# Supporting Information

# HIV-1 Integrase Inhibitor-Inspired Antibacterials Targeting Isoprenoid Biosynthesis

Yonghui Zhang,<sup>\*</sup> Fu-Yang Lin, Kai Li, Wei Zhu, Yi-Liang Liu, Rong Cao, Ran Pang, Eunhae Lee, Jordan Axelson, Mary Hensler, Ke Wang, Katie J. Molohon, Yang Wang, Douglas A. Mitchell, Victor Nizet and Eric Oldfield<sup>\*</sup>

# **Table of Contents:**

| Contents             | Pages |
|----------------------|-------|
| Figure S1            | S2    |
| Figure S2            | S3    |
| Figure S3            | S4    |
| Table S1             | S5    |
| Experimental Section | S6    |
| References           | S14   |



**Figure S1.** Chemical structures of the screening library compounds and their inhibition for CrtM, *E. coli* UPPS (EcUPPS) and *S. aureus* UPPS (SaUPPS), IC<sub>50</sub> values, μM.



**Figure S2.** Mass spectrum of farnesyl monophosphate that co-purified with CrtM. The sample was obtained by dissolving CrtM+7+FMP crystals and injecting the solution into an LC-MS instrument.



Figure S3. Ligand-protein interactions for 41 binding to CrtM.

|                                      | 7                  | 41                 | 9            |
|--------------------------------------|--------------------|--------------------|--------------|
| Crystal                              | (Soaking)          | (Soaking)          | (Soaking)    |
| PDB ID code #                        | (3P00)             | (3PAI)             | (3TH8)       |
| Radiation source                     | APS 21-ID-F        | APS 21-ID-G        | APS 21-ID-F  |
| Wavelength (Å)                       | 0.97857            | 0.97857            | 0.97872      |
| Space group                          | P3 <sub>2</sub> 21 | P3 <sub>2</sub> 21 | P212121      |
| a(Å)                                 | 80.712             | 80.194             | 62.603       |
| b(Å)                                 | 80.712             | 80.194             | 68.862       |
| c (Å)                                | 90.864             | 91.333             | 112.297      |
| Resolution (Å)                       | 50.00-2.30         | 50.00-1.91         | 50.00-2.12   |
|                                      | (2.34-2.30)        | (1.94-1.91)        | (2.16-2.12)  |
| No. of reflections                   | 29147 (1422)       | 26704 (1132)       | 27971 (1389) |
| Completeness (%)                     | 98.8 (95.4)        | 98.7 (87.0)        | 98.2 (100.0) |
| Redundancy                           | 3.2 (3.0)          | 5.5 (3.9)          | 6.0 (6.2)    |
| R <sub>merge</sub> (%)               | 8.3 (33.3)         | 7.2 (30.5)         | 9.8 (60.4)   |
| I/s(I)                               | 18.6 (3.0)         | 39.5 (3.9)         | 24.4 (2.3)   |
| Refinement                           |                    |                    |              |
| Resolution (Å)                       | 50.00-2.06         | 30.00-1.98         | 41.80-2.11   |
| No. of reflections                   | 14844 (779)        | 23039 (1357)       | 29046 (1400) |
| R <sub>work</sub> (%)                | 19.9 (23.6)        | 20.2 (22.8)        | 24.9 (34.9)  |
| $R_{free}$ (%)                       | 26.67 (25.6)       | 23.8 (29.5)        | 30.9 (37.6)  |
| Geometry deviations                  |                    |                    |              |
| Bond lengths (Å)                     | 0.005              | 0.007              | 0.021        |
| Bond angles (°)                      | 0.62               | 1.01               | 1.791        |
| Mean B-values (Å <sup>2</sup> ) / nu | umber of non-H a   | toms               |              |
| All refined atoms                    | 33.2 / 2547        | 32.8 / 2590        | 36.0 / 3401  |
| Ligand atoms                         | 53.3 / 55          | 43.6 / 21          | 51.7 / 25    |
| Mg ions                              | 51.6 / 2           | 43.3 / 3           |              |
| Water molecules                      | 36.4 / 123         | 35.2 / 178         | 37.0 / 63    |
| Ramachandran plot (%)                | )                  |                    |              |
| Most favored                         | 97.8               | 97.1               | 91.9         |
| Additionally allowed                 | 1.8                | 2.5                | 7.6          |
| Generously allowed                   | 0.4                | 0.4                | 0.5          |

