SUPPORTING INFORMATION

Bisubstrate Inhibitors of Biotin Protein Ligase from *Mycobacterium tuberculosis* Resistant to Cyclo-nucleoside Formation

Ce Shi,¹ Divya Tiwari,² Daniel J. Wilson,¹ Christopher L. Seiler,³ Dirk Schnappinger,² Courtney C. Aldrich^{1,3}

¹Center for Drug Design, University of Minnesota, Minneapolis, MN, 55455, USA

²Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA

³Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA

Table of Contents

Chemical synthesis procedures	S2
General description of ITC experiments	S17
MIC assay	S18
References	S19
	Chemical synthesis procedures. General description of ITC experiments. MIC assay. References.

I. Chemical synthesis procedures

General methods: All chemical reactions were performed under an inert atmosphere of dry Ar or N₂ in oven-dried (150 °C) glassware. ¹H and ¹³C NMR spectra were recorded on a Varian 600 MHz or a Varian 400 MHz spectrometer. Proton chemical shifts are reported in ppm from an internal standard of residual chloroform (7.26 ppm) or methanol (3.31 ppm), and carbon chemical shifts are reported using an internal standard of residual chloroform (77.0 ppm) or methanol (49.1 ppm). Proton chemical data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, br = broad), coupling constant, integration. High resolution mass spectra were obtained on an Agilent TOF II TOF/MS instrument equipped with either an ESI or APCI interface. TLC analyses were performed on TLC silica gel 60F254 from EMD Chemical Inc., and were visualized with UV light, iodine chamber, 10% sulfuric acid or 10% PMA solution. Optical rotations values were obtained on a Rudoldf Autopol III Polarimeter. Purifications were performed by flash chromatography on silica gel (Dynamic Adsorbents, 60A).

Materials: Chemicals and solvents were purchased from Sigma-Aldrich Company or Acros Organic Fischer Company, and were used as received. An anhydrous solvent dispensing system (J. C. Meyer) using 2 packed columns of neutral alumina was used for drying THF, Et₂O, and CH₂Cl₂ while 2 packed columns of molecular sieves were used to dry DMF and the solvents were dispensed under argon. Compound **14**,¹ **19**² and **18**³ were synthesized according to the reported procedures. 6-Amino-N⁶, N⁶-bis(tert-butoxycarbonyl)-9-[5,6-dideoxy-6-(ethoxysulfonyl)-2,3-

O-isopropylidene- β -D-*ribo*-hex-5-enofuranosyl]-9*H*-purine (17). To a solution of 14 (250 mg, 0.50 mmol, 1.0 equiv) in CH₂Cl₂ (20 mL) at 25 °C was added Dess-Martin Periodinane (318 mg, 0.75 mmol, 1.5 equiv) portionwise over 10 min. After stirring for 1 h, TLC and MS indicated full conversion of the starting material. The reaction was cooled in an ice bath and quenched by addition of aqueous 1 M Na₂S₂O₃ (10 mL) and saturated aqueous NaHCO₃ (10 mL). The mixture was stirred for 30 min at 25 °C and the aqueous layer was extracted with CH₂Cl₂(3 × 15 mL). The combined organic layers were washed with H₂O (25 mL) and saturated aqueous NaCl (25 mL). The organic extract was dried, filtered, and concentrated to afford the crude aldehyde, which was used directly in the next step without further purification.

To a solution of *tert*-butyl (diphenylphosphoryl)methylsulfonylcarbamate (217 mg, 0.55 mmol, 1.1 equiv) in DMF–THF (1:1, 5.0 mL) at -78 °C, was added a solution of LiHMDS (1 M in THF, 1.1 mL, 2.2 equiv) dropwise over 15 min. The solution was stirred for 30 min, and the crude aldehyde from the previous step in THF (4 mL) was cannulated into the reaction. The mixture was allowed to warm to 25 °C and stirred for 15 h. The solvent was then removed *in vacuo* and the residue was re-suspended in H₂O (20 mL). An aqueous 1 M HCl solution was used to adjust the pH to 3–4, and the suspension was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with H₂O (20 mL), saturated aqueous NaCl (20 mL), dried (MgSO₄), and concentrated to afford the crude product. Purification by flash column chromatography on silica gel (5:95 EtOAc–Hexane→50:50 EtOAc–hexane, linear gradient) afforded the title compound (153 mg, 45% over 2 steps) as a colorless oil: $R_f = 0.35$ (50:50 EtOAc–

