Discovery of A New Human A_{2A} Adenosine Receptor Agonist, Truncated 2-Hexynyl-4'-thioadenosine

Xiyan Hou,¹ Hea Ok Kim,¹ Varughese Alexander,¹ Kyunglim Kim,¹ Sun Choi,¹ Seul-gi Park,¹ Jin Hee Lee,¹ Lena S. Yoo,² Zhan-Guo Gao,² Kenneth A. Jacobson,² and Lak Shin Jeong^{*,1,3}

¹ Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea, ²Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA, and ³Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

lakjeong@ewha.ac.kr

Supporting Information

Experimental Procedure	S2
¹ H Copies of 4a, 4b, 4c, and 4d	.S10
¹³ C Copies of 4a, 4b, 4c, and 4d	

General Methods. ¹H NMR spectra (CDCl₃, CD₃OD, or DMSO-*d*₆) were recorded on Varian

Unity Inova 400 MHz. Chemical shifts are reported in parts per million (δ) units relative to the solvent peak. The ¹H NMR data are reported as peak multiplicities: s for singlet; d for doublet; dd for doublet of doublets; t for triplet; pseudo t for pseudo triplet; brs for broad singlet; and m for multiplet. Coupling constants were reported in Hertz. ¹³C NMR spectra (CDCl₃, CD₃OD, or DMSO-d₆) were recorded on Varian Unity Inova 100 MHz. NOE experiments were recorded on Varian Unity Inova 400 MHz, using CDCl₃ and DMSO-d₆ as solvent and a mixing time of 1 second. The chemical shifts are reported as ppm (δ) relative to the solvent peak. Mass spectra were recorded on Agilent Technologies 6220 Accurate-Mass TOF LC/MS spectrometer. Melting points were measured on IA9100 made by Barnstead. These are uncorrected. UV spectra were recorded on U-3000 made by Histachi in methylene chloride or methanol. Optical rotations were determined on Jasco III in methylene chloride or methanol. Infrared spectra were recorded on FT-IR (FTS-135) made by Bio-Rad. Reactions were checked with TLC (Merck precoated 60F254 plates). Spots were detected by viewing under a UV light, colorizing with charring after dipping in anisaldehyde solution with acetic acid and sulfuric acid and methanol. Column chromatography were performed on silica gel 60 (230-400 mesh, Merck). Reagents were purchased from Aldrich Chemical Company. Solvents were obtained from local suppliers. All the anhydrous solvents were distilled over CaH₂, P₂O₅, or Na/benzophenone prior to the reaction.

6-chloro-9-((3aS,4R,6aR)- tetrahydro-2,2-dimethylthieno[3,4-*d*][1,3]dioxol-4-yl)-9*H*purin-2-amine (6)

A solution of 2-amino-6-chloropurine (0.91 g, 5.35 mmol), ammonium sulfate (106 mg, 0.80 mmol) and HMDS (10 mL) were refluxed overnight, under dry and inert conditions. The solution was then carefully evaporated under high vacuum. The solid residue thus obtained, was dissolved in 1,2-dichloroethane (5 mL) and cooled to 0 °C. The solution of **5** (0.58 g, 2.68 mmol) in 1,2-dichloroethane (5 mL) was added dropwise to the above mixture. Then, TMSOTf (0.97 mL, 5.35 mmol) was dropwise added and the mixture was stirred for 30

minutes at 0 °C, for 1 h at rt, and finally heated at 90 °C for 2 h. The reaction mixture was cooled, diluted with CH₂Cl₂ and washed with saturated NaHCO₃ solution. The extracted organic layer was dried with MgSO₄ and evaporated under reduced pressure. The crude syrup was subjected to flash silica gel column chromatography (Hexane : EtOAc = 1:1) to give **6** (0.27 g, 30%) as a solid: mp 199.1-199.2 °C; UV (CH₂Cl₂) λ_{max} 305.0 nm; ¹H NMR (CDCl₃) δ 7.87 (s, 1 H), 5.73 (s, 1 H), 5.29 (brs, 2 H, NH₂), 5.16-5.21 (m, 2H), 3.64 (dd, 1 H, *J* = 4.4, 13.2 Hz), 3.20 (d, 1 H, *J* = 13.2 Hz), 1.58 (s, 3 H), 1.35 (s, 3 H); ¹³C NMR (CDCl₃) δ 159.14, 153.21, 151.91, 141.14, 126.24, 111.96, 89.50, 84.23, 69.48, 40.78, 26.54, 24.83; [α]²⁵_D -42.23 (*c* 0.16, CH₂Cl₂); (ESI+) (M+Na⁺) m/z 350.0443; Anal. Calcd for C₁₂H₁₄ClN₅O₂S: C, 43.97; H, 4.30; Cl, 10.82; N, 21.37; O, 9.76; S, 9.78. Found: C, 43.98; H, 4.28; N, 20.99; S, 10.00.