Table S1. Data collection and refinement statistics of CrtM-inhibitor and UPPS-inhibitor complexes.

**Enzyme expression and purification.** *S. aureus* CrtM was expressed and purified as described previously.<sup>1</sup> Expression and purification of *E. coli* UPPS and *S. aureus* UPPS were also carried out as described previously.<sup>2</sup>

**CrtM inhibition.** The *S. aureus* CrtM inhibition assay was carried out as described in our previous work.<sup>1a</sup>

UPPSi. The E. coli UPPS and S. aureus UPPS inhibition assays were carried out as described.<sup>2</sup>

**X-ray crystallography.** Native CrtM crystals (space group  $P3_{2}21$ ) were grown by using the hanging-drop method by mixing equal amounts of reservoir with 0.2-1.0 M potassium sodium tartrate, at room temperature. Inhibitor bound crystals were obtained by either soaking the native crystals with 1 mM ligand for 1-4 hours, or incubating protein-ligand (1 mM) mixtures at RT for 1-4 hours, then adding the reservoir solution. All CrtM crystals belonged to the  $P3_{2}21$  space group and had similar lattice parameters.

Native *E. coli* UPPS crystals for soaking were obtained by using the hanging-drop method (Hampton Research, Laguna Niguel, CA) by mixing 1  $\mu$ L of UPPS protein solution (14 mg/ml UPPS in 50 mM HEPES, pH 7.5) with 1  $\mu$ L of mother liquor (50 mM HEPES, pH 7.5, 5% PEG 2-4K) and then equilibrating with 500  $\mu$ L mother liquor at room temperature. Crystals grew to 0.3×0.3×0.2 mm in 2 days and were then soaked in a cryoprotectant solution (50 mM HEPES, pH 7.5, 30% EG 5% PEG 35K) containing 2.5-5 mM inhibitor for 1 day.

Diffraction data were collected at sector 21 of the Advanced Photon Source, Argonne National Laboratory. The data were indexed, integrated and scaled by using the HKL2000 program package.<sup>3</sup> Structures were determined by molecular replacement with the Phaser program,<sup>4</sup> using apo CrtM (PDB ID 2ZCP, minus ligands) as a template. The structure of the UPPS-complex was determined by using a model prepared from the UPPS/BPH-629 complex structure (PDB ID 2E98) with ligands and solvent removed. Further model building, ligand preparation, and refinement employed Coot,<sup>5</sup> ProDRG server,<sup>6</sup> and Refmac in CCP4,<sup>7</sup> respectively. All figures were prepared using PyMol (http://www.pymol.org).

**Cell growth inhibition.** The growth of *S. aureus* (USA300 strain) and determination of MIC were as described previously.<sup>8</sup>

**Synthesis of library compounds.** All reagents used were purchased from Aldrich or Alfa Aesar. The purity of all compounds was routinely monitored by using <sup>1</sup>H NMR spectroscopy on Varian (Palo Alto, CA) Unity spectrometers and by micro-chemical analysis or HRMS.

General procedure for the synthesis of Class I compounds: To a solution of the appropriate amine (0.5 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added dry triethylamine (1 mmol) and (*Z*)-2-(2,2-dimethyl-5-oxo-1,3-dioxolan-4-ylidene)acetyl chloride at 0 °C. The mixture was stirred for 3 h and then washed with water (4 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and subjected to flash chromatography affording the ester, which upon saponification (NaOH, 4 equivalents; 4:1 THF/H<sub>2</sub>O, 10 mL) and acidification gave the final product ~ 60% overall yield.



