.57 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 5.15 (m, 1H), 4.91 (d, J = 12.0 Hz, 1H), 4.84 (dd, J = 9.0, 1.8 Hz, 1H), 4.57 (d, J = 12.0 Hz, 1H), 3.91 (dq, J = 9.0, 6.0 Hz, 1H), 3.70 (dq, J = 1.8, 6.0 Hz, 1H), 3.60 (dd, J = 11.4, 6.0 Hz, 1H), 3.47 (dd, J = 10.2, 3.6 Hz, 1H), 2.27 (d, J = 14.4 Hz, 1H), 2.10 (ddd, J = 10.2, 3.6 Hz, 1H), 2.27 (d, J = 14.4 Hz, 1H), 2.10 (ddd, J = 10.2, 3.6 Hz, 1H), 2.27 (d, J = 14.4 Hz, 1H), 2.10 (ddd, J = 10.2, 3.6 Hz, 1H), 2.27 (d, J = 14.4 Hz, 1H), 2.10 (ddd, J = 10.2, 3.6 Hz, 1H), 2.27 (d, J = 14.4 Hz, 1H), 2.10 (ddd, J = 10.2, 3.6 Hz, 1H), 2.27 (d, J = 14.4 Hz, 1H), 2.10 (ddd, J = 10.2, 3.6 Hz, 1H), 2.27 (d, J = 14.4 Hz, 1H), 2.10 (ddd, J = 10.2, 3.6 Hz, 1H), 3.10 (ddd, J = 10.2, 3.6 Hz, 1H 14.4, 4.8, 2.4 Hz, 1H), 2.05 (s, 3H), 1.87 (ddd, J = 14.4, 9.6, 2.4 Hz, 1H), 1.32 (d, J = 6.0 Hz, 3H), 1.27 (d, J = 6.6 Hz, 3H); isomer II: δ 7.34 (m, 5H), 5.96 (d, J = 10.2 Hz, 1H), 5.78 (d, J =10.2 Hz, 1H), 5.42 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 5.18 (m, 1H), 4.90 (d, J = 12.0 Hz, 1H), 4.80 (dd, J = 9.0, 1.8 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 3.86 (m, 2H), 3.64 (dq, J = 6.6, 6.0 Hz, 1H),3.45 (dd, J = 9.6, 3.0 Hz, 1H), 2.16 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 2.06 (s, 3H), 1.83 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 1.84 (ddd, J = 14.4, 3.4 Hz, 1H), 1.84 (ddd, J =14.4, 9.0, 3.0 Hz, 1H), 1.63 (d, J = 7.8 Hz, 1H), 1.34 (d, J = 6.6 Hz, 3H), 1.29 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) isomer I: δ 170.3, 137.67, 131.8, 128.4, 128.2 (2C), 127.7 (3C), 98.3, 97.21, 78.2, 71.5, 70.51, 70.1, 69.3, 64.4, 35.9, 21.28, 18.1, 16.7; **isomer II** : δ 170.2, 137.65, 132.9, 129.3, 128.37 (2C), 127.8 (3C), 97.5, 97.16, 78.1, 74.5, 70.49, 69.8, 69.4, 68.5, 35.8, 21.25, 18.3, 18.2; CLHRMS Calcd for $[C_{21}H_{28}O_7Na^+]$: 415.1727, Found 415.1726.

Digitoxigen 3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-5-hydroxy-6-methyl-2*H*pyran-2-yl]-β-D-ribo-hexopyranoside (12ii)

A CH₂Cl₂ (0.6 mL) solution of enone **12i** (764 mg, 1.16 mmol) and CeCl₃ in MeOH solution (0.4 M, 1.2 mL) was cooled to -78 °C. NaBH₄ (44 mg, 1.16 mmol) was added and the reaction mixture was stirred at -78°C for 3 hours. The reaction mixture was diluted with Et₂O (10 mL) and was quenched with 10 mL of H₂O, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 70% EtOAc/hexanes to give allylic alcohols 12ii (730 mg, 1.11 mmol, 95%) as a white solid (diastereometric ratio I:II = 1.5:1, inseparable by silica gel chromatography): R_f (80% EtOAc/hexanes) = 0.33; IR (thin film, cm⁻¹) 3483, 2935, 2878, 1781, 1739, 1620, 1448, 1378, 1245, 1170, 1153, 1058, 1026, 1004, 914, 863, 732; ¹H NMR (600 MHz, CDCl₃): isomer I: δ 6.14 (ddd, J = 9.6, 5.4, 1.2 Hz, 1H), 5.84 (m, 1H), 5.72 (dd, J = 9.6, 5.4, 1.2 Hz, 1H), 5.84 (m, 1H), 5.72 (dd, J = 9.6, 5.4, 1.2 Hz, 1H), 5.84 (m, 1.2 Hz, 1H), 5.52 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.11 (ddd, J = 1.8, 1.2, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 4.74 (dd, J = 9.6, 1.8 Hz, 1H), 3.99 (m, 1H), 3.78 (dq, J = 9.6, 6.0 Hz, 1H), 3.67 (qd, J = 6.6, 1.8 Hz, 1H), 3.57 (m, 1H), 3.42 (dd, J = 9.6, 3.6 Hz, 1H), 2.75 (dd, J = 9.0, 6.0 Hz, 1H), 2.20-1.94 (m, 4H), 2.05 (s, 3H), 1.89-1.10 (m, 19H), 1.24 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 6.6 Hz, 3H), 0.90 (s, 3H), 0.84 (s, 3H); isomer II: δ 5.93 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.84 (m, 1H), 5.75 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.37 (ddd, J = 9.6, 1.8 Hz, 13.6, 3.0, 3.0 Hz, 1H), 5.14 (ddd, J = 1.8, 1.2, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 4.71 (dd, J = 9.6, 1.8 Hz, 1H), 3.99 (m, 1H), 3.84 (m, 1H), 3.83 (qd, J = 9.6, 6.0 Hz, 1H), 3.53 (dq, J = 6.0, 6.0 Hz, 1H), 3.40 (dd, J = 9.6, 3.0 Hz, 1H), 2.75 (dd, J = 0.09.0, 6.0 Hz, 1H), 2.20-1.94 (m, 4H), 2.07 (s, 3H), 1.89-1.10 (m, 19H), 1.26 (d, J = 6.0 Hz, 3H), 1.25 (d, J = 6.0 Hz, 3H), 0.90 (s, 3H), 0.84 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) isomer I : δ 174.6, 174.5, 170.3(2C), 131.7, 129.4, 117.6, 98.2, 95.89, 85.5, 78.1, 73.4, 73.0, 71.4, 70.4, 69.2, 69.0, 50.9, 49.6, 41.8, 40.0, 36.42, 36.2, 35.7, 35.1, 33.1, 30.1, 26.9, 26.63, 26.59, 23.6, 21.34, 21.33, 21.1, 18.1, 16.7, 15.7; isomer II: δ 174.6, 174.5, 170.3(2C), 133.1, 128.1, 117.6, 97.4, 95.85, 85.5, 78.0, 74.5, 73.4, 70.1, 69.2, 68.4, 64.4, 50.9, 49.6, 41.8, 40.0, 36.37, 36.2, 35.7, 35.1, 33.1, 30.1, 26.9, 26.63, 26.59, 23.6, 21.34, 21.30, 21.1, 18.3, 18.2, 15.7; HRESIMS Calcd for $[C_{37}H_{54}O_{10}Na^{+}]$: 681.3615, Found 681.3607.

Phenylmethyl 3-*O*-acetyl--2,6-dideoxy-4-*O*-[(2S,6R)-3,6-dihydro-6-methyl-2*H*-pyran-2-yl]β-D-ribo-hexopyranoside (11iii)

A flask was charged with dry N-methyl morpholine (NMM) 0.9 mL, triphenyl phosphine (465 mg, 1.78 mmol) and was cooled to -30°C under Ar atmosphere. Diethylazodicarboxylate (0.25 mL, 1.61 mmol) was added and the reaction was stirred for 5 minutes, allylic alcohols 11ii (195 mg, 0.50 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 minutes, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (328 mg, 1.61 mmol). The reaction was stirred at -30 °C for 2 hours and was monitored by TLC. Upon consumption of starting material, the reaction was warmed up to room temperature and stirred for another 2 hours. The reaction mixture was diluted with Et₂O (10 mL) and was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 8% EtOAc/hexanes to give product 11iii (156 mg, 0.41 mmol, 82%) as a viscous oil: R_f (15% EtOAc/hexanes) = 0.31; $[\alpha]_D^{21}$ +4.0 (c 0.5, CHCl₃); IR (thin film, cm⁻¹) 2974, 2927, 1742, 1453, 1367, 1243, 1156, 1090, 1065, 1044, 781, 698. ¹H NMR (600 MHz, CDCl₃) δ 7.34 (m, 5H), 5.63 (dddd, J = 9.6, 4.8, 2.4, 2.4 Hz, 1H), 5.55 (ddd, J =10.2, 2.4, 1.2 Hz, 1H), 5.55 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.90 (d, J = 12.0 Hz, 1H), 4.81 (dd, J = 9.6, 1.8 Hz, 1H), 4.69 (dd, J = 8.4, 3.0 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.28 (m, 1H), 3.93 (dq, J = 9.0, 6.0 Hz, 1H), 3.38 (dd, J = 9.0, 3.0 Hz, 1H), 2.20 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H),2.18 (ddd, J = 17.4, 7.2, 4.2 Hz, 1H), 2.13 (ddd, J = 17.4, 6.6, 3.0 Hz, 1H), 2.07(s, 3H), 1.84 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.33 (d, J = 6.0 Hz, 3H), 1.21 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 137.7, 131.2, 128.4 (2C), 127.8 (2C), 127.7, 122.2, 100.3, 97.2, 79.2, 70.9, 70.5, 69.9, 69.4, 35.7, 30.9, 21.3, 20.8, 18.2; CLHRMS Calcd for [C₂₁H₂₈O₆Na⁺]: 399.1778, Found 399.1773.