6-chloro-9-(3a*S*,4*R*,6a*R*)- tetrahydro-2,2-dimethylthieno[3,4-*d*][1,3]dioxol-4-yl)-2-iodo-9*H*-purine (7).

Isoamylnitrite (0.31mL, 2.27mmol) was added to a mixture of **6** (248 mg, 0.76mmol), I₂ (192 mg, 0.76 mmol), CH₂I₂ (0.95 mL, 7.60 mmol) and CuI (159 mg, 0.83mmol) in 10 mL THF at rt. The mixture was then allowed to reflux for 45 min and finally cooled to room temperature. Insoluble materials were removed by filtration and the filtrate thus obtained was concentrated to dryness. The crude residue was purified by means of silica gel column chromatography, which was washed with hexane until the color of iodine disappeared and then eluted with Hexane : EtOAc = 7 : 1, to give **7** (233mg 72%) as a syrup: UV (CH₂Cl₂) λ_{max} 282.0 nm; ¹H NMR (CDCl₃) δ 8.06 (s, 1 H), 5.84 (s, 1 H), 5.33 (pseudo t, 1 H, *J* = 5.2 Hz), 5.21 (d, 1 H, *J* = 5.6 Hz), 3.80 (dd, 1 H, *J* = 4.4, 12.8 Hz), 3.26 (d, 1 H, *J* = 12.8 Hz), 1.59 (s, 3 H), 1.37 (s, 3 H); ¹³C NMR (CDCl₃) δ 151.91, 151.21, 144.39, 132.65, 116.74, 112.13, 89.97, 84.85, 70.73, 41.48, 26.60, 24.78; [α]²⁵_D -66.33 (*c* 0.10, CH₂Cl₂); (ESI+) (M+H⁺) m/z 438.9492; Anal. Calcd. for C₁₂H₁₂ClIN₄O₂S: C, 32.86; H, 2.76; Cl, 8.08; I, 28.93; N, 12.77; O, 7.29; S, 7.31. Found: C, 32.99; H, 2.48; N, 12.99; S, 7.01.

9-((3a*S*,4*R*,6a*R*)- tetrahydro-2,2-dimethylthieno[3,4-*d*][1,3]dioxol-4-yl)-2-iodo-9*H*-purin-6-amine (8)

A solution of **7** (535 mg, 1.22 mmol) in methanolic ammonia (5 mL) was stirred for 2 h at 80 **°C**. The reaction mixture was concentrated to dryness and the crude residue was subjected to flash silica gel column chromatography (Hexane : EtOAc = 1 : 1) to give **8** (439 mg, 85%) as a syrup: UV (CH₂Cl₂) λ max 267.0 nm; ¹H NMR (CD₃OD) δ 8.20 (s, 1 H), 5.97 (s, 1 H), 5.30 (pseudo t, 1 H, *J* = 5.2 Hz), 5.23 (d, 1 H, *J* = 5.6 Hz), 3.80 (dd, 1 H, *J* = 4.4, 12.8 Hz), 3.14 (d, 1 H, *J* = 12.8 Hz), 1.54 (s, 3 H), 1.35 (s, 3 H); ¹³C NMR (CD₃OD) δ 156.11, 150.37, 141.97, 119.96, 117.99, 112.68, 91.19, 86.37, 71.30, 41.58, 26.84, 24.86. [α]²⁵_D -61.90 (*c* 0.08, CH₂Cl₂); (ESI+) (M+H⁺) m/z 419.998; Anal. Calcd. for C₁₂H₁₄IN₅O₂S: C, 34.38; H, 3.37; I, 30.27; N, 16.70; O, 7.63; S, 7.65. Found: C, 33.56; H, 3.28; N, 16.99; S, 7.23.