(Z)-2-hydroxy-4-oxo-4-((3-(3-phenoxyphenyl)propyl)amino)but-2-enoic acid (7).
<sup>1</sup>H NMR (400 MHz, DMSO-d6) δ 7.34-6.73 (m, 9H), 3.24 (s, 2H), 2.98 (m, 2H), 2.53 (m, 2H), 1.63 (m, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>20</sub>NO<sub>5</sub> 342.1341, found 342.1348.

#### (Z)-4-((3-([1,1'-biphenyl]-3-yl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (8).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, *J* = 5.6 Hz, 2H), 7.45-7.33 (m, 6H), 7.17 (d, *J* = 6.0 Hz, 1H), 5.93 (s, 1H), 5.74 (broad, 1H), 3.40 (dd, *J* = 5.2, 10.8Hz, 2H), 2.74 (t, *J* = 6.4 Hz, 2H), 1.95 (t, *J* = 6.0 Hz, 2H). Anal. Calcd. for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub>: C, 70.14; H, 5.89; N, 4.31. Found: C, 69.76; H, 5.83; N, 4.40.

#### (Z)-4-((3-(3-(hexyloxy)phenyl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (9).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.18 (m, 1H), 6.72 (m, 3H), 5.89 (s, 1H), 5.65 (s, 1H), 3.92 (t, *J* = 6.4 Hz, 2H), 3.36 (m, 2H), 2.63 (m, 2H), 1.88 (m, 2H), 1.75 (m, 2H), 1.43 (m, 2H), 1.32 (m, 4H), 0.88 (t, *J* = 6.4 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>28</sub>NO<sub>5</sub> 350.1967, found 350.1970.

#### (Z)-4-(dodecylamino)-2-hydroxy-4-oxobut-2-enoic acid (10).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.16 (broad, 1H), 5.90 (s, 1H), 3.27 (m, 2H), 1.49 (m, 2H), 1.21 (m, 18H), 0.84 (t, *J* = 6.8 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>16</sub>H<sub>30</sub>NO<sub>4</sub> 300.2175, found 300.2172.

#### (Z)-2-hydroxy-4-oxo-4-((3-phenylpropyl)amino)but-2-enoic acid (11).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.54 (t, *J* = 5.6 Hz, 1H), 7.27-7.13 (m, 5H), 5.95 (s, 1H), 3.12 (dd, *J* = 6.4, 12.8 Hz, 2H), 2.56 (t, *J* = 8.0 Hz, 2H), 1.71 (m, 2H). Anal. Calcd. for C<sub>13</sub>H<sub>15</sub>NO<sub>4</sub>: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.61; H, 5.99; N, 5.65.

# (Z)-2-hydroxy-4-((3-(naphthalen-2-yl)propyl)amino)-4-oxobut-2-enoic acid (12).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.58 (broad, 1H), 7.80 (m, 3H), 7.68 (s, 1H), 7.46-7.36 (m, 3H), 5.96 (s, 1H), 3.18 (dd, *J* = 6.8, 12.8 Hz, 2H), 2.74 (t, *J* = 7.6 Hz, 2H), 1.82 (m, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>17</sub>H<sub>18</sub>NO<sub>4</sub> 300.1236, found 300.1231.

# (Z)-4-((3-([1,1'-biphenyl]-4-yl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (13).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.56 (t, *J* = 6.0 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 6.8 Hz, 2H), 7.31 (m, 3H), 5.96 (s, 1H), 3.16 (dd, *J* = 6.0, 12.8 Hz, 2H), 2.61 (t, *J* = 7.2 Hz, 2H), 1.76 (m, 2H). Anal. Calcd. for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub>: C, 70.14; H, 5.89; N, 4.31. Found: C, 69.80; H, 5.74; N, 4.44.