Digitoxigen 3-*O*-acetyl--2,6-dideoxy-4-*O*-[(2S,6R)-3,6-dihydro-6-methyl-2*H*-pyran-2-yl]-β-D-ribo-hexopyranoside (12iii)

A flask was charged with dry N-methyl morpholine (NMM) 3.5 mL, triphenyl phosphine (951 mg, 3.63 mmol) and was cooled to -30 °C under Ar atmosphere. Diethylazodicarboxylate (0.52 mL, 3.30 mmol) was added and the reaction was stirred for 5 minutes, allylic alcohols 12ii (725 mg, 1.10 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 minutes, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (670 mg, 3.30 mmol). The reaction was stirred at -30 °C for 4 hours and was monitored by TLC. Upon consumption of starting material, the reaction was warmed up to room temperature and stirred for another 2 hours. The reaction mixture was diluted with Et₂O (20 mL) and was quenched with 10 mL of H₂O, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 85% Et₂O/hexanes to give product **12iii** (580 mg, 0.90 mmol, 82%) as a white solid: R_f $(Et_2O) = 0.35; [\alpha]_D^{21} + 28.3 (c \ 1.20, CHCl_3); mp: 119-120 ^{\circ}C; IR (thin film, cm⁻¹) 3488, 2933,$ 2874, 1778, 1740, 1620, 1448, 1368, 1313, 1244, 1153, 1064, 1026, 1002, 973, 884, 784, 752, 684, 666. ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 5.62 (dddd, J = 10.2, 5.4, 2.4, 2.4 Hz, 1H), 5.54 (dddd, J = 10.2, 4.8, 1.2, 1.2 Hz, 1H), 5.39 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 18.0, 1.8 Hz, 1H), 4.80 (dd, J = 18.0, 1.8 Hz, 1H), 4.74 (dd, J = 9.0, 1.8 Hz, 1H), 4.66 (dd, J = 8.4, 3.6 Hz, 1H), 4.26 (m, 1H), 4.01 (m, 1H), 3.87 (dq, J = 9.0, 6.6 Hz, 1H), 3.35 (dd, J = 9.0, 3.0 Hz, 1H), 2.77 (m, 1H), 2.21-2.03 (m, 5H), 2.11 (s, 3H), 1.90-1.19 (m, 20H), 1.27 (d, J = 6.6 Hz, 3H), 1.20 (d, J = 6.6 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.4, 173.4, 170.4, 131.2, 122.2, 117.7, 100.2, 96.0, 85.6, 79.3, 73.4, 73.0, 70.9, 70.2, 69.2, 50.9, 49.6, 41.9, 40.1, 36.4, 36.3, 35.8, 35.2, 33.1, 30.9, 30.173, 30.170, 26.9, 26.7, 26.6, 23.6, 22.6, 21.4, 21.2, 20.8, 18.2, 15.8; HRESIMS Calcd for [C₃₇H₅₄O₉Na⁺]: 665.3666, Found 665.3658.

Phenylmethyl 3-*O*-acetyl-4-*O*-[2,6-dideoxy- β -D-ribo-hexopyranosyl]-2,6-dideoxy- β -D-ribo-hexopyranoside (13)

To a CH₂Cl₂ (3 mL) solution of olefin 12iii (148 mg, 0.39 mmol) at 0 °C was added a solution of (50% w/v) of N-methyl morpholine N-oxide / water (0.11 mL). Crystalline OsO₄ (1.2 mg, 1 mol %) was added and the reaction was stirred for 3 hours. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 60% EtOAc/hexanes. Pure fractions were combined and concentrated to afford diol 13 (145 mg, 0.35 mmol, 90%): $R_f(70\% \text{ EtOAc/hexanes}) = 0.18$; $[\alpha]_{D}^{21}$ +1.6 (*c* 1.35, CHCl₃); IR (thin film, cm⁻¹) 3436, 2972, 2932, 2879, 1741, 1370, 1247, 1165, 1066, 1012, 868, 740, 698; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 5H), 5.38 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.89 (d, J = 12.0 Hz, 1H), 4.84 (dd, J = 9.6, 2.4 Hz, 1H), 4.79 (dd, J = 9.6, 2.4 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.05 (m, 1H), 3.88 (dq, J = 9.0, 6.0 Hz, 1H), 3.67 (dq, J= 9.0, 6.0 Hz, 1H), 3.35 (dd, J = 9.6, 3.0 Hz, 1H), 3.24 (ddd, J = 9.0, 6.6, 3.6 Hz, 1H), 2.54 (s, 1H), 2.33(d, J = 5.4 Hz, 1H), 2.16 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 2.08 (ddd, J = 14.4, 3.0, 2.4 Hz, 1H)Hz, 1H), 2.06 (s, 3H), 1.82 (ddd, J = 14.4, 9.6, 3.0 Hz, 1H), 1.68 (ddd, J = 14.4, 9.6, 3.0 Hz, 1H), 1.31(d, J = 6.0 Hz, 3H), 1.22(d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 137.6, 128.3 (2C), 127.8 (2C), 127.7, 98.6, 97.2, 79.4, 72.7, 70.5, 69.7, 69.3, 69.2, 68.0, 37.6, 35.6, 21.3, 18.2, 17.9; CLHRMS Calcd for $[C_{21}H_{30}O_8Na^+]$: 433.1833, Found 433.1826.

Digitoxigen 3-*O*-acetyl-4-*O*-[2,6-dideoxy- β -D-ribo-hexopyranosyl]-2,6-dideoxy- β -D-ribo-hexopyranoside (14)

To a t-BuOH/acetone (1:1, 2 mL) solution of olefin 12iii (530 mg, 0.824 mmol) at 0 °C was added a solution of (50% w/v) of N-methyl morpholine N-oxide / water (0.8 mL). Crystalline OsO₄ (2.2 mg, 1 mol %) was added and the reaction was stirred for 8 hours. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using EtOAc. Pure fractions were combined and concentrated to afford alcohol 14 (507 mg, 0.75 mmol, 91%) as a white solid: R_f $(\text{EtOAc}) = 0.33; \ [\alpha]_{\text{D}}^{21} + 23.5 \ (c \ 2.25, \text{CHCl}_3); \text{ IR (thin film, cm}^{-1}) 3467, 2936, 1780, 1741,$ 1618, 1449, 1370, 1246, 1164, 1023, 752, 666; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.36 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.83 (dd, J = 9.6, 1.8 Hz, 1H), 4.80 (d, J = 18.0, 1.2 Hz , 1H), 4.72 (dd, J = 9.6, 1.8 Hz, 1H), 4.07 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 3.99 (m, 1H), 3.82 (dq, J = 9.0, 6.0 Hz, 1H), 3.67 (dq, J = 9.0, 6.0 Hz, 1H), 3.32 (dd, J = 9.6, 3.0 Hz, 1H), 3.25 (dd, J = 9.0, 3.0 Hz, 1H), 2.76 (m, 1H), 2.08 (s, 3H), 2.20-2.02 (m, 5H), 1.90-1.20 (m, 20H), 1.25 (d, *J* = 6.0 Hz, 3H), 1.22 (d, *J* = 6.0 Hz, 3H), 0.91 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.7, 174.6, 170.4, 117.6, 98.6, 95.9, 85.6, 79.5, 73.5, 73.0, 72.8, 70.0, 69.3, 69.1, 68.1, 50.9, 49.6, 41.8, 40.0, 37.6, 36.228, 36.223, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.6, 26.6, 23.6, 21.4(2C), 21.1, 18.2, 18.0, 15.7; HRESIMS Calcd for $[C_{37}H_{56}O_{11}Na^{+}]$: 699.3720, Found 699.3712.