(2R,3S,4R)-2-(6-amino-2-(hex-1-ynyl)-9H-purine-9-yl)-tetrahydrothiophene-3,4-diol (4a)

Compound **8** (96 mg, 0.23 mmol) was dissolved in Et₃N (1.5 mL) and DMF (1 mL). After purging the solution with N₂, (PPh₃)₂PdCl₂ (16 mg, 0.023 mmol) and CuI (4.3 mg, 0.023 mmol) were added. 1-Hexyne (0.065 mL, 0.57 mmol) was subsequently added dropwise and the mixture was stirred at room temperature for 3 h. The solvents were removed under reduced pressure, to give the crude compound **9**. To a solution of **9** in THF (5 mL) was added 1 *N* hydrochloric acid (5 mL) and the mixture stirred at room temperature for 1 day. The crude residue was neutralized with 1 *N* NaOH solution, and then carefully evaporated under reduced pressure. The mixture was subjected to flash silica gel column chromatography (CH₂Cl₂: MeOH = 20 : 1) to give **4a** (50 mg , 65%) as a white solid: mp 234.2-234.8 °C; UV (MeOH) λ_{max} 289.5 nm; ¹H NMR (CD₃OD) δ 8.45 (s, 1 H), 5.98 (d, 1 H, *J* = 6.4 Hz), 4.56-4.59 (m, 1 H), 4.44 (dd, 1 H, *J* = 4.4, 8.0 Hz), 3.51 (dd, 1 H, *J* = 4.8, 10.8 Hz), 2.96 (dd, 1 H, *J* = 4.0, 10.8 Hz), 2.46 (t, 2 H, *J* = 6.8 Hz), 1.60-1.67 (m, 2 H), 1.48-1.57 (m, 2 H), 0.98 (t, 3 H, *J* = 7.2 Hz); ¹³C NMR (CD₃OD) δ 157.08, 151.32, 147.94, 142.27, 119.80, 88.50, 81.20, 80.90, 74.37, 63.94, 35.11, 31.55, 23.11, 19.46, 13.97. [α]²⁵_D -28.36 (*c* 0.20, MeOH); (ESI+) (M+H⁺) m/z 334.1335; Anal. Calcd. for C₁₅H₁₉N₅O₂S: C, 54.04; H, 5.74; N, 21.01; O, 9.60; S, 9.62. Found: C, 54.44; H, 5.88; N, 20.98; S, 10.00.

(2*R*,3*S*, 4*R*)-2-(6-amino-2-(*E*)-hex-1-enyl)-9*H*-purine-9-yl)-tetrahydrothiophene-3,4-diol (4b)

A mixture of 8 (46 mg, 0.11 mmol), tetrakis(triphenylphosphine) palladium(0) (13mg, 0.011 mmol), sodium carbonate (35 mg, 0.33 mmol) and (E)-1-catecholboranylhexene (Organic Syntheses, Coll. Vol. 8, p. 532 (1993); Vol. 68, p. 130 (1990)) (67 mg, 0.33 mmol) in DMF and H₂O (8 : 1, 5 mL) was stirred for overnight at 90 °C. The reaction mixture was filtered over a celite bed and the residue was concentrated to give the crude compound 10. To a solution of 10 in THF (5 mL) was added 1 N hydrochloric acid (5 mL) and the mixture stirred at room temperature for 1 day. The mixture was neutralized with 1 N NaOH solution, and then carefully evaporated under reduced pressure. The crude residue was subjected to flash silica gel column chromatography (CH₂Cl₂: MeOH = 20 : 1) to give **4b** (23 mg , 63%) as a white solid : mp 209.1-209.6 °C; UV (MeOH) λ max 274.5 nm; ¹H NMR (DMSO-*d*₆) δ 8.37 (s, 1 H), 7.11 (brs, 2 H, NH₂), 6.90 (tt, 1 H, J = 6.8, 15.6 Hz), 6.29 (tt, 1 H, J = 1.6, 15.2 Hz), 5.89 (d, 1 H, J = 7.2 Hz), 5.52 (d, 1 H, OH, J = 6.0 Hz), 5.36 (d, 1 H, OH, J = 4.0 Hz), 4.63-4.67 (m, 1 H), 4.37 (pseudo t, 1 H, J = 3.2 Hz), 3.42 (dd, 1 H, J = 4.4, 10.8 Hz), 2.80 (dd, 1 H, J = 2.8, 10.8 Hz); 2.20-2.26 (m, 2 H), 1.41-1.48 (m, 2 H), 1.29-1.38 (m, 2 H), 0.90 (t, 3 H), 0.90 (t, H, J = 7.2 Hz); ¹³C NMR (DMSO- d_6) δ 158.20, 155.49, 150.61, 139.60, 138.18, 130.44, 117.70, 78.51, 72.28, 61.02, 34.39, 31.40, 30.54, 21.73, 13.75. [α]²⁵_D -28.36 (*c* 0.20, MeOH);