### (Z)-4-((3-(3-(benzyloxy)phenyl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (14).

<sup>1</sup>H NMR (400 MHz, DMSO-d6) 7.40-7.28 (m, 5H), 7.11 (m, 1H), 6.84-6.75 (m, 3H), 5.03 (s, 2H), 3.32 (s, 2H), 2.99 (m, 2H), 2.51 (m, 2H), 1.64 (m, 2H). HRMS  $[M + H]^+$  calcd. for  $C_{20}H_{22}NO_5$  356.1498, found 356.1494.

# (Z)-2-hydroxy-4-oxo-4-(quinolin-2-ylamino)but-2-enoic acid (15).

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  7.99 (d, *J* = 9.2 Hz, 1H), 7.69 (d, J= 8.8 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.55-7.47 (m, 2H), 7.26 (t, *J* = 7.2 Hz, 1H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>13</sub>H<sub>11</sub>N<sub>2</sub>O<sub>4</sub> 259.0719, found 259.0724.

# (Z)-4-((3-(decyloxy)phenyl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (16).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.19 (m, 1H), 6.72 (m, 3H), 5.90 (s, 1H), 5.62 (broad, 1H), 3.91 (t, *J* = 6.8 Hz, 2H), 3.75 (m, 2H), 2.63 (m, 2H), 1.88 (m, 2H), 1.75 (m, 2H), 1.82-1.25 (m, 14H), 0.86 (t, *J* = 6.8 Hz, 3H). Anal. Calcd. for C<sub>23</sub>H<sub>35</sub>NO<sub>5</sub>: C, 68.12; H, 8.70; N, 3.45. Found: C, 67.98; H, 8.98; N, 3.70.

### (Z)-4-((9-ethyl-9H-carbazol-3-yl)amino)-2-hydroxy-4-oxobut-2-enoic acid (17).

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  8.02 (s, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.38-7.28 (m, 4H), 7.07 (t, *J* = 6.8 Hz, 1H), 4.18 (dd, *J* = 7.2, 14.4 Hz, 2H), 1.13 (t, *J* = 7.2 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>17</sub>N<sub>2</sub>O<sub>4</sub> 325.1188, found 325.1195.

### (Z)-4-((3-(decyloxy)benzyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (18).

<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>Cl)  $\delta$  7.22 (m, 1H), 6.79 (m, 3H), 6.06 (s, 1H), 4.45 (d, *J* = 5.2 Hz, 2H), 3.90 (m,

2H), 1.73 (m, 2H), 1.41-1.19 (m, 14H), 0.85 (t, J = 6.8 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>21</sub>H<sub>32</sub>NO<sub>5</sub> 378.2280, found 378.2275.

# (Z)-4-([1,1'-biphenyl]-3-ylamino)-2-hydroxy-4-oxobut-2-enoic acid (19).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.26 (s, 1H), 7.84 (s, 1H), 7.54-7.53 (m, 4H), 7.40-7.28 (m, 5H), 6.22 (s, 1H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>16</sub>H<sub>14</sub>NO<sub>4</sub> 284.0923, found 284.0923.

# (Z)-2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)-4-oxobut-2-enoic acid (20).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  9.20 (broad, 2H), 8.06-7.97 (m, 3H), 7.65-7.55 (m, 4H), 7.02 (s, 1H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>17</sub>H<sub>13</sub>N<sub>2</sub>O<sub>4</sub>S 341.0596, found 341.0598.

# (Z)-4-(4-benzhydrylpiperazin-1-yl)-2-hydroxy-4-oxobut-2-enoic acid (21).

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  7.32 (d, *J* = 6.0 Hz, 4H), 7.20 (t, *J* = 5.6 Hz, 4H), 7.11 (t, *J* = 5.6 Hz, 2H), 3.42 (m, 2H), 3.28 (m, 2H), 2.29 (m, 4H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub> 367.1658, found 367.1667.