Phenylmethyl 3-O-acetyl-4-O-[3-O-acetyl-2,6-dideoxy- β -D-ribo-hexopyranosyl]-2,6-dideoxy- β -D-ribo-hexopyranoside (15)

A round bottom flask containing a 0.5 M solution of diol 13 (140 mg, 0.34 mmol) in benzene (0.6 mL) was stirring at room temperature. To this solution were added trimethylorthoacetate (0.13 mL, 1.02 mmol) and a catalytic amount of *p*-toluenesulfonic acid (3.2 mg, 17 µmol). The reaction was allowed to stir until starting material is gone. The solvent was removed under reduced pressure and the residue was dissolved in 0.8 mL THF/H₂O (1:1,v/v) solution. Then ptoluenesulfonic acid (97 mg, 0.51 mmol) was added. Stirring was continued until hydrolysis was complete as seen by TLC. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 45% EtOAc/hexanes. Pure fractions were combined and concentrated to afford compound 15 (143 mg, 0.32 mmol, 93%) as a white solid: R_f (80% EtOAc/hexanes) = 0.48; mp: 105-106 °C; $[\alpha]_{D}^{21}$ + 14.8 (*c* 1.15, CHCl₃); IR (thin film, cm⁻¹) 3475, 2972, 2932, 2879, 1741, 1370, 1243, 1165, 1068, 1009, 947, 870, 704; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 5H), 5.39 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.25 (ddd, J = 3.6, 3.0, 2.4 Hz, 1H), 4.89 (d, J = 12.0 Hz ,1H), 4.79 (dd, J = 9.6, 1.8 Hz, 1H), 4.74 (dd, J = 9.6, 1.8 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 3.88 (dq, J = 9.0, 6.0 Hz, 1H), 3.65 (dq, J = 9.0, 6.0 Hz, 1H), 3.36 (dd, J = 9.0, 3.0 Hz, 1H), 3.35 (ddd, J = 9.0, 3.0, 3.0 Hz, 1H), 2.17 (ddd, J = 14.4, 3.6, 1.8 Hz, 1H), 2.13 (s, 3H), 2.08(ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 2.05 (s, 3H), 1.81 (ddd, J = 14.4, 9.6, 3.0 Hz, 1H), 1.78 (ddd, J = 14.4, 9.6, 3.0 Hz , 1H), 1.30 (d, J = 6.0 Hz, 3H), 1.24 (d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.5, 170.4, 137.8, 128.6 (2C), 128.2 (2C), 127.9, 98.8, 97.4, 79.8, 72.2, 71.3, 70.7, 70.4, 69.7, 69.5, 36.1, 35.8, 21.5, 21.4, 18.4, 18.1; CLHRMS Calcd for $[C_{23}H_{32}O_9Na^+]$: 475.1938, Found 475.1926.

Digitoxigen 3-*O*-acetyl-4-*O*-[3-*O*-acetyl-2,6-dideoxy- β -D-ribo-hexopyranosyl]-2,6-dideoxy- β -D-ribo-hexopyranoside (16)

A round bottom flask containing a 0.5 M solution of alcohol 14 (391 mg, 0.578 mmol) in CH₂Cl₂ (2.5 mL) was stirring at room temperature. To this solution were added trimethylorthoacetate (0.22 mL, 1.73 mmol) and a catalytic amount of p-toluenesulfonic acid (5 mg, 29 µmol). The reaction was allowed to stir until starting material was gone. The solvent was removed under reduced pressure and the residue was dissolved in 3 mL THF/H₂O (1:1, v/v) solution. Then ptoluenesulfonic acid (55 mg, 0.29 mmol) was added. Stirring was continued until hydrolysis was complete as seen by TLC. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 90% EtOAc/hexanes. Pure fractions were combined and concentrated to afford compound **16** (413 mg, 0.574 mmol, 99%) as a white solid: R_f (EtOAc) = 0.44; mp: 139-140 °C; $[\alpha]_{D}^{21}$ + 32.5 (c 1.10, CHCl₃); IR (thin film, cm⁻¹) 3460, 2972, 2937, 2876, 1780, 1740, 1619, 1449, 1371, 1318, 1244, 1167, 1066, 1024, 1004, 949, 868, 752; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.37 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 5.25 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.97 (dd, J = 18.0, 1.2 Hz, 1H, 4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.725 (dd, J = 9.6, 1.8 Hz, 1H), 4.718 (dd, J = 9.6, 1.8 Hz, 1H), 4.00 (m, 1H), 3.82 (dq, J = 9.0, 6.0 Hz, 1H), 3.64 (dq, J = 9.6, 6.0 Hz, 1H), 3.36 (ddd, J = 9.0, 6.0, 3.0 Hz, 1H), 3.32 (dd, J = 9.0, 3.0 Hz, 1H), 2.76 (m, 1H), 2.20-1.96 (m, 5H), 2.13 (s, 3H), 2.09 (s, 3H), 1.90-1.15 (m, 20H), 1.241 (d, J = 6.0 Hz, 3H), 1.240 (d, J = 6.0 Hz, 3H), 0.915 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.5, 174.4, 171.2, 170.2, 117.7, 98.5, 95.9, 85.6, 79.5, 73.4, 73.0, 72.1, 71.1, 70.2, 69.8, 69.0, 50.9, 49.6, 41.8, 40.0, 36.2 (2C), 35.8, 35.7, 35.2, 33.1, 30.14, 30.12, 26.9, 26.63, 26.59, 23.6, 21.4, 21.3, 21.1 (2C), 18.2, 17.9, 15.7; HRESIMS Calcd for [C₃₉H₅₈O₁₂Na⁺]:741.3826, Found 741.3819.

Phenylmethyl 3-*O*-acetyl-2,6-dideoxy-4-*O*-[[3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-6-methyl-5-oxo-2*H*-pyran-2-yl]- β -D-ribo-hexopyranosyl]- β -D-ribo-hexopyranoside (15i)

A CH₂Cl₂ (0.3 mL) solution of Boc pyranone 7 (228 mg, 0.62 mmol) and alcohol 15 (141 mg, 0.31 mmol) was cooled to 0 °C. A CH₂Cl₂ (0.2 mL) solution of Pd₂(dba)₃•CHCl₃ (16 mg, 2.5 mol%) and PPh₃ (16 mg, 10 mol%) was added to the reaction mixture at 0 $^{\circ}$ C. The reaction mixture was stirred at 0 °C for 2 hours. The reaction mixture was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 33% EtOAc/hexanes to give enone 15i (138 mg, 0.25 mmol, 79%) as a white solid: R_f (40% EtOAc/hexanes) = 0.18; mp: 95-96 °C; $[\alpha]_D^{21}$ +43.0 (c 0.3, CHCl₃); IR (thin film, cm⁻) ¹)2980, 1740, 1702, 1454, 1372, 1243, 1158, 1055, 1006; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 5H), 6.87 (dd, J = 10.2, 1.2 Hz, 1H), 6.11 (dd, J = 10.2, 1.8 Hz, 1H), 5.40 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.39 (m, 2H), 4.89 (d, J = 12.0 Hz, 1H), 4.79 (dd, J = 9.6, 1.8 Hz, 1H), 4.74 (dd, J = 9.6, 1.8 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.14 (q, J = 6.0 Hz, 1H), 3.88 (dq, J = 9.0, 6.0 Hz, 1H), 3.86 (dq, J = 9.0, 6.0 Hz, 1H), 3. 45 (dd, J = 9.6, 3.0 Hz, 1H), 3. 34 (dd, J = 9.6, 3.0 Hz, 1H), 2.15 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 2.11 (ddd, J = 14.4, 3.6, 2.4 Hz, 1H), 2.09 (s, 3H), 2.06 (s, 3H), 1.81 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.76 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.38 (d, J = 6.6 Hz, 3H), 1.30 (d, J = 6.6 Hz, 3H), 1.26 (d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.1, 170.1, 170.07, 146.2, 137.6, 128.7, 128.3 (2C), 127.8 (2C), 127.7, 98.7, 97.1, 97.07, 79.6, 79.2, 75.1, 70.5, 69.64, 69.60, 69.2, 69.0, 35.9, 35.7, 21.24, 21.20, 18.2, 18.0, 16.3; CLHRMS Calcd for [C₂₉H₃₈O₁₁Na⁺]: 585.2306, Found 585.2299.

Digitoxigen 3-*O*-acetyl-2,6-dideoxy-4-*O*-[[3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-6-methyl-5-oxo-2*H*-pyran-2-yl]- β -D-ribo-hexopyranosyl]- β -D-ribo-hexopyranoside (16i)

A CH₂Cl₂ (1.0 mL) solution of Boc pyranone 7 (418 mg, 1.83 mmol) and alcohol 16 (410 mg, 0.57 mmol) was cooled to 0 °C. A CH₂Cl₂ (0.3 mL) solution of Pd₂(DBA)₃•CHCl₃ (15 mg, 2.5 mol%) and PPh₃ (15 mg, 10 mol%) was added to the reaction mixture at 0 $^{\circ}$ C. The reaction mixture was stirred at 0 °C for 8 hours and was quenched with 10 mL of saturated ageous NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 58% EtOAc/hexanes to give enone 16i (425 mg, 0.513 mmol, 90%) as a white solid: R_f (60%) EtOAc/hexanes) = 0.27; mp: 174-175 °C; $[\alpha]_{D}^{21}$ + 58.3 (c 1.40, CHCl₃); IR (thin film, cm⁻¹) 3524, 2980, 2938, 2876, 1780, 1744, 1702, 1622, 1449, 1372, 1243, 1156, 1094, 1056, 1026, 1004, 950, 756; ¹H NMR (600 MHz, CDCl₃) δ 6.87 (dd, J = 10.2, 1.8 Hz, 1H), 6.10 (dd, J = 10.2, 1H Hz, 1H), 6.10 (dd, J = 10.2, 1H Hz, 1Hz, 1H), 10.2, 1.2 Hz, 1H), 5.86 (m, 1H), 5.40-5.36 (m, 3H), 4.97 (dd, J = 18.0, 1.2 Hz, 1H), 4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.73 (dd, J = 9.6, 1.8 Hz, 1H), 4.71 (dd, J = 9.6, 1.8 Hz, 1H), 4.14 (q, J = 6.6Hz, 1H), 3.99 (m, 1H), 3.86 (dq, J = 9.6, 6.0 Hz, 1H), 3.81 (dq, J = 9.6, 6.0 Hz, 1H), 3. 44 (dd, J = 9.0, 3.0 Hz, 1H), 3. 31 (dd, J = 9.6, 3.0 Hz, 1H), 2.76 (m, 1H), 2.20-2.00 (m, 5H), 2.09 (s, 3H), 2.08 (s, 3H), 1.90-1.15 (m, 20H), 1.38 (d, J = 6.6 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.23 (d, J =6.0 Hz, 3H), 0.91 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.1, 174.5, 174.4, 170.2, 170.1, 146.2, 128.7, 117.6, 98.7, 97.1, 95.9, 85.5, 79.6, 79.2, 75.1, 73.4, 73.0, 70.0, 69.7, 68.99, 68.97, 50.9, 49.6, 41.8, 40.0, 36.3, 36.2, 35.9, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.62 26.59, 23.6, 21.4, 21.3, 21.2, 21.1, 18.2, 18.0, 16.3, 15.7; HRESIMS Calcd for [C₄₅H₆₄O₁₄Na⁺]: 851.4194, Found 851.4183.