(ESI+) (M+H⁺) m/z 336.1494; $[\alpha]^{25}_{D}$ -44.80 (*c* 0.12, MeOH); Anal. Calcd for C₁₅H₂₁N₅O₂S: C, 53.71; H, 6.31; N, 20.88; O, 9.54; S, 9.56. Found: C, 53.98; H, 6.28; N, 20.96; S, 10.02.

8-bromo-9-((3aR, 6R, 6aS)- tetrahydro-2,2-dimethylthieno[3,4-d][1,3]dioxol-6-yl)-9Hpurin-2-amine (11).

8-Bromoadenine (J. Org. Chem. 2001, 66, 5463-5481) (0.40 g, 1.84 mmol), ammonium sulfate (37 mg, 0.27 mmol) and HMDS (10 mL) were refluxed for overnight, under dry and inert conditions. The solution was evaporated under high vacuum. The resulting solid was dissolved in 1,2-dichloroethane (5 mL) and cooled at 0 °C. The solution of 5 (0.20 g, 0.92 mmol) in 1,2-dichloroethane (5 mL) was dropwise added to the above cooled mixture. To this TMSOTf (0.33 mL, 1.84 mmol) was dropwise added and the mixture was stirred for 30 minutes at 0 °C, for 1 h at rt, and finally heated at 90 °C for 2 h. The mixture was cooled, diluted with CH₂Cl₂ and washed with saturated NaHCO₃ solution. The extracted organic layer was dried with MgSO₄ and evaporated under reduced pressure. The crude syrup was subjected to a flash silica gel column chromatography (Hexane : EtOAc = 1 : 1) to give 12 (69 mg, 20%) as a syrup: UV (MeOH) λmax 263.5 nm; ¹H NMR (CDCl₃) δ 8.25 (s, 1 H), 5.91 (s, 1 H), 5.81 (brs, 2 H, NH₂), 5.54 (d, 1 H, J = 5.2 Hz), 5.50 (pseudo t, 1 H, J = 5.2 Hz), $3.87 (dd, 1 H, J = 4.0, 12.4 Hz), 3.14 (d, 1 H, J = 12.4 Hz), 1.60 (s, 3 H), 1.38 (s, 3 H); {}^{13}C$ NMR (CDCl₃) δ 154.29, 153.03, 150.70, 127.76, 120.42, 111.41, 88.98, 85.99, 71.91, 41.35, 26.59, 24.65. $[\alpha]^{25}_{D}$ -77.07 (c 0.16, CH₂Cl₂); (ESI+) (M+H⁺) m/z 373.0151; Anal. Calcd for C₁₂H₁₄BrN₅O₂S: C, 38.72; H, 3.79; Br, 21.47; N, 18.81; O, 8.60; S, 8.61. Found: C, 38.99; H, 3.77; N, 19.09; S, 8.26.