# (Z)-4-(((E)-3,7-dimethylocta-2,6-dien-1-yl)amino)-2-hydroxy-4-oxobut-2-enoic acid (22).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 5.95 (s, 1H), 5.64 (broad, 1H), 5.17 (m, 1H), 5.04 (m, 1H), 3.92 (t, *J* = 6.0 Hz, 2H), 2.06 (m, 4H), 1.67 (s, 6H), 1.58 (s, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>14</sub>H<sub>22</sub>NO<sub>4</sub> 268.1549, found 268.1540.

# (Z)-4-((3-(hexyloxy)benzyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (23).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.92 (t, *J* = 5.6 Hz, 1H), 7.20 (m, 1H), 6.78 (m, 3H), 5.99 (s, 1H), 4.30 (d, *J* = 6.0 Hz, 2H), 3.89 (m, 2H), 1.65 (t, *J* = 8.0 Hz, 2H), 1.35-1.25 (m, 6H), 0.83 (t, *J* = 6.8 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>17</sub>H<sub>24</sub>NO<sub>5</sub> 322.1654, found 322.1658.

# (Z)-4-((3-(3-(3,4-dichlorophenoxy)phenyl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (24).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.2 (m, 2H), 7.02-6.78 (m, 5H), 5.92 (broad, 1H), 5.90 (s, 1H), 3.36 (m, 2H), 2.62 (m, 2H), 1.83 (m, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>18</sub>Cl<sub>2</sub>NO<sub>5</sub> 410.0562, found 410.0563.

# (Z)-2-hydroxy-4-oxo-4-((3-(4-phenoxyphenyl)propyl)amino)but-2-enoic acid (25).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.56 (t, *J* = 4.4 Hz, 1H), 7.35 (m, 2H), 7.20 (d, *J* = 7.2 Hz, 2H), 7.09 (t, *J* = 6.0 Hz, 1H), 6.95 (d, *J* = 6.4 Hz, 2H), 6.91 (d, *J* = 7.2 Hz, 2H), 5.97 (s, 1H), 3.16 (dd, *J* = 5.6, 10.4 Hz, 2H), 2.57 (t, *J* = 7.8 Hz, 2H), 1.73 (m, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>20</sub>NO<sub>5</sub> 342.1341, found

# (Z)-2-hydroxy-4-oxo-4-((3-(3-(p-tolyloxy)phenyl)propyl)amino)but-2-enoic acid (26).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.24 (t, *J* = 6.0 Hz, 1H), 7.14 (d, *J* = 6.8 Hz, 2H), 6.91 (d, *J* = 6.8 Hz, 2H), 6.88 (m, 1H), 6.81 (s, 2H), 5.95 (s, 1H), 5.73 (broad, 1H), 3.38 (m, 2H), 2.64 (t, *J* = 6.0 Hz, 2H), 2.34 (s, 3H), 1.90 (m, 2H). ). HRMS [M + H]<sup>+</sup> calcd. for C<sub>20</sub>H<sub>22</sub>NO<sub>5</sub> 356.1498, found 356.1494.

### (Z)-4-((3-(9-ethyl-9H-carbazol-3-yl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (27).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.58 (t, *J* = 5.2 Hz, 1H), 8.06 (d, *J* = 7.6 Hz, 1H), 7.93 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 7.12 (t, *J* = 7.2 Hz, 1H), 5.97 (s, 2H), 4.36 (d, *J* = 7.2 Hz, 2H), 3.18 (m, 2H), 2.73 (t, *J* = 7.2 Hz, 2H), 1.81 (t, *J* = 7.2 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub> 367.1658, found 367.1660.

#### (Z)-2-hydroxy-4-((3-(3-((4-nitrobenzyl)oxy)phenyl)propyl)amino)-4-oxobut-2-enoic acid (28).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.53 (t, *J* = 7.6 Hz, 1H), 8.22 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.16 (dd, *J* = 3.6, 8.0 Hz, 1H), 6.86-6.77 (m, 2H), 5.94 (s, 1H), 5.22 (s, 2H), 3.15-3.08 (m, 2H), 2.52 (dd, *J* = 7.2, 14.8 Hz, 2H), 1.72-1.63 (m, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>7</sub> 401.1349, found 401.1346.