hexane); $[\alpha]_D^{23}$ +82 (*c* 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 600 MHz) δ 1.35 (s, 3H), 1.44 (s, 9H), 1.49 (s, 18H), 1.60 (s, 3H), 4.92 (q, *J* = 3.0 Hz, 1H), 5.32 (q, *J* = 3.0 Hz, 1H), 5.72 (d, *J* = 6.0 Hz, 1H), 6.20 (br s, 1H), 6.40 (dd, *J* = 15.0, 2.4 Hz, 1H), 6.83 (dd, *J* = 15.0, 3.0 Hz, 1H), 8.12 (s, 1H), 8.83 (s, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ 25.1, 26.7, 27.8, 27.9, 83.3, 83.8, 84.3, 84.4, 85.2, 90.8, 114.6, 128.6, 129.1, 141.7, 144.2, 149.5, 150.7, 150.8, 152.38, 152.41; HRMS (ESI–) calcd for C₂₉H₄₁N₆O₁₁S [M – H]⁻ 681.2554, found 681.2560 (error 0.9 ppm).

C-(2',3'-*O*-Isopropylidene-5'-adenosyl)methansulfonamide (18). To a solution of 17 (35 mg, 0.05 mmol, 1.0 equiv) in MeOH (5 mL) under nitrogen was added 10 wt% Pd/C (5.3 mg, 10 mol%) in one portion. The atmosphere was then replaced by H_2 (1 atm). The mixture was stirred vigorously for 24 h whereupont MS indicated complete conversion of starting material. The mixture was filtered over Celite and the filtrate was concentrated to afford the crude Boc-protected sulfonamide intermediate, which was used directly in the next step without further purification.

To a solution of the Boc-protected sulfonamide intermediate from the previous step in CH₂Cl₂ (2 mL) at 0 °C was added TFA (0.5 mL). The solution was stirred at 0 °C for 2 h and concentrated *in vacuo*. Purification by flash column chromatography on silica gel (CH₂Cl₂ \rightarrow 10:90 MeOH–EtOAc, linear gradient) afforded the title compound (16.7 mg, 87% over 2 steps) as a colorless oil: $R_f = 0.25$ (10:90 MeOH–CH₂Cl₂); $[\alpha]_D^{23}$ –0.9 (*c* 0.7, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 1.38 (s, 3H), 1.59 (s, 3H), 2.23 (q, *J* = 8.4 Hz, 2H), 3.08–3.14 (m, 2H), 4,30 (q, *J* = 3.6 Hz, 1H), 4.98 (dd, *J* = 6.6, 3.6 Hz, 1H), 5.50 (dd, *J* = 6.6, 2.4 Hz, 1H), 6.17 (d, *J* = 2.4 Hz, 1H), 8.26 (s, 1H), 8.30 (s, 1H); ¹³C NMR

(CDCl₃, 150 MHz) δ 25.7, 27.6, 29.2, 52.4, 85.3, 85.4, 86.3, 91.4, 116.0, 120.8, 142.5, 150.3, 152.8, 156.7; HRMS (APCI+) calcd for C₁₄H₂₁N₆O₅S [M + H]⁺ 385.1300, found 385.1263 (error 9.6 ppm).

N-D-Biotinoyl-C-(2',3'-O-isopropylidene-5'-adenosyl)methansulfonamide

triethylammonium salt (10). To a solution of **18** (12 mg, 0.030 mmol, 1.0 equiv) and D-(+)-biotin *N*-hydroxysuccinimide ester (19 mg, 0.06 mmol, 2.0 equiv) in DMF (1 mL) at 0 °C was added Cs_2CO_3 (27 mg, 0.09 mmol, 3.0 equiv) in one portion. The mixture was gradually warmed to 25 °C and stirred for 15 h. The reaction was concentrated *in vacuo* and re-suspended in 1:9 MeOH–CH₂Cl₂ (20 mL). Filtration over Celite and concentration *in vacuo* afforded the crude biotinylated intermediate (33 mg), which was used directly in the next step without further purification.