(2*R*,3*S*,4*R*)-2-(6-amino-8-(hex-1-y nyl)-9*H*-purine-9-yl)-tetrahydrothiophene-3,4-diol (4c)

Compound 11 (69 mg, 0.19 mmol) was dissolved in Et₃N (1.5 mL) and DMF (1 mL). After purging the solution with N₂, (PPh₃)₂PdCl₂ (14 mg, 0.019 mmol) and CuI (3.7 mg, 0.019 mmol) were added. 1-hexyne (0.056 mL, 0.48 mmol) was subsequently added dropwise and the mixture was stirred at room temperature for 3 h. The solvents were removed under reduced pressure, to give the crude compound 12. To a solution of 12 in THF (3 mL) was added 1 N hydrochloric acid (3 mL) and the mixture stirred at room temperature for 1 day. The mixture was neutralized with 1 N NaOH solution, and then carefully evaporated under reduced pressure. The crude residue was subjected to flash silica gel column chromatography $(CH_2Cl_2: MeOH = 20: 1)$ to give 4c (36 mg, 58%) as a white solid: mp 233.8-234.9 °C; UV (MeOH) λ_{max} 294.0 nm; ¹H NMR (DMSO- d_6) 8.16 (s, 1 H), 7.40 (brs, 2 H, NH₂), 6.03 (d, 1 H, J = 7.6 Hz), 5.44 (d, 1 H, -OH, J = 6.4 Hz), 5.33 (d, 1 H, OH, J = 4.0 Hz), 5.24-5.29 (m, 1 H), 4.40 (dd, 1 H, J = 1.6, 3.2 Hz), 3.42 (dd, 1 H, J = 3.6, 11.2 Hz), 2.80 (dd, 1 H, J = 2.0, 11.2 Hz), 2.59 (t, 2 H, J = 6.8 Hz), 1.55-1.62 (m, 2 H), 1.44-1.51 (m, 2 H), 0.93 (t, 3 H, J = 7.2 Hz); ¹³C NMR (DMSO- d_6) δ 155.71, 153.11, 149.10, 133.74, 118.91, 97.97, 76.51, 72.33, 70.72, 63.18, 35.52, 29.59, 21.38, 18.31, 13.41. $\left[\alpha\right]_{D}^{25}$ -112.2 (*c* 0.14, MeOH); (ESI+) $(M+H^{+})$ m/z 334.1339; Anal. Calcd for C₁₅H₁₉N₅O₂S: C, 54.04; H, 5.74; N, 21.01; O, 9.60; S, 9.62. Found: C, 54.00; H, 5.78; N, 20.99; S, 9.30.

(2R,3S,4R)-2-(6-amino-8-(hex-1-enyl)-9H-purine-9-yl)-tetrahydrothiophene-3,4-diol (4d)

A mixture of **11** (42 mg, 0.12 mmol), tetrakis(triphenylphosphine) palladium(0) (14 mg, 0.012 mmol), sodium carbonate (37 mg, 0.35 mmol) and (*E*)-1-catecholboranylhexene (*Organic Syntheses, Coll. Vol. 8, p. 532* (**1993**); *Vol. 68, p. 130* (**1990**)) (72 mg, 0.35 mmol) in DMF and H₂O (8 : 1, 5 mL) was stirred overnight at 90 °C. The reaction mixture was filtered

by a bed of celite and the residue was concentrated to give the crude compound **13**. To a solution of **13** in THF (3 mL) was added 1 *N* hydrochloric acid (3 mL) and the mixture stirred at room temperature for 1 day. The mixture was neutralized with1 *N* NaOH solution, and then carefully evaporated under reduced pressure. The mixture was subjected to a flash silica gel column chromatography (CH₂Cl₂: MeOH = 20 : 1) to give **4d** (25 mg , 65%) as a white solid: mp 248.6-248.8 °C; UV (MeOH) λ_{max} 297.5 nm; ¹H NMR (CD₃OD) δ 8.15 (s, 1 H), 6.97 (tt, 1 H, *J* = 6.8, 15.6 Hz), 6.75 (tt, 1 H, *J* = 1.6, 15.2 Hz), 6.15 (d, 1 H, *J* = 8.0 Hz), 5.27 (dd, 1 H, *J* = 3.6, 8.0 Hz), 4.48-4.50 (m, 1 H), 3.65 (dd, 1 H, *J* = 3.6, 11.6 Hz), 2.93 (dd, 1 H, *J* = 1.6, 11.6 Hz), 2.36-2.42 (m, 2 H), 1.53-1.58 (m, 2 H), 1.42-1.50 (m, 2 H), 0.98 (t, 3 H, *J* = 7.2 Hz); ¹³C NMR (CD₃OD) δ 156.54, 152.90, 151.82, 151.24, 143.93, 120.12, 117.42, 78.81, 74.39, 63.95, 36.27, 33.94, 32.02, 23.37, 14.28; [α]²⁵_D -71.56 (*c* 0.10, MeOH); (ESI+) (M+H⁺) m/z 336.1494; Anal. Calcd for C₁₅H₂₁N₅O₂S: C, 53.71; H, 6.31; N, 20.88; O, 9.54; S, 9.56. Found: C, 53.99; H, 6.28; N, 20.98; S, 9.16.