#### (Z)-4-((3-((2,5-dichlorobenzyl)oxy)phenyl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (29).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.52 (s, 1H), 7.52 (s, 1H), 7.53-7.47 (m, 3H), 7.38 (s, 1H), 7.18-7.15 (m, 1H), 6.84-6.77 (m, 2H), 5.94 (s, 1H), 5.07 (s, 2H), 3.14-3.09 (m, 2H), 2.52 (dd, *J* = 6.8, 14.0 Hz, 2H), 1.70 (t, *J* = 6.4 Hz, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>20</sub>H<sub>20</sub>Cl<sub>2</sub>NO<sub>5</sub> 424.0719, found 424.0723.

#### (Z)-4-((3-((3,5-dichlorobenzyl)oxy)phenyl)propyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (30).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.52 (s, 1H), 7.52 (s, 1H), 7.53-7.47 (m, 3H), 7.38 (s, 1H), 7.18-7.15 (m, 1H), 6.84-6.77 (m, 2H), 5.94 (s, 1H), 5.07 (s, 2H), 3.14-3.09 (m, 2H), 2.52 (dd, *J* = 6.8, 14.0 Hz, 2H), 1.70 (t, *J* = 6.4 Hz, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>20</sub>H<sub>20</sub>Cl<sub>2</sub>NO<sub>5</sub> 424.0719, found 424.0723.

### (Z)-4-((3-butoxybenzyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (31).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.90 (broad, 1H), 7.18 (m, 1H), 6.76 (m, 3H), 6.00 (s, 1H), 4.28 (d, *J* = 6.0 Hz, 2H), 3.85 (m, 2H), 1.62 (m, 2H), 1.38 (m, 2H), 0.82 (t, *J* = 6.8 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>15</sub>H<sub>20</sub>NO<sub>5</sub> 294.1341, found 294.1345.

# (Z)-2-hydroxy-4-((3-(octyloxy)benzyl)amino)-4-oxobut-2-enoic acid (32).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  7.15 (m, 1H), 6.76 (m, 3H), 4.22 (d, *J* = 6.0 Hz, 2H), 3.91 (m, 2H), 3.42 (s, 2H), 1.66 (m, 2H), 1.34-1.23 (m, 10H). 0.83 (t, *J* = 6.4 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>28</sub>NO<sub>5</sub> 350.1967, found 350.1975.

#### (Z)-4-((3-((2,5-dichlorobenzyl)oxy)benzyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (33).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  13.50(broad, 1H), 8.98 (s, 1H), 7.63-7.24 (m, 4H), 6.88 (m, 3H), 6.00 (s, 1H), 5.10 (s, 2H), 4.34 (d, *J* = 5.6 Hz, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>16</sub> Cl<sub>2</sub>NO<sub>5</sub> 396.0406, found 396.0413.

# (Z)-2-hydroxy-4-oxo-4-(((2*E*,6*E*)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)amino)but-2-enoic acid (34).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.38 (broad, 1H), 5.94 (s, 1H), 5.18 (dd, *J* = 7.2, 14.8 Hz, 1H), 5.06 (t, *J* = 6.4 Hz, 2H), 3.90 (m, 2H), 2.10-1.95 (m, 8H), 1.65 (s, 6H), 1.57 (s, 6H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>30</sub>NO<sub>4</sub> 336.2175, found 336.2170.

### (Z)-4-((4-(benzyloxy)benzyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (35).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  8.91 (s, 1H), 7.41-7.28 (m, 5H), 7.17 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 5.98 (s, 1H), 5.06 (s, 2H), 4.26 (d, J = 5.6 Hz, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>18</sub>NO<sub>5</sub> 328.1185, found 328.1181.