The crude biotinylated intermediate (33 mg) prepared above was dissolved in 1:1 TFA–H₂O (1 mL) at 0 °C and the solution was stirred for 60 min. The reaction was quenched by addition of NEt₃ (0.5 mL) and concentrated *in vacuo*. The crude product was purified by preparative reverse-phase HPLC with a Phenomenex Gemini 10 µm C18 110A (250 × 21.2 mm) column at a flow rate of at 30 mL/min for 20 min and an isocratic elution of 13:87 MeOH–10 mM triethylammonium bicarbonate (pH 7.0). The retention time of the product was 13.5 min and the appropriate fractions were pooled and lyophilized to afford the title compound (60% over 2 steps): $[\alpha]_D^{23}$ +23.5 (*c* 0.4, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 1.28 (t, *J* = 7.2 Hz, 9H), 1.41–1.45 (m, 2H), 1.55–1.64 (m, 3H), 1.71–1.75 (m, 1H), 2.15–2.25 (m, 2H), 2.18 (t, *J* = 7.2 Hz, 2H), 2.68 (d, *J* = 13.2 Hz, 1H), 2.89 (dd, *J* = 13.2, 4.8 Hz, 1H), 3.14 (q, *J* = 7.2 Hz, 6H), 3.15–3.19 (m, 1H), 3.24–3.31 (m, 1H), 3.41–3.47 (m, 1H), 4.08 (dt, *J* = 8.4, 4.8 Hz, 1H), 4.27 (t, *J* = 6.0 Hz,

1H), 4.29 (dd, J = 7.2, 4.8 Hz, 1H), 4.45 (dd, J = 7.8, 4.8 Hz, 1H), 4.71 (t, J = 4.8 Hz, 1H), 5.95 (d, J = 4.8 Hz, 1H), 8.21 (s, 1H), 8.25 (s, 1H); ¹³C NMR (CD₃OD, 150 MHz) δ 9.5, 27.4, 29.5, 29.7, 30.0, 39.9, 41.3, 48.0, 57.1, 61.7, 63.4, 71.9, 74.9, 75.4, 84.3, 90.6, 120.8, 141.6, 150.8, 154.1, 157.5, 166.3, 182.6; HRMS (ESI–) calcd for C₂₁H₂₉N₈O₇S₂ [M – H]⁻ 569.1601, found 569.1606 (error 0.9 ppm).

1-[5'-O-(tert-Butyldimethylsilyl)-2',3'-O-isopropylidene-β-D-ribofuranosyl]-5-

iodo-1*H*-imidazole-4-carbonitrile (20). To a solution of 19 (2.4 g, 10 mmol, 1.0 equiv) in acetone (100 mL) at 25 °C was added *p*-toluenesulfonic acid monohydrate (3.8 g, 20 mmol, 2.0 equiv) and 2,2-dimethoxypropane (24.5 mL, 200 mmol, 20 equiv). The solution was stirred at 25 °C for 15 h, and quenched by the addition of solid NaHCO₃ (2.52 g, 30 mmol, 3.0 equiv). The resulting suspension was stirred for an additional 30 min, then filtered. The filtrate was concentrated and the crude solid partitioned between EtOAc (200 mL) and saturated aqueous NaHCO₃ (50 mL). The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with saturated aqueous NaCl, dried (MgSO₄) and concentrated to afford 5-amino-1-(2',3'-*O*isopropylidene- β -D-ribofuranosyl)-1*H*-imidazole-4-carbonitrile (2.8 g). The crude product was used directly in the next step without further purification.