Molecular modeling

Ligand structures were generated with Concord and energy minimized using MMFF94s force field and MMFF94 charge until the rms of Powell gradient was 0.05 kcal mol⁻¹A⁻¹ in SYBYL 8.1.1 (Tripos International, St. Louis, MO, USA). The X-ray crystal structure of human A_{2A} adenosine receptor (PDB code: 3EML) was prepared using Biopolymer Structure Preparation Tool in SYBYL. The docking study was carried out by GOLD v.4.1.2 (Cambridge Crystallographic Data Centre, Cambridge, UK), which employs a genetic algorithm (GA) and allows for full ligand flexibility and partial protein flexibility. The binding site was defined as the region of 9 Å extent around the co-crystallized ligand (ZM-241385). The side chains of the eight residues (i.e. Thr88, Phe168, Glu169, Trp246, Leu249, Asn253, Ser277, and His278) in the binding site were set to be flexible with 'crystal mode'. The ligands were docked using the GoldScore scoring function with 30 GA runs and other parameters were set as suggested by the GOLD authors. The Fast Connolly surface of the $A_{2A}AR$ and the Van der Waals surface of each ligand were generated by MOLCAD in SYBYL. All computation calculations were undertaken on Intel® XeonTM Quad-core workstation with Linux Cent OS release 4.6.

Binding assay

Human A_1 and A_{2A} *Adenosine Receptors:* For binding to human A_1 receptors, [³H]PIA (1 nM) was incubated with membranes (40 µg/tube) from CHO cells stably expressing human A_1

receptors at 25 °C for 60 min in 50 mM Tris·HCl buffer (pH 7.4; MgCl₂, 10 mM) in a total assay volume of 200 μ L. Nonspecific binding was determined using 10 μ M of CPA. For human A_{2A} receptor binding, membranes (20 μ g/tube) from HEK-293 cells stably expressing human A_{2A}ARs were incubated with 15 nM [³H]CGS21680 at 25 °C for 60 min in 200 μ l 50 mM Tris·HCl, pH 7.4, containing 10 mM MgCl₂. Reaction was terminated by filtration with GF/B filters.

Human A₃ Adenosine Receptor: For competitive binding assay, each tube contained 100 μ L suspension of membranes (20 μ g protein) from CHO cells stably expressing the human A₃AR, 50 μ L of [¹²⁵I]I-AB-MECA (0.5 nM), and 50 μ L of increasing concentrations of the nucleoside derivative in Tris·HCl buffer (50 mM, pH 7.4) containing 10 mM MgCl₂, 1 mM EDTA. Nonspecific binding was determined using 10 μ M of Cl-IB-MECA in the buffer. The mixtures were incubated at 25 °C for 60 min. Binding reactions were terminated by filtration through Whatman GF/B filters under reduced pressure using a MT-24 cell harvester (Brandell, Gaithersburgh, MD, USA). Filters were washed three times with 9 mL ice-cold buffer. Radioactivity was determined in a Beckman 5500B γ -counter.

For binding at all three subtypes, K_i values are expressed as mean \pm sem, n = 3-5 (outliers eliminated), and normalized against a non-specific binder, 5'-*N*-ethylcarboxamidoadenosine (NECA, 10 μ M).⁹ Alternately, for weak binding a percent inhibition of specific radioligand binding at 10 μ M, relative to inhibition by 10 μ M NECA assigned as 100%, is given.

