Supporting Information

Chemical Diversity of Metabolites from Fungi, Cyanobacteria, and Plants Relative to FDA-Approved Anticancer Agents

Tamam El-Elimat, Xiaoli Zhang, David Jarjoura, Franklin J. Moy, Jimmy Orjala, A. Douglas Kinghorn, Cedric J. Pearce, and Nicholas H. Oberlies

Contents:

Experimental Procedures

Table S1. Molecular Descriptors Utilized in the Current Study Compared to Related PCA Studies in the Literature.

Table S2. Pearson Correlation Coefficients for Raw Data.

Table S3. Pearson Correlation Coefficients for Molecular Weight Standardized Data.

Table S4. Summary Statistics of Different Properties among Secondary Metabolites from Filamentous Fungi (n = 105), Cyanobacteria (n = 75), Tropical Plants (n = 163) and Anticancer Drugs (n = 96).

Figure S1. Plot of the first and fourth principal components of the isolated secondary metabolites from filamentous fungi (n = 105), cyanobacteria (n = 75), tropical plants (n = 163) and anticancer drugs (n = 96).

Figure S1. Chemical structures of the anticancer drugs that were not overlapping in the chemical space with the investigated compounds in the PCA plots in Figures 1, 2, and S1.

EXPERIMENTAL PROCEDURES

The natural products utilized in this study were isolated in pursuit of anticancer leads. The recent literature may be examined for examples of descriptions of the isolation and structure elucidation of compounds from filamentous fungi, cyanobacteria, and tropical plants by our collaborative team. The FDA-approved anticancer agents were selected from two complementary sources: those posted on the website of the Developmental Therapeutic Program NCI/NIH and the recently approved anticancer drugs from the orange book on the FDA website. All molecular descriptors, except number of chiral centers, were calculated using Dragon software for molecular descriptor calculation (version 6.0 - 2010; Talete srl, Milano, Italy). The number of chiral centers was tabulated by inspection. SAS was used for principal component analysis varimax rotation of the 9 variable correlation matrix (Proc Princomp and Factor). Components score were obtained after variance standardization.

Molecular descriptors	Feher and Schmidt ¹⁴	Singh et al. ¹⁶	Tan ¹⁵	Singh and Culberson ¹⁷	Current study
molecular weight (MW)		×	×	×	×
number of chiral centers (nCC)	×		×	×	×
number of rotatable bonds (NRBN)	×	×	×	×	×
number of solvated acceptor atoms for H- bonds (N,O,F) [N _{Acc} ,solv]	×	×	×	×	×
number of solvated donor atoms for H- bonds (N and O) [N _{Don} ,solv]	×	×	×		×
topological polar surface area [TPSA(NO)]		×	×	×	×
octanol/water partition coefficient		×	×	×	×
number of nitrogen atoms (nN)			×	×	×
number of oxygen atoms (nO)			×	×	×
number of C-N bonds (nCN)	×				
number of C-O bonds (nCO)	×				
number of C-halogen bonds (nCX)	×				
number of C-S bonds (nCS)	×				
ratio of aromatic atoms to ring atoms	×				
ring fusion degree	×				
normalized bond flexibility				×	

Table S1. Molecular Descriptors Utilized in the Current Study Compared to Related PCA Studies in the Literature ¹⁴⁻¹⁷