To a solution of 5-amino-1-(2',3'-O-isopropylidene- β -D-ribofuranosyl)-1*H*-imidazole-4-carbonitrile prepared above (2.8 g, 10 mmol, 1.0 equiv) in DMF (40 mL) at 0 °C was added imidazole (1.6 g, 24 mmol, 2.4 equiv) and *tert*-butyldimethylsilyl chloride (1.8 g, 12 mmol, 1.2 equiv). The solution was stirred at 0 °C for 30 min and at 25 °C for 6 h before concentration *in vacuo*. The crude material was re-dissolved in CHCl₃ (200 mL) and washed with 5% aqueous NaHCO₃ (50 mL). The organic layer was dried over MgSO₄ and concentrated to afford 5-amino-1-[5'-O-(*tert*-butyldimethylsilyl)-2',3'-Oisopropylidene- β -D-ribofuranosyl]-1*H*-imidazole-4-carbonitrile (3.5 g). The crude product was used directly in the next step without further purification.

To a solution of 5-amino-1-[5'-*O*-(*tert*-butyldimethylsilyl)-2',3'-*O*-isopropylidene- β -D-ribofuranosyl]-1*H*-imidazole-4-carbonitrile (3.5 g, 8.9 mmol, 1.0 equiv) in CH₂I₂ (10 mL) at 90 °C was added isoamylnitrite (4.7 mL, 35.6 mmol, 4.0 equiv) in CHCl₃ (10 mL) dropwise over 20 min. The reaction was stirred for 1 h at 90 °C, and concentrated *in vacuo*. Purification by flash column chromatography on silica gel (5:95 EtOAc–hexane) prification by flash column chromatography on silica gel (5:95 EtOAc–hexane) as a yellow foam: $R_f = 0.40$ (50:50 EtOAc–hexane); $[\alpha]_D^{23}$ –52.0 (*c* 0.2, CH₂Cl₂); ¹H NMR (CDCl₃, 600 MHz) δ 0.89 (s, 3H), 0.90 (s, 3H), 0.88 (s, 9H), 1.38 (s, 3H), 1.63 (s, 3H), 3.81 (dd, *J* = 12.0, 2.4 Hz, 1H), 3.92 (dd, *J* = 12.0, 2.4 Hz, 1H), 4.40–4.45 (m, 1H), 4.70 (dd, *J* = 6.6, 2.4 Hz, 1H), 4.83 (dd, *J* = 6.6, 2.4 Hz, 1H), 5.81 (d, *J* = 2.4 Hz, 1H), 8.06 (s, 1H); ¹³C NMR (CDCl₃, 150 Hz) δ –5.7, –5.5, 18.3, 25.3, 25.8, 27.2, 63.3, 78.5, 80.8, 86.3, 86.8, 95.0, 114.2, 114.3, 123.1, 139.8; HRMS (APCI+) calcd for C₁₈H₂₉IN₃O₄Si [M + H]⁺ 506.0967, found 506.0972 (error 1.0 ppm).

1-[5'-*O*-(*tert*-Butyldimethylsilyl)-2',3'-*O*-isopropylidene-β-D-ribofuranosyl]-5trimethylsilylethynyl-1*H*-imidazole-4-carbonitrile (21). To a solution of 20 (250 mg, 0.5 mmol, 1.0 equiv) in CH₃CN (2 mL) at 25 °C was added PdCl₂(PhCN)₂ (9.3 mg, 0.025 mmol, 5% equiv) and the solution was purged with argon for 10 min. Trimethylsilylacetylene (0.21 mL, 1,5 mmol, 3.0 equiv) and NEt₃ (0.19 mL, 1.5 mmol, 3.0 equiv) were then added sequentially. The solution was heated at 100 °C for 6 h. The

solution was concentrated *in vacuo*. Purification by flash column chromatography on silica gel (5:95 EtOAc–hexane \rightarrow 30:70 EtOAc–hexane, linear gradient) afforded the title compound (166 mg, 70%) as a yellow foam: $R_f = 0.25$ (20:80 EtOAc–hexane); $[\alpha]_D^{23} - 11.7$ (*c* 2.1, CH₂Cl₂); ¹H NMR (CDCl₃, 600 MHz) δ 0.05 (s, 3H), 0.06 (s, 3H), 0.28 (s, 9H), 0.86 (s, 9H), 1.36 (s, 3H), 1.58 (s, 3H), 3.79 (dd, J = 11.4, 3.0 Hz, 1H), 3.90 (dd, J = 11.4, 3.0 Hz, 1H), 4.46–4.47 (m, 1H), 4.79–4.80 (m, 2H), 5.89 (d, J = 1.8 Hz, 1H), 7.83 (s, 1H); ¹³C NMR (CDCl₃, 150 Hz) δ –5.7, –5.6, –0.7, 18.2, 25.2, 25.8, 27.2, 63.5, 81.1, 86.5, 87.4, 87.8, 93.8, 110.6, 113.6, 113.8, 118.9, 121.6, 136.5; HRMS (ESI+) calcd for C₂₃H₃₈N₃O₄Si₂ [M + H]⁺ 476.2395, found 476.2405 (error 2.1 ppm).