#### (Z)-4-((4-(benzyloxy)phenyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (36).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  7.43-7.07 (m, 8H), 6.75 (dd, J = 1.6, 8.4 Hz, 1H), 6.15 (s, 1H), 5.05 (s, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>17</sub>H<sub>16</sub>NO<sub>5</sub> 314.1028, found 314.1030.

# (Z)-4-((3-(benzyloxy)benzyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (37).

<sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  7.42-7.27 (m, 5H), 7.20 (m, 1H), 6.92-6.80 (m, 3H), 6.00 (s, 1H), 5.05 (s, 2H), 4.31 (d, *J* = 5.6 Hz, 2H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>18</sub>NO<sub>5</sub> 328.1185, found 328.1182.

#### (Z)-2-hydroxy-4-oxo-4-(3-oxo-4-(3-phenoxybenzyl)piperazin-1-yl)but-2-enoic acid (38).

<sup>1</sup>H NMR (400 MHz, DMSO-d6) δ 7.38-7.30 (m, 3H), 7.11 (t, *J* = 7.2 Hz, 1H), 6.98 (s, 2H), 6.97 (s, 1H), 6.89-6.84 (m, 2H), 4.50 (s, 2H), 4.13 (s, 1H), 4.04 (s, 1H), 3.63 (t, *J* = 4.2 Hz, 2H), 3.44 (d, *J* = 3.2 Hz,

2H), 3.19 (m, 2H). HRMS  $[M + H]^+$  calcd. for  $C_{21}H_{21}N_2O_6$  397.1400, found 397.1408.

#### (Z)-2-hydroxy-4-oxo-4-(propylamino)but-2-enoic acid (39).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.96 (s, 1H), 5.63 (broad, 1H), 3.31 (m, 2H), 1.58 (m, 2H), 0.94 (m, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>7</sub>H<sub>12</sub>NO<sub>4</sub> 174.0766, found 174.0768.

#### (Z)-4-(dodecyl(methyl)amino)-2-hydroxy-4-oxobut-2-enoic acid (40).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.28 (s, 1H), 3.45 (m, 2H), 3.03 (m, 3H), 1.59 (m, 2H), 1.26 (m, 18H), 0.88 (t, *J* = 6.8 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>17</sub>H<sub>32</sub>NO<sub>4</sub> 314.2331, found 314.2327.

**41** and **42** were prepared using a similar protocol<sup>9</sup> starting from 2H-1,3-oxazine-2,6(3H)-dione.



2H-1,3-oxazine-2,6(3H)-dione

# 1-(3-(hexyloxy)benzyl)-1,2-dihydro-4-hydroxy-2-oxopyridine-3-carboxylic acid (41).

<sup>1</sup>H NMR (400 MHz,  $D_2O$ )  $\delta$  7.11 (t, J = 8 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 8.4 Hz, 1H), 6.61 (s, 1H), 6.59 (s, 1H), 5.68 (d, J = 7.8 Hz, 1H), 4.79 (s, 2H), 3.82 (t, J = 6.8 Hz, 2H), 1.68-1.49 (m, 2H), 1.18-1.06 (m, 6H), 0.63 (t, J = 6.8 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>17</sub>H<sub>32</sub>NO<sub>5</sub> 314.2331, found 314.2327. HRMS [M + H]<sup>+</sup> calcd. for C<sub>19</sub>H<sub>24</sub>NO<sub>5</sub> 346.1654, found 346.1649.

#### 1-(3-(decyloxy)benzyl)-1,2-dihydro-4-hydroxy-2-oxopyridine-3-carboxylic acid (42)

<sup>1</sup>H NMR (400 MHz,  $D_2O$ )  $\delta$  7.13 (t, J = 8 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 6.61 (s, 1H), 6.59 (s, 1H), 5.71 (d, J = 7.8 Hz, 1H), 4.67 (s, 2H), 3.8 (t, J = 6.8 Hz, 2H), 1.66-1.51 (m, 2H), 1.18-1.06 (m, 14H), 0.60 (t, J = 6.8 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>31</sub>NO<sub>5</sub> 401.2202, found 401.2205.