Phenylmethyl 3-*O*-acetyl-2,6-dideoxy-4-*O*-[[3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-5-hydroxy-6-methyl-2*H*-pyran-2-yl]- β -D-ribo-hexopyranosyl]- β -D-ribo-hexopyranoside (15ii)

A CH₂Cl₂ (0.3 mL) solution of enone **15i** (138 mg, 0.245 mmol) and CeCl₃ in MeOH solution (0.3 mL) was cooled to -78 °C. NaBH₄ (10 mg, 0.25 mmol) was added and the reaction mixture was stirred at -78°C for 3 hours. The reaction mixture was diluted with Et₂O (5 mL) and was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 50% EtOAc/hexanes to give allylic alcohols 15ii (374 mg, 1.70 mmol, 85%) as a viscous oil (diastereometric ratio I:II = 1.4:1, inseparable in chromatography): R_f (60% EtOAc/hexanes) = 0.25; IR (thin film, cm⁻¹) 3478, 2972, 2932, 2874, 1742, 1371, 1243, 1156, 1059, 1010; ¹H NMR (600 MHz, CDCl₃): isomer I: δ 7.33 (m, 5H), 6.15 (dd, J = 10.2, 6.0, Hz, 1H), 5.72 (d, J = 9.6 Hz, 1H), 5.54 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 5.40 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.12 (m, 1H), 4.89 (d, J = 12.0 Hz, 1H), 4.788 (dd, J = 9.6, 3.0, 3.0 Hz, 1H), 5.12 (m, 1H), 4.89 (d, J = 12.0 Hz, 1H), 4.788 (dd, J = 9.6, 3.0, 3.0 Hz, 1H), 5.12 (m, 1H), 5.12 2.4 Hz, 1H), 4.75 (dd, J = 9.6, 1.8 Hz, 1H), 4.551 (d, J = 12.0 Hz, 1H), 3.88 (dq, J = 9.6, 6.0 Hz, 1H), 3.87 (m, 1H), 3.77 (dq, J = 9.6, 6.0 Hz, 1H), 3.68 (qd, J = 6.0, 1.8 Hz, 1H), 3.58 (dd, J = 6.0, 1.8 Hz, 1 11.4, 5.4 Hz, 1H), 3.39 (dd, J = 9.6, 3.0 Hz, 1H), 3.34 (dd, J = 9.6, 3.6 Hz, 1H), 2.16 (ddd, J = 9.6, 3.6 Hz, 1H), 2.16 (ddd, J = 9.6, 3.6 Hz, 1H), 3.39 (dd, J = 9.6, 3.0 Hz, 1H), 3.34 (dd, J = 9.6, 3.6 Hz, 1H), 3.16 (ddd, J = 9.6, 3.16 (ddd, Hz, 1H), 3.16 (ddd, Hz, 1H), 3.16 (dd 14.4, 3.6, 2.4 Hz, 1H), 2.08 (s, 3H), 2.069 (s, 3H), 2.02 (ddd, J = 14.4, 3.0, 2.4 Hz, 1H), 1.79 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.72 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.70 (s, 1H), 1.31 (d, J = 14.4, 9.0, 3.0 Hz, 10.1 Hz)6.6 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.21 (d, J = 6.6 Hz, 3H); isomer II: δ 7.33 (m, 5H), 5.94 (ddd, *J* = 10.8, 1.8, 1.8 Hz, 1H), 5.86 (d, *J* = 10.2 Hz, 1H), 5.75 (ddd, *J* = 10.2, 1.8, 1.2 Hz, 1H), 5.39 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.38 (ddd, J = 3.0, 3.0, 2.4 Hz, 1H), 5.13 (m, 1H), 4.88 (d, J = 12.0 Hz, 1H), 4.783 (dd, J = 9.6, 2.4 Hz, 1H), 4.71 (dd, J = 9.6, 1.8 Hz, 1H), 4.548 (d, J = 12.0Hz, 1H), 3.87 (m, 1H), 3.83 (dq, J = 9.6, 6.0 Hz, 1H), 3.54 (dq, J = 6.6, 6.0 Hz, 1H), 3.35 (m, 2H), 2.32 (d, *J* = 11.4 Hz, 1H), 2.16 (ddd, *J* = 14.4, 3.6, 2.4 Hz, 1H), 2.09 (s, 3H), 2.056 (s, 3H), 2.02 (ddd, J = 14.4, 3.0, 2.4 Hz, 1H), 1.81 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.76 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.29 (d, J = 6.6 Hz, 3H), 1.27 (d, J = 6.6 Hz, 3H), 1.23 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) isomer I: δ 170.1 (2C), 133.0 (2C), 131.7, 128.1 (2C), 127.7 (3C), 98.75 (2C), 98.24, 98.22, 79.5, 77.8, 71.4, 69.9, 69.7, 69.2, 69.1, 64.4, 36.0, 35.7, 21.30, 21.28, 18.18, 18.03, 17.9; isomer II: δ 170.3 (2C), 137.6 (2C), 129.2, 128.3 (2C), 127.8 (3C), 98.72, 97.6, 97.2 (2C), 79.6, 78.0, 74.5, 70.5, 70.2, 69.6, 69.3, 68.4, 35.9, 35.6, 21.28, 21.26, 18.17, 18.16, 16.7; CLHRMS Calcd for $[C_{29}H_{40}O_{11}Na^+]$: 587.2463, Found 587.2453.

Digitoxigen 3-*O*-acetyl-2,6-dideoxy-4-*O*-[[3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2R,6R)-5,6-dihydro-5-hydroxy-6-methyl-2*H*-pyran-2-yl]- β -D-ribo-hexopyranosyl]- β -D-ribo-hexopyranoside (16ii)

A CH₂Cl₂ (1.2 mL) solution of enone 16i (405 mg, 0.488 mmol) and CeCl₃ in MeOH solution (0.4 M, 1.2 mL) was cooled to -78 °C. NaBH₄ (18.5 mg, 0.49 mmol) was added and the reaction mixture was stirred at -78°C for 3 hours. The reaction mixture was diluted with Et₂O(20 mL) and was quenched with 10 mL of saturated aqueous NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 85% EtOAc/hexanes to give allylic alcohols 16ii (397 mg, 0.478 mmol, 98%) as a white solid (diastereometric ratio I:II = 1.7:1, inseparable in chromatography): R_f (90% EtOAc/hexanes) = 0.33; IR (thin film, cm⁻¹) 3480, 2972, 2934, 2876, 1780, 1742, 1621, 1449, 1372, 1316, 1244, 1155, 1060, 1025, 1008, 755, 668; ¹H NMR (600 MHz, CDCl₃): isomer I: δ 6.14 (ddd, J = 9.6, 5.4, 1.2 Hz, 1H), 5.84 (m, 1H), 5.70 (dd, J = 10.2, 1.2 Hz, 1H), 5.51 (ddd, J = 3.6, 3.0, 3.0Hz, 1H), 5.36 (ddd, J = 3.6, 3.0, 3.0Hz, 1H), 5.10 (ddd, J= 1.2, 1.2, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.8 Hz, 1H), 4.710 (dd, J = 9.6, 1.8 Hz, 1H), 4.706 (dd, J = 9.6, 1.8 Hz, 1H), 3.98 (m, 1H), 3.80 (dq, J = 9.6, 6.0 Hz)1H), 3.74 (dq, J = 9.6, 6.0 Hz, 1H), 3.66 (qd, J = 6.0, 1.8 Hz, 1H), 3.57 (m, 1H), 3.37 (dd, J =9.6, 3.0 Hz, 1H), 3.30 (dd, J = 9.0, 3.0 Hz, 1H), 2.75 (dd, J = 9.6, 6.0 Hz, 1H), 2.20-1.96 (m, 5H), 2.073 (s, 3H), 2.05 (s, 3H), 1.90-1.12 (m, 20H), 1.23 (d, J = 6.0 Hz, 3H), 1.22 (d, J = 6.6 Hz, 3H), 1.19 (d, J = 6.6 Hz, 3H), 0.90 (s, 3H), 0.85 (s, 3H); isomer II: δ 5.92 (ddd, J = 10.2, 2.4, 1.8 Hz, 1H), 5.84 (m, 1H), 5.74 (ddd, J = 10.2, 2.4, 1.8 Hz, 1H), 5.35 (m, 2H), 5.12 (ddd, J = 1.8, 1.8, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.8 Hz, 1H), 4.70 (dd, J = 9.6, 1.8 Hz, 1H), 4.67 (dd, J = 9.6, 1.8 Hz, 1H), 3.98 (m, 1H), 3.84 (m, 1H), 3.79 (m, 2H), 3.52 (dq, J = 6.0, 6.0 Hz, 1H), 3.33 (dd, J = 9.6, 3.0 Hz, 1H), 3.28 (dd, J = 9.0, 3.0 Hz, 1H), 2.75 (dd, J = 9.0, 3.0 Hz, 1H), 2.75 (dd, J = 9.0, 3.0 Hz, 1H), 3.33 (dd, J = 9.0, 3.0 Hz, 1H), 3.34 (dd, J = 9.0, 3.0 Hz, 1H), 3J = 9.6, 6.0 Hz, 1H), 2.20-1.96 (m, 5H), 2.071 (s, 3H), 2.066 (s, 3H), 1.90-1.12 (m, 20H), 1.26 (d, J = 6.0 Hz, 3H), 1.21 (d, J = 6.0 Hz, 3H), 1.20 (d, J = 6.0 Hz, 3H), 0.90 (s, 3H), 0.85 (s, 3H);¹³C NMR (150 MHz, CDCl₃) isomer I: δ 174.5, 174.4, 170.3 (2C), 131.7, 129.2, 117.6, 98.72, 98.2, 95.9, 85.6, 79.46, 77.8, 73.4, 73.0, 70.2, 69.06(2C), 69.04, 68.4, 50.9, 49.6, 41.8, 40.0, 36.28, 36.24, 36.0, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.63, 26.59, 23.6, 21.35, 21.34, 21.30, 21.1, 18.21, 17.9, 16.7, 15.7; isomer II: δ 174.5, 174.4, 170.2 (2C), 132.9, 128.1, 98.70, 97.6, 95.9, 85.6, 79.53, 78.0, 74.5, 73.4, 71.4, 69.98, 69.94, 69.2, 68.4, 64.4, 50.9, 49.6, 41.8, 40.0, 36.25, 36.24, 35.9, 35.7, 35.1, 33.1, 30.1(2C), 26.9, 26.63, 26.59, 23.6, 21.35, 21.34, 21.27, 21.1, 18.19, 18.16, 18.0, 15.7; HRESIMS Calcd for $[C_{45}H_{66}O_{14}Na^{+}]$: 853.4350, Found 853.4339.