4-Amino-1-[5'-O-(tert-butyldimethylsilyl)-2',3'-O-isopropylidene-β-D-

ribofuranosyl]-1*H***-imidazo[4,5-***c***]pyridine (22).** A 7 N NH₃ methanolic solution (3 mL, 21 mmol, 84 equiv) was added to **21** (120 mg, 0.25 mmol, 1.0 equiv) and the solution was heated at 110 °C for 15 h in a sealed tube. The reaction was cooled to 25 °C and concentrated *in vacuo*. Purification by flash column chromatography on silica gel (CH₂Cl₂→7:93 MeOH–CH₂Cl₂, linear gradient) afforded the title compound (82 mg, 77%) as a yellow foam: R_f = 0.55 (10:90 MeOH–CH₂Cl₂); $[a]_D^{23}$ –35.2 (*c* 0.25, CH₂Cl₂); ¹H NMR (CDCl₃, 600 MHz) δ 0.03 (s, 3H), 0.04 (s, 3H), 0.84 (s, 9H), 1.38 (s, 3H), 1.63 (s, 3H), 3.82 (dd, *J* = 11.4, 3.0 Hz, 1H), 3.92 (dd, *J* = 11.4, 3.0 Hz, 1H), 4.45 (d, *J* = 1.8 Hz, 1H), 4.81 (t, *J* = 3.0 Hz, 1H), 4.87 (t, *J* = 2.7 Hz, 1H), 5.91 (d, *J* = 3.6 Hz, 1H), 6.90 (d, *J* = 6.0 Hz, 1H), 7.80 (d, *J* = 5.4 Hz, 1H), 8.04 (s, 1H); ¹³C NMR (CDCl₃, 150 Hz) δ – 5.7, -5.5, 18.3, 25.3, 25.8, 27.3, 63.3, 81.1, 85.3, 86.3, 93.1, 98.4, 114.6, 127.7, 137.5, 138.9, 139.2, 151.3; HRMS (ESI+) calcd for C₂₃H₃₈N₄O₄Si [M + H]⁺ 421.2266, found 421.2283 (error 4.0 ppm).

4-Amino-1-(β-D-ribofuranosyl)-1*H***-imidazo[4,5-***c***]pyridine (23). To a solution of 22** (29.4 mg, 0.07 mmol, 1 equiv) in DMF (2 mL) at 25 °C was added KO*t*Bu (25 mg, 0.21 mmol, 3 equiv). The mixture was stirred at 25 °C for 1 h then concentrated *in vacuo*. The resulting crude material was redissovled in 1:9 MeOH–CH₂Cl₂ (20 mL), filtered over Celite and concentrated *in vacuo*. Purification by flash column chromatography on silica gel (CH₂Cl₂→1:9 MeOH–CH₂Cl₂, linear gradient) afforded the title compound (16.8 mg, 78%) as a yellow foam: R_f = 0.15 (10:90 MeOH–CH₂Cl₂); [*α*]²³_D–48 (*c* 0.3, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 1.39 (s, 3H), 1.63 (s, 3H), 3.71–3.77 (m, 2H), 4.37 (q, *J* = 3.6 Hz, 1H), 4.97 (dd, *J* = 6.6, 2.4 Hz, 1H), 5.04 (dd, *J* = 6.0, 3.6 Hz, 1H), 6.05 (d, *J* = 3.6 Hz, 1H), 6.99 (d, *J* = 6.0 Hz, 1H), 7.71 (d, *J* = 5.4 Hz, 1H), 8.36 (s, 1H); ¹³C NMR (CD₃OD, 150 