**44**, **45** were prepared according to reported procedures.<sup>10</sup>

# $(Z)-4-(3-(decyloxy)phenyl)-2-hydroxy-4-oxobut-2-enoic \ acid \ (44)_{\circ}$

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.58 (d, J = 6.4 Hz, 1H), 7.50 (s, 1H), 7.41 (t, J = 6.4 Hz, 1H), 7.16 (m,

2H), 4.02 (t, J = 4.2 Hz, 2H), 1.80 (m, 2H), 1.50-1.28 (m, 14H), 0.88 (t, J = 6.0 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>20</sub>H<sub>29</sub>O<sub>5</sub> 349.2015, found 349.2017.

# (Z)-2-hydroxy-4-(4-(octyloxy)phenyl)-4-oxobut-2-enoic acid (45).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.96 (d, *J* = 8.8 Hz, 2H), 7.07 (s, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.02 (t, *J* = 6.4 Hz, 2H), 1.79 (m, 2H), 1.44 (m, 2H), 1.29 (m, 10H), 0.86 (t, *J* = 7.2 Hz, 3H). HRMS [M + H]<sup>+</sup> calcd. for C<sub>18</sub>H<sub>25</sub>O<sub>5</sub> 321.1702, found 321.1701.

#### References

- (1) a) Lin, F. Y.; Liu, C. I.; Liu, Y. L.; Zhang, Y.; Wang, K.; Jeng, W. Y.; Ko, T. P.; Cao, R.; Wang, A. H.; Oldfield, E. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *107*, 21337-21342. b) Song, Y.; Lin, F. Y.; Yin, F.; Hensler, M.; Rodrigues Poveda, C. A.; Mukkamala, D.; Cao, R.; Wang, H.; Morita, C. T.; Gonzalez Pacanowska, D.; Nizet, V.; Oldfield, E. *J. Med. Chem.* **2009**, *52*, 976-988.
- (2) a) Guo, R. T.; Cao, R.; Liang, P. H.; Ko, T. P.; Chang, T. H.; Hudock, M. P.; Jeng, W. Y.; Chen, C. K.; Zhang, Y.; Song, Y.; Kuo, C. J.; Yin, F.; Oldfield, E.; Wang, A. H. *Proc. Natl. Acad. Sci. U. S. A.* 2007, *104*, 10022-10027. b) Durrant, J. D.; Cao, R.; Gorfe, A. A.; Zhu, W.; Li, J.; Sankovsky, A.; Oldfield, E. McCammon, J. A. *Chem. Biol. Drug Des.* 2011, *78*, 323-332.
- (3) Minor, W.; Cymborowski, M.; Otwinowski, Z.; Chruszcz, M. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 859-866.
- McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. J. Appl. Crystallogr. 2007, 40, 658-674.
- (5) Emsley, P.; Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126-2132.
- (6) Schuttelkopf, A. W.; van Aalten D. M. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1355-1363.
- a) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta Crystallogr. D Biol. Crystallogr. 1997, 53, 240-255; b) Potterton, E.; Briggs, P.; Turkenburg, M.; Dodson, E. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 1131-1137.
- Mohohon, K. J.; Melby, J. O.; Lee, J.; Evans, B. S.; Dunbar, K.L.; Bumpus, S. B.; Kelleher, N. L.; Mitchell, D. A. ACS Chem. Biol. 2011, 6, 1307-1313.
- (9) G. L. Beutner, J. T. Kuethe, Yasuda, N. J. Org. Chem. 2007, 72, 7058-7061.
- (10) Riahi, A.; Shkoor, M.; Fatunsin, O.; Khera, R. A.; Fischer, C.; Langer, P. Org. Biomol. Chem.
   2009, 7, 4248-4251