Phenylmethyl3-O-acetyl-2,6-dideoxy-4-O-[[3-O-acetyl-2,6-dideoxy-4-O-[(2S,6R)-3,6-
dihydro-6-methyl-2H-pyran-2-yl]- β -D-ribo-hexopyranosyl]- β -D-ribo-hexopyranoside
(15iii)

A flask was charged with dry N-methyl morpholine (NMM) 0.4 mL, triphenyl phosphine (191 mg, 0.73 mmol) and was cooled to -30°C under Ar atmosphere. Diethylazodicarboxylate (0.1 mL, 0.66 mmol) was added and the reaction was stirred for 5 minutes, allylic alcohols 15ii (125 mg, 0.22 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 minutes, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (135 mg, 0.66 mmol). The reaction was stirred at -30 °C for 4hours and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 2hours. The reaction mixture was diluted with Et₂O (10 mL) and was quenched with 5 mL of saturated aqueous NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 20% EtOAc/hexanes to give product 15iii (97 mg, 0.18 mmol, 81%) as a white solid: R_f $(50\% \text{ EtOAc/hexanes}) = 0.44; \text{ mp: } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ [\alpha]_{D}^{21} + 38.0 \ (c \ 0.9, \text{ CHCl}_3); \text{ IR (thin film, } 101-101.5 \text{ }^{\circ}\text{C}; \ (c \ 0.9, \text{ }^{\circ}\text{C}; \ ($ cm⁻¹) 2981, 2932, 2871, 1742, 1368, 1243, 1157, 1090, 1067, 1008, 704; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 5H), 5.62 (dddd, J = 10.2, 4.8, 2.4, 2.4 Hz, 1H), 5.53 (ddd, J = 9.6, 1.2, 1.2Hz, 1H), 5.41 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.37 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.89 (d, J = 12.0 Hz, 1H), 4.78 (dd, J = 9.6, 1.8 Hz, 1H), 4.71 (dd, J = 9.6, 1.8 Hz, 1H), 4.65 (dd, J = 8.4, 3.6 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.25 (m, 1H), 3.87 (dq, J = 9.0, 6.0 Hz, 1H), 3.84 (dq, J = 9.6, 6.0 Hz, 1H), 3.34 (dd, J = 9.6, 3.6 Hz, 1H), 3.28 (dd, J = 9.6, 3.6Hz, 1H), 2.14 (m, 4H), 2.11 (s, 3H), 2.06 (s, 3H), 1.81 (dddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.74 (dddd, J = 14.4, 9.6, 3.0 Hz, 1H), 1.30 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 6.6 Hz, 3H), 1.20 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 170.1, 137.6, 131.1, 128.3 (2C), 127.8 (2C), 127.7, 122.2, 100.3, 98.8, 97.2, 79.5, 78.9, 70.9, 70.5, 70.1, 69.7, 69.3, 69.2, 35.9, 35.7, 30.9, 21.33, 21.26, 20.8, 18.2, 18.0; CLHRMS Calcd for $[C_{29}H_{40}O_{10}Na^+]$: 571.2514, Found 571.2525.

Digitoxigen 3-*O*-acetyl-2,6-dideoxy-4-*O*-[[3-*O*-acetyl-2,6-dideoxy-4-*O*-[(2S,6R)-3,6-dihydro-6-methyl-2*H*-pyran-2-yl]- β -D-ribo-hexopyranosyl]- β -D-ribo-hexopyranoside (16iii)

A flask was charged with dry N-methyl morpholine (NMM) 2.0 mL, triphenyl phosphine (411 mg, 1.57 mmol) and was cooled to -30 °C under Argon atmosphere. Diethylazodicarboxylate (0.22 mL, 1.42 mmol) was added and the reaction was stirred for 5 minutes, allylic alcohols 16ii (395 mg, 0.475 mmol) was added in a 1 M solution of NMM and the reaction mixture was stirred for 10 minutes, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (289 mg, 1.42 mmol). The reaction was stirred at -30 °C for 4 hours and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 1 hour. The reaction mixture was diluted with Et_2O (20 mL) and was quenched with 10 mL of H_2O , extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 88% Et₂O/hexanes to give product **16iii** (345 mg, 0.42 mmol, 89%) as a white solid: R_f (Et₂O) = 0.33; mp: 144-145 °C; $[\alpha]_{D}^{21}$ +48.2 (*c* 1.50, CHCl₃); IR (thin film, cm⁻¹) 3516, 2967, 2935, 2871, 1782, 1742, 1621, 1449, 1369, 1316, 1243, 1155, 1091, 1064, 1047, 1026, 1005, 950, 882, 753; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.61 (dddd, J = 9.6, 4.8, 2.4, 2.4 Hz, 1H), 5.53 (dddd, J =10.2, 2.4, 1.2, 1.2 Hz, 1H), 5.38 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.36 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.97 (dd, J = 18.0, 1.2 Hz, 1H), 4.79 (dd, J = 18.0, 1.2 Hz, 1H), 4.72 (dd, J = 9.6, 1.8 Hz, 1H), 4.69 (dd, J = 9.6, 1.8 Hz, 1H), 4.65 (dd, J = 8.4, 3.6 Hz, 1H), 4.25 (m, 1H), 3.99 (m, 1H), 3.84 (dq, J = 9.0, 6.0 Hz, 1H), 3.82 (dq, J = 9.6, 6.0 Hz, 1H), 3.31 (dd, J = 9.6, 3.0 Hz, 1H), 3.28(dd, J = 9.6, 3.0 Hz, 1H), 2.76 (m, 1H), 2.20-2.02 (m, 6H), 2.10 (s, 3H), 2.09 (s, 3H), 1.90-1.15 (m, 21H), 1.23 (d, J = 6.6 Hz, 3H), 1.22 (d, J = 6.6 Hz, 3H), 1.20 (d, J = 6.6 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.45, 174.41, 170.3, 170.2, 131.1, 122.2, 117.7, 100.3, 98.8, 95.9, 85.6, 79.5, 79.0, 73.4, 73.0, 70.9, 70.10, 70.06, 69.2, 69.1, 50.9, 49.6, 41.9, 40.1, 36.30, 36.25, 35.9, 35.8, 35.2, 33.1, 30.9, 30.2 (2C), 26.9, 26.65, 26.61, 23.6, 21.37, 21.35, 21.34, 21.1, 20.8, 18.2, 18.0, 15.8; HRESIMS Calcd for [C₄₅H₆₆O₁₃Na⁺]: 837.4401, Found 837.4390.