Correlation coefficient	MW	nRBN	nN	nO	nH _{Don}	nH _{Acc}	TPSA	MLOGP	nCC
MW	1.0000	0.8713	0.8185	0.8878	0.9001	0.9466	0.9459	-0.6667	0.6500
nRBN	0.8713	1.0000	0.8174	0.7533	0.8493	0.8681	0.8702	-0.6292	0.4024
nN	0.8185	0.8174	1.0000	0.6271	0.8768	0.8777	0.8795	-0.7712	0.3450
nO	0.8878	0.7533	0.6271	1.0000	0.8061	0.9202	0.9097	-0.7564	0.6632
$\mathrm{nH}_{\mathrm{Don}}$	0.9001	0.8493	0.8768	0.8061	1.0000	0.9258	0.9607	-0.7850	0.4993
nH _{Acc}	0.9466	0.8681	0.8777	0.9202	0.9258	1.0000	0.9906	-0.8427	0.5682
TPSA	0.9459	0.8702	0.8795	0.9097	0.9607	0.9906	1.0000	-0.8373	0.5591
MLOGP	-0.6667	-0.6292	-0.7712	-0.7564	-0.7850	-0.8427	-0.8373	1.0000	-0.3916
nCC	0.6500	0.4024	0.3450	0.6632	0.4993	0.5682	0.5591	-0.3916	1.0000

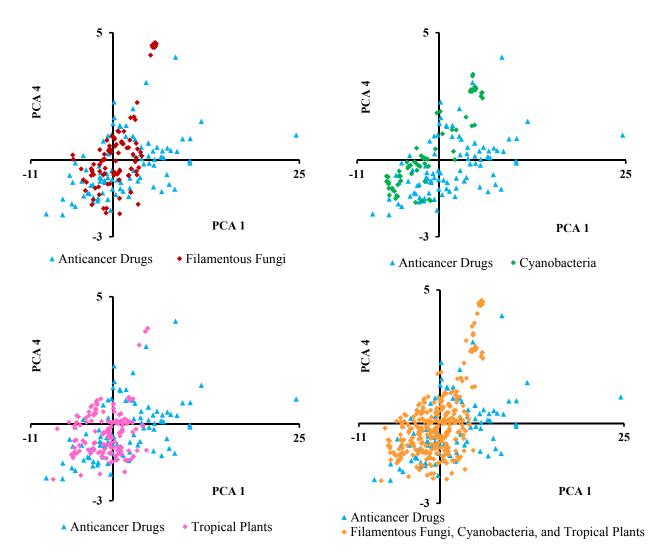
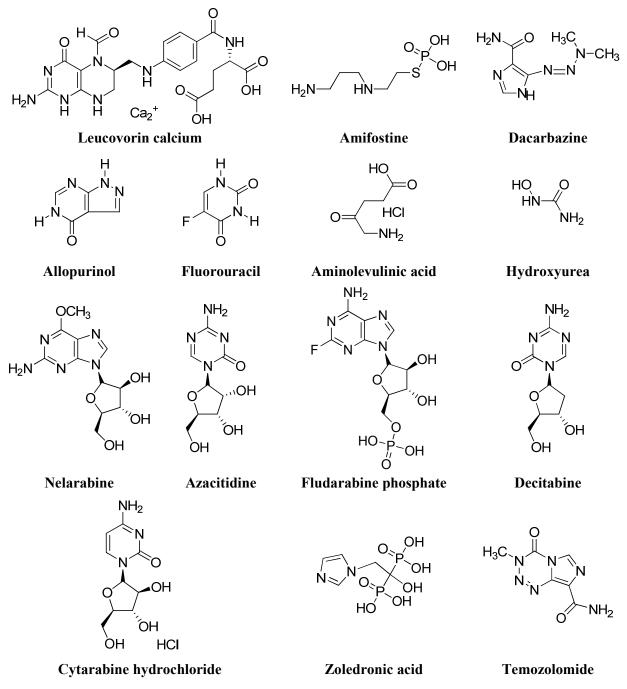

Table S2. Pearson Correlation Coefficients for Raw Data

Table S3. Pearson Correlation Coefficients for Molecular Weight Standardized Data