3-O-acetyl-2,6-dideoxy-4-O-[[3-O-acetyl-4-O-[2,6-dideoxy-β-D-ribo-

hexopyranosyl]-2,6-dideoxy-β-D-ribo-hexopyranosyl]-β-D-ribo-hexopyranoside (15iv)

Phenylmethyl

To a CH₂Cl₂ (0.6 mL) solution of olefin **15iii** (94 mg, 0.17 mmol) at 0 °C was added a solution of (50% w/v) of N-methyl morpholine N-oxide / water (80 µL). Crystalline OsO₄ (0.4 mg, 1 mol %) was added and the reaction was stirred for 3 hours. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 60% EtOAc/hexanes. Pure fractions were combined and concentrated to afford alcohol 15iv (92 mg, 0.16 mmol, 92%) as a white solid: R_f (80% EtOAc/hexanes) = 0.25; mp: 167-167.5 °C; $[\alpha]_{D}^{21}$ +35.0 (c 1.45, CHCl₃); IR (thin film, cm⁻¹) 3455, 2972, 2932, 2880, 1741, 1370, 1244, 1162, 1065, 1011, 869, 704; ¹H NMR (600 MHz, $CDCl_3$) δ 7.33 (m, 5H), 5.39 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 5.34 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.88 (d, J = 12.0 Hz, 1H), 4.81 (dd, J = 9.6, 1.8 Hz, 1H), 4.78 (dd, J = 9.6, 1.8 Hz, 1H), 4.70 (dd, J = 9.6, 1.8 Hz, 1H), 4.54 (d, J = 12.0 Hz, 1H), 4.05 (m, 1H), 3.86 (dq, J = 9.0, 6.0 Hz, 1H), 3.80 (dq, J = 9.0, 6.0 Hz, 1H), 3.65 (dq, J = 9.0, 6.0 Hz, 1H), 3.33 (dd, J = 9.6, 3.0 Hz, 1H), 3.27 (dd, J = 9.6, 3.6 Hz, 1H), 3.23 (ddd, J = 9.6, 6.0, 3.6 Hz, 1H), 2.47 (s, 1H), 2.25 (d, J = 6.6 Hz, 1H)1H), 2.15 (ddd, J = 14.4, 3.6, 1.8 Hz, 1H), 2.09 (s, 3H), 2.08 (ddd, J = 14.4, 3.0, 1.8 Hz, 1H), 2.06 (ddd, J = 14.4, 3.0, 1.8 Hz, 1H), 2.05 (s, 3H), 1.80 (ddd, J = 14.4, 9.6, 2.4 Hz, 1H), 1.72 (ddd, J = 14.4, 9.6, 3.0 Hz, 1H), 1.66 (ddd, J = 13.8, 9.6, 3.0 Hz, 1H), 1.29 (d, J = 6.6 Hz, 3H),1.22 (d, J = 6.0 Hz, 3H), 1.20 (d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 170.2, 137.6, 128.3(2C), 127.8 (2C), 127.7, 98.8, 98.7, 97.2, 79.5, 79.2, 72.7, 70.5, 69.9, 69.7, 69.3 (2C), 69.1, 68.0, 37.6, 35.9, 35.6, 21.3, 21.2, 18.2, 17.9 (2C); CIHRMS Calcd for $[C_{29}H_{42}O_{12}Na^+]$: 605.2568, Found 605.2580.

Digitoxigen

hexopyranosyl]-2,6-dideoxy-β-D-ribo-hexopyranosyl]-β-D-ribo-hexopyranoside (16iv)

To a CH₂Cl₂ (0.8 mL) solution of olefin **16iii** (115 mg, 0.14 mmol) at 0 °C was added a solution of (50% w/v) of N-methyl morpholine N-oxide / water (100 µL). Crystalline OsO₄ (0.4 mg, 1 mol %) was added and the reaction was stirred for 4 hours. The reaction was concentrated and was purified by a silica gel column using EtOAc. Pure fractions were combined and concentrated to afford alcohol **16iv** (110 mg, 0.13 mmol, 91%) as a white solid: R_f (EtOAc) = 0.31; mp: 162-163 °C; $[\alpha]_{D}^{21}$ +47.2 (*c* 1.0, CHCl₃); IR (thin film, cm⁻¹) 3494, 2962, 2934, 2881, 1780, 1741, 1624, 1449, 1370, 1246, 1164, 1064, 1024, 948, 870, 753; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (m, 1H), 5.37 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 5.33 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.98 (dd, J = 18.0, 1.8 Hz, 1H), 4.82 (dd, J = 9.6, 1.8 Hz, 1H), 4.80 (dd, J = 18.0, 1.2 Hz, 1H), 4.71 (dd, J = 9.0, 1.8 Hz, 1H), 4.67 (dd, J = 9.6, 1.8 Hz, 1H), 4.08 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 3.99 (m, 1H), 3.82 (dq, J = 9.0, 6.0 Hz, 1H), 3.79 (dq, J = 9.6, 6.0 Hz, 1H), 3.66 (dq, J =9.6, 6.0 Hz, 1H), 3.29 (dd, J = 9.6, 3.0 Hz, 1H), 3.26 (dd, J = 9.6, 3.0 Hz, 1H), 3.25 (ddd, J = 9.6, 6.0, 3.0 Hz, 1H), 2.76 (m, 1H), 2.20-2.01 (m, 6H), 2.09 (s, 6H), 1.90-1.18 (m, 21H), 1.22 (d, J = 6.0 Hz, 6H), 1.19 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.7, 174.6, 170.33, 170.27, 117.6, 98.76, 98.71, 95.8, 85.6, 79.6, 79.2, 73.5, 73.0, 72.8, 70.02, 69.95, 69.3, 69.08, 69.05, 68.0, 50.9, 49.6, 41.8, 40.0, 37.7, 36.250, 36.245, 35.9, 35.7, 35.2, 33.1, 30.14, 30.12, 26.9, 26.63, 26.60, 23.6, 21.37, 21.34, 21.32, 21.1, 18.2, 17.97, 17.95, 15.8; HRESIMS Calcd for [C₄₅H₆₈O₁₅Na⁺]: 871.4456, Found 871.4448.

Phenylmethyl 2,6-dideoxy-4-O-[[2,6-dideoxy- β -D-ribo-hexopyranosyl]-2,6-dideoxy- β -D-ribo-hexopyranosyl]- β -D-ribo-hexopyranoside (17)

To a MeOH/H₂O (0.3 mL, 1:1, 1M) solution of alcohol 15iv (14 mg, 24 µmol) at room temperature was added LiOH (2.5 mg, 60 µmol) and the reaction was stirred for 3 hours. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 75% EtOAc/hexanes. Pure fractions were combined and concentrated to afford 17 (11.5 mg, 23 µmol, 96%) as a white solid: R_f (80% EtOAc/hexanes) = 0.18; mp: 120-121 °C; $[\alpha]_D^{21}$ -13.3 (*c* 0.60, CHCl₃); IR (thin film, cm⁻¹) 3424, 2927, 2886, 1455, 1369, 1318, 1163, 1130, 1068, 1012, 869, 733, 699; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 5H), 4.91 (dd, J = 9.6, 3.0 Hz, 1H), 4.90 (m, 2H), 4.88 (d, J = 12.0 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.25 (m, 2H), 4.12 (ddd, J = 3.6, 3.6, 2.4 Hz, 1H), 3.83 (dq, J = 9.6, 6.0 Hz, 1H), 3.81(dq, J = 9.0, 6.0 Hz, 1H), 3.76 (dq, J = 9.6, 6.0 Hz, 1H), 3.30(m, 1H), 3.26 (dd, J = 9.6, 3.0 Hz, 1H), 3.20 (dd, J = 9.6, 3.0 Hz, 1H), 2.99 (s, 1H), 2.95 (s, 1H), 2.33 (s, 1H), 2.16 (ddd, J = 13.8, 3.6, 2.4 Hz, 1H), 2.14 (ddd, J = 14.4, 3.0, 2.4 Hz, 1H), 2.11 (ddd, J = 13.8, 3.0, 2.4 Hz, 1H), 2.03 (s, 1H), 1.78 (ddd, J = 14.4, 9.0, 3.0 Hz, 1H), 1.74 (m, 2H), 1.28 (d, J = 6.6 Hz, 6H), 1.22 (d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.8, 128.3 (2C), 127.9 (2C), 127.6, 98.30, 98.26, 97.1, 82.6, 82.2, 72.7, 70.6, 69.5, 68.32, 68.26, 68.1, 66.4, 66.2, 37.8, 36.7, 36.6, 18.2 (2C), 18.1; CLHRMS Calcd for [C₂₅H₃₈O₁₀Na⁺]: 521.2357, Found 521.2360.

Digitoxin (3)

To a MeOH/H₂O (2 mL, 4:1) solution of diacetate 16iv (20 mg, 23.5 µmol) at room temperature was added LiOH·H₂O (3 mg, 70 µmol) and the reaction was stirred for 2 hours. The reaction was quenched with adding 5 mL pH = 6.0 buffering solution. The mixture was extracted with CH₂Cl₂ (3×5 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. It was purified by a silica gel column using 5% MeOH/EtOAc. Pure fractions were combined, concentrated, and crystallized from acetone/hexanes to afford digitoxin 3 (15 mg, 19.6 µmol, 83%) as a white crystal: R_f (EtOAc) = 0.20; mp: 253-254 °C; $[\alpha]_D^{21}$ +18.0 (c 0.20, CHCl₃); IR (thin film, cm⁻¹) 3466, 2926, 2856, 1777, 1736, 1449, 1378, 1368, 1163, 1128, 1068, 1013, 991, 869, 732; ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 4.98 (dd, J = 18.0, 1.8 Hz, 1H), 4.91 (dd, J = 9.6, 1.8 Hz, 1H), 4.89 (dd, J = 9.6, 1.8 Hz, 1H), 4.86 (dd, J = 9.6, 1.8 Hz, 1H), 4.80 (dd, J = 18.0, 1.8 Hz, 1H), 4.25 (ddd, J = 3.0, 3.0, 3.0 Hz, 1H), 4.24 (ddd, J = 3.0, 3.0, 3.0Hz, 1H), 4.13 (m, 1H), 4.02 (m, 1H), 3.83 (dq, J = 9.6, 6.0 Hz, 1H), 3.78 (dq, J = 9.6, 6.0 Hz, 1H), 3.76 (dq, J = 9.6, 6.0 Hz, 1H), 3.31 (ddd, J = 9.6, 6.0, 3.0 Hz, 1H), 3.24 (dd, J = 9.0, 3.0 Hz, 1H)1H), 3.20 (dd, J = 9.6, 3.0 Hz, 1H), 3.03 (s, 1H), 2.96 (s, 1H), 2.39 (s, 1H), 2.77 (m, 1H), 2.19-1.99 (m, 6H), 2.02 (s, 1H), 2.01 (s, 1H), 1.90-1.18 (m, 21H), 1.28 (d, J = 6.0 Hz, 3H), 1.223 (d, J = 6.0 Hz, 3H), 1.221 (d, J = 6.0 Hz, 3H), 0.92 (s, 3H), 0.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.51, 174.48, 117.7, 98.3, 98.2, 95.4, 85.6, 82.6, 82.2, 73.4, 72.7 (2C) 72.5, 69.5, 68.3, 68.11, 68.08, 66.5, 66.4, 51.0, 49.6, 41.9, 40.1, 37.8, 37.2, 36.7, 36.2, 35.8, 35.2, 33.2, 30.2, 29.8, 26.9, 26.7, 26.5, 23.6, 21.4, 21.2, 18.16, 18.13, 15.8; HRESIMS Calcd for $[C_{41}H_{64}O_{13}Na^{+}]$: 787.4245, Found 787.4237.

Phenylmethyl

hexopyranoside (18)

To a MeOH/H₂O (0.1 mL, 1:1, 1M) solution of diol 13 (6 mg, 14.6 µmol) at room temperature was added LiOH (0.35 mg, 14.6 µmol) and the reaction was stirred for 3 hours. The reaction was quenched by adding EtOAc and saturated aqueous NaHCO₃. The organic layer was separated and concentrated. It was purified by a silica gel column using 65% EtOAc/hexanes. Pure fractions were combined and concentrated to afford triol 18 (5 mg, 13.6 µmol, 93%) as a white solid: $R_f(80\% \text{ EtOAc/hexanes}) = 0.28$; mp: 145-145.5 °C; $[\alpha]_D^{21}$ -44.0 (*c* 0.20, CHCl₃); IR (thin film, cm⁻¹) 3437, 2962, 2931, 2886, 1454, 1405, 1368, 1164, 1068, 1011, 868, 735, 698; ¹H NMR (600 MHz, CDCl₃) δ 7.32 (m, 5H), 4.92 (m, 1H), 4.91 (m, 1H), 4.88 (d, J = 12.0 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.26 (dddd, J = 6.6, 3.6, 3.6, 1.8 Hz, 1H), 4.12 (dddd, J = 5.4, 4.2, 3.0, 2.4 Hz, 1H), 3.82 (dq, J = 9.0, 6.0 Hz, 1H), 3.67 (dq, J = 9.6, 6.0 Hz, 1H), 3.30 (ddd, J= 9.6, 6.6, 3.0 Hz, 1H), 3.26 (dd, J = 9.6, 3.0 Hz, 1H), 2.96 (m, J = 2.4, 1.8, 1.2 Hz, 1H), 2.28 (d, *J* = 1.2 Hz, 1H), 2.17 (ddd, *J* = 14.4, 4.2, 2.4 Hz, 1H), 2.13 (ddd, *J* = 14.4, 3.0, 2.4 Hz, 1H), 1.96 (d, J = 6.6 Hz, 1H), 1.79 (m, 1H), 1.75 (m, 1H), 1.29 (d, J = 6.0 Hz, 3H), 1.28(d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.8, 128.4 (2C) , 127.9 (2C), 127.6, 98.3, 97.1, 82.7, 72.8, 70.6, 69.5, 68.3, 68.2, 66.3, 37.9, 36.6, 18.2, 18.1; CLHRMS Calcd for [C₁₉H₂₈O₇Na⁺]: 391.1727, Found 391.1726.

2,6-dideoxy-4-O-[2,6-dideoxy-β-D-ribo-hexopyranosyl]-β-D-ribo-

Digitoxigen hexopyranosid (2)

To a MeOH/H₂O (0.3 mL, 4:1, 1M) solution of alcohol 14 (17 mg, 25 µmol) at room temperature was added LiOH·H₂O (1.6 mg, 38 μ mol) and the reaction was stirred for 3 hours. The reaction was quenched with 5 mL pH = 6.0 buffering solution. The mixture was extracted with CH₂Cl₂ (3×5 mL). The organic layer was dried (Na₂SO₄), and concentrated under reduced pressure. It was purified by a silica gel column using EtOAc. Pure fractions were combined and concentrated, and further crystallized from CHCl₃/Et₂O to afford 2 (13 mg, 20.5 µmol, 82%) as a white solid: $R_f(EtOAc) = 0.27$; mp: 230-231 °C; $[\alpha]_D^{21} + 6.0$ (c 0.40, CHCl₃); IR (thin film, cm⁻¹) 3450, 2933, 2876, 1778, 1740, 1621, 1449, 1380, 1165, 1132, 1067, 1013, 867, 754, 667; ¹H NMR (600 MHz, CDCl₃) δ 5.87 (m, 1H), 4.98 (dd, J = 18.0, 1.2 Hz, 1H), 4.91 (dd, J = 9.6, 2.4 Hz, 1H), 4.86 (dd, J = 9.6, 2.4 Hz, 1H), 4.80 (dd, J = 18.0, 1.2 Hz, 1H), 4.24 (ddd, J = 3.6, 3.0, 3.0Hz, 1H), 4.13 (ddd, J = 3.6, 3.0, 3.0Hz, 1H), 4.02 (m, 1H), 3.77 (dq, J = 9.0, 6.0 Hz, 1H), 3.66 (dq, J = 9.6, 6.0 Hz, 1H), 3.31 (m, 1H), 3.24 (dd, J = 9.6, 3.0 Hz, 1H), 3.02 (s, 1H), 2.77 (m, 1H), 2.33 (s, 1H), 2.20-2.00 (m, 5H), 1.90-1.20 (m, 20H), 1.29 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 6.0 Hz, 3H), 0,92 (s, 3H), 0,87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.52, 174.48, 117.7, 98.2, 95.4, 85.6, 82.7, 73.4, 72.8, 72.6, 69.5, 68.2, 68.1, 66.5, 51.0, 49.6, 41.9, 40.1, 37.9, 37.2, 36.2, 35.8, 35.2, 33.2, 30.2, 29.8, 26.9, 26.7, 26.6, 23.6, 21.4, 21.2, 18.2, 18.1, 15.8; HRESIMS Calcd for $[C_{35}H_{54}O_{10}Na^+]$: 657.3615, Found 657.3608.

O-2,6-dideoxy- β -D-ribo-hexopyranosyl- $(1\rightarrow 4)-2,6$ -dideoxy-D-ribo-hexose (20)

To an EtOH (2 mL) solution of 18 (15.6 mg, 42 µmol) under H₂ atmosphere at room temperature was added Pd/C (8 mg) and the reaction was stirred for 6 hours. The reaction mixture was filtered through a pad of celite using MeOH. The filtrate was concentrated and purified by a silica gel column using 1% MeOH/EtOAc. Pure fractions were combined and concentrated to afford digoxose **20** (11 mg, 39.5 μ mol, 94%) as a white solid: R_f (10% MeOH/EtOAc) = 0.18; mp: 132-135 °C; $[\alpha]_{D}^{21}$ +56.7 (c 0.80, MeOH); IR (thin film, cm⁻¹) 3426, 2930, 1376, 1319, 1165, 1132, 1068, 1014, 992, 869, 729; ¹H NMR (600 MHz, CD₃OD/CDCl₃) β : δ 5.03 (dd, J =9.6, 1.8 Hz, 1H), 4.84 (dd, J = 9.6, 2.4 Hz, 1H), 4.17 (ddd, J = 3.6, 3.0, 2.4 Hz, 1H), 3.98 (m, 1H), 3.78 (dq, J = 9.0, 6.0 Hz, 1H), 3.69 (dq, J = 9.0, 6.0 Hz, 1H), 3.15 (dd, J = 9.0, 3.0 Hz, 1H), 3.13 (dd, J = 9.0, 3.0 Hz, 1H), 2.04 (m, 2H), 1.61 (ddd, J = 13.8, 9.6, 3.0 Hz, 1H), 1.67 (m, 1H), 1.20 (d, J = 6.0 Hz, 3H), 1.17 (d, J = 6.6 Hz, 3H); α : 5.01 (d, J = 3.0 Hz, 1H), 4.87 (dd, J = 9.6, 1.8 Hz, 1H), 4.26 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.07 (dq, J = 9.6, 6.0 Hz, 1H), 3.97 (m, 1H), 3.68 (dq, J = 9.6, 6.0 Hz, 1H), 3.18 (dd, J = 9.0, 3.0 Hz, 1H), 3.14 (dd, J = 9.0, 3.0 Hz, 1H), 2.06(m, 2H), 1.80 (ddd, J = 14.4, 3.0, 3.0 Hz, 1H), 1.68 (m, 1H), 1.19 (d, J = 6.0 Hz, 3H), 1.16 (d, J = 6.0 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃) β : δ 98.56, 91.4, 82.4, 72.46, 69.59, 68.0, 67.62, 66.3, 37.76, 37.69, 17.92, 17.86; α: δ 98.58, 91.5, 82.2, 72.44, 69.60, 67.6, 66.9, 61.6, 37.74, 34.3, 17.93, 17.7; CLHRMS Calcd for [C₁₂H₂₂O₇Na⁺]: 301.1263, Found 301.1255.