Correlation coefficient	MW	nRBN	nN	nO	nH _{Don}	nH _{Acc}	TPSA	MLOGP	nCC
MW	1.0000	0.2423	0.1755	0.0879	0.2571	0.2449	0.2201	-0.4706	0.1445
nRBN	0.2423	1.0000	-0.0071	0.0249	0.0669	0.0604	0.0296	0.0694	-0.2509
nN	0.1755	-0.0071	1.0000	-0.3057	0.4915	0.4680	0.4842	-0.3778	-0.2184
nO	0.0879	0.0249	-0.3057	1.0000	0.2136	0.6711	0.6170	-0.5665	0.0529
$\mathrm{nH}_{\mathrm{Don}}$	0.2571	0.0669	0.4915	0.2136	1.0000	0.5692	0.7763	-0.5713	-0.1417
$\mathrm{nH}_{\mathrm{Acc}}$	0.2449	0.0604	0.4680	0.6711	0.5692	1.0000	0.9172	-0.8048	-0.1255
TPSA	0.2201	0.0296	0.4842	0.6170	0.7763	0.9172	1.0000	-0.7766	-0.1471
MLOGP	-0.4706	0.0694	-0.3778	-0.5665	-0.5713	-0.8048	-0.7766	1.0000	-0.0515
nCC	0.1445	-0.2509	-0.2184	0.0529	-0.1417	-0.1255	-0.1471	-0.0515	1.0000

source	Variables	R	aw data	After MW standardization		
		Mean	Std. Dev.	Mean	Std. Dev.	
	MW	412.76	248.04	1.000	0.000	
	RBN	5.31	5.12	0.012	0.008	
	nN	3.02	2.79	0.009	0.008	
Anticancer Drugs	nO	4.92	4.73	0.011	0.007	
8	nHDon	3.09	3.46	0.008	0.008	
(n = 96)	nHAcc	8.00	5.69	0.020	0.009	
	TPSA	113.88	89.62	0.295	0.164	
	MLOGP	1.12	2.24	0.003	0.007	
	CC	3.30	4.87	0.006	0.007	
	MW	628.78	338.39	1.000	0.000	
	RBN	7.77	7.35	0.011	0.007	
	nN	3.79	4.44	0.005	0.004	
Cyanobacteria	nO	6.01	6.10	0.007	0.005	
•	nHDon	5.12	5.27	0.007	0.004	
(n = 75)	nHAcc	9.12	10.49	0.011	0.008	
	TPSA	150.41	152.65	0.193	0.106	
	MLOGP	2.30	3.55	0.006	0.006	
	CC	6.28	4.31	0.010	0.004	
	MW	660.36	555.30	1.000	0.000	
	RBN	12.14	17.60	0.014	0.012	
	nN	4.19	7.72	0.003	0.004	
Filamentous Fungi	nO	8.98	6.87	0.014	0.004	
0	nHDon	5.74	8.11	0.007	0.004	
(n = 105)	nHAcc	13.17	14.29	0.018	0.004	
	TPSA	196.95	218.11	0.263	0.073	
	MLOGP	0.53	3.65	0.004	0.005	
	CC	5.69	3.92	0.010	0.006	
	MW	450.42	152.31	1.000	0.000	
Tropical Plants	RBN	5.90	4.25	0.014	0.011	
	nN	0.06	0.27	0.000	0.001	
	nO	6.57	3.68	0.014	0.005	
	nHDon	2.37	2.10	0.005	0.003	
(<i>n</i> = 163)	nHAcc	6.60	3.65	0.014	0.005	
	TPSA	100.87	52.82	0.220	0.064	
	MLOGP	2.70	1.84	0.007	0.004	
	CC	4.58	5.46	0.009	0.008	

Table S4. Summary statistics of different properties among secondary metabolites from filamentous fungi (n = 105), cyanobacteria (n = 75), tropical plants (n = 163) and anticancer drugs (n = 96)

Figure S1. Plot of the first and fourth principal components of the isolated secondary metabolites from filamentous fungi (n = 105), cyanobacteria (n = 75), tropical plants (n = 163) and anticancer drugs (n = 96).

Figure S2. Chemical structures of the anticancer drugs that were not overlapping in the chemical space with the investigated compounds in the PCA plots in Figures 1, 2, and S1.