O-2,6-dideoxy-β-D-ribo-hexopyranosyl-(1→4)-O-2,6-dideoxy-β-D-ribo-hexopyranosyl-(1→4)-2,6-dideoxy-D-ribo-hexose (21)

To an EtOH (0.3 mL) solution of 17 (11 mg, 22 µmol) under H₂ atmosphere at room temperature was added Pd/C (6 mg) and the reaction was stirred for 6 h. The reaction mixture was filtered through a pad of Celite using MeOH. The eluent was concentrated and purified by a silica gel column using 2% MeOH/EtOAc. Pure fractions were combined and concentrated to afford digoxose **21** (8 mg, 20 μ mol, 92%) as a white solid: R_f (10% MeOH/EtOAc) = 0.29; mp: 210-212 °C; $[\alpha]_{D}^{21}$ +40.0 (*c* 0.35, MeOH); IR (thin film, cm⁻¹) 3425, 2929, 1376, 1319, 1231, 1165, 1133, 1067, 1013, 992, 869, 729; ¹H NMR (600 MHz, CD₃OD/CDCl₃) β : δ 5.04 (dd, J = 9.6, 2.4 Hz, 1H), 4.845 (dd, J = 9.6, 1.8 Hz, 1H), 4.841 (dd, J = 9.6, 1.8 Hz, 1H), 4.18 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.17 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 3.98 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 3.78 (m, 2H), 3.69 (dq, J = 9.0, 6.0 Hz, 1H), 3.16 (dd, J = 9.6, 3.0 Hz, 1H), 3.147 (dd, J = 9.6, 3.0 Hz)1H), 3.144 (dd, J = 9.6, 3.0 Hz, 1H), 2.16 (m, 3H), 1.65 (m, 3H), 1.213 (d, J = 6.6 Hz, 3H), 1.175 (d, J = 6.6 Hz, 3H), 1.165 (d, J = 6.6 Hz, 3H); α : 5.01 (d, J = 3.0 Hz, 1H), 4.87 (dd, J =10.2, 2.4 Hz, 1H), 4.848 (dd, J = 9.6, 2.4 Hz, 1H), 4.26 (ddd, J = 3.6, 3.0, 3.0 Hz, 1H), 4.06 (m, 2H), 3.77 (m, 2H), 3.70 (dq, J = 9.0, 6.0 Hz, 1H), 3.19 (dd, J = 9.6, 3.0 Hz, 1H), 3.137 (dd, J =9.6, 3.0 Hz, 1H), 3.140 (m, 1H), 2.06 (m, 3H), 1.64 (m, 3H), 1.216 (d, J = 6.6 Hz, 3H), 1.19 (d, J = 6.6 Hz, 3H), 1.160 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃) β : δ 98.6, 98.5, 91.4, 82.4, 82.19, 82.17, 72.5, 69.64, 68.2, 67.6, 66.9, 66.15, 37.75 (2C), 36.61, 17.95 (2C), 17.75; α: δ 98.6, 98.5, 91.5, 82.21, 82.19, 82.17, 69.63, 68.0, 66.4, 66.18, 66.16, 61.50, 37.71, 36.62, 34.3, 17.95, 17.93, 17.90; CIHRMS Calcd for [C₁₈H₃₂O₁₀Na⁺]: 431.1889, Found 431.1888.

Mono-MeON-digitoxoside (4).

Aglycon **22** (16.7 mg, 41.3 μmol) and **19** (12.2 mg, 45.4 μmol) were added to a glass vial equipped with a stirring flea and then were dissolved in 9:1 MeOH/CHCl₃ (400 μL). AcOH was added (2.4 μL, 41.3 μmol) and the reaction mixture was stirred at 40 °C for 3 days. The crude reaction mixture was concentrated then purified via SiO₂ column chromatography eluting with 5 % MeOH/CH₂Cl₂ to provide 13.1 mg (59 % yield) of **4** as an oil (TLC Rf = 0.40 in 10 % MeOH/CH₂Cl₂), > 99 % pure by LCMS. Isomer ratio: 74:19:7, β-pyranose isomer predominant. ¹H NMR (CDCl₃, 400 MHz) β-pyranose: δ 5.88 (s, 1H), 5.01-4.79 (m, 2H), 4.59 (dd, 1H, J = 10.7, 1.7), 4.21 (m, 1H), 3.63-3.30 (m, 2H), 3.57 (s, 3H), 2.79 (m, 1H), 2.50-1.13 (m, 24H), 1.28 (d, 3H, J = 5.3), 0.94 (s, 3H), 0.88 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) β-pyranose: δ 174.08, 174.06, 117.3, 85.3, 83.1, 73.0, 72.9, 70.2, 67.9, 63.6, 62.2, 56.5, 50.5, 49.2, 41.6, 39.7, 36.3, 35.7, 35.2, 32.7, 30.3, 29.1, 26.7, 26.4, 23.5, 23.0, 20.8, 20.7, 17.6, 15.4; HRESIMS calculated for [C₃₀H₄₇NO₇Na⁺]: 556.32502, Found 556.32447.

Di-MeON-digitoxoside (5).

Aglycon **22** (12.3 mg, 30.5 µmol) and **20** (8.5 mg, 30.5 µmol) were added to a glass vial equipped with a stirring flea and then were dissolved in 9:1 MeOH/CHCl₃ (200 µL). AcOH was added (1.7 µL, 30.5 µmol) and the reaction mixture was stirred at 40 °C for 2.5 days. The crude reaction mixture was concentrated then purified via SiO₂ column chromatography eluting with 5 % MeOH/CH₂Cl₂ to provide 14.6 mg (72 % yield) of **5** as an oil (TLC Rf = 0.47 in 10 % MeOH/CH₂Cl₂). Isomer ratio: 100 % β-pyranose. ¹H NMR (CDCl₃, 400 MHz) δ 5.88 (s, 1H), 5.01-4.78 (m, 2H), 4.92 (dd, 1H, *J* = 9.8, 1.8), 4.58 (dd, 1H, *J* = 9.9, 1.6), 4.33 (m, 1H), 4.13 (m, 1H), 3.86-3.04 (m, 4H), 3.57 (3H), 2.80 (m, 1H), 2.26-1.11 (m, 26H), 1.29 (d, 3H, *J* = 6.3), 1.22 (d, 3H, *J* = 6.3), 0.93 (s, 3H), 0.87 (s, 3H); HRESIMS calculated for [C₃₆H₅₇NO₁₀Na⁺]: 686.38802, Found 686.38747.

Tri-MeON-digitoxoside (6).

Aglycon **22** (6.9 mg, 17.1 μmol) and **21** (7.0 mg, 17.1 μmol) were added to a glass vial equipped with a stirring flea and then were dissolved in 9:1 MeOH/CHCl₃ (110 μL). AcOH was added (0.98 μL, 17.1 μmol) and the reaction mixture was stirred at 40 °C for 2.5 days. The crude reaction mixture was concentrated then purified via SiO₂ column chromatography eluting with 5 % MeOH/CH₂Cl₂ to provide 8.6 mg (63 % yield) of **6** as an oil (TLC Rf = 0.47 in 10 % MeOH/CH₂Cl₂). Isomer ratio: 100 % β-pyranose. ¹H NMR (CDCl₃, 400 MHz) δ 5.87 (s, 1H), 5.03-4.78 (m, 2H), 4.91 (m, 2H), 4.58 (dd, 1H, *J* = 10.3, 1.9), 4.33 (m, 1H), 4.26 (m, 1H), 4.13 (m, 1H), 3.92-2.96 (m, 6H), 2.79 (m, 1H), 2.25-1.11 (m, 31H), 1.29 (d, 3H, *J* = 6.2), 1.23 (d, 3H, *J* = 6.3), 1.21 (d, 3H, *J* = 6.4), 0.93 (s, 3H), 0.87 (s, 3H). HRESIMS calculated for [C₄₂H₆₇NO₁₃Na⁺]: 816.45101, Found 816.45046.

Section F: References

- 1. Screening Services—NCI-60 DTP Human Tumor Cell Line Screen Home Page. http://dtp.nci.nih.gov/branches/btb/ivclsp.html (accessed April 27, 2010).
- Langenhan, J.M.; Engle, J.M.; Slevin, L.K.; Fay, L.R.; Lucker, R.W.; Smith, K.R.; Endo, M.M. *Bioorg. Med. Chem. Lett.* 2008, 18, 670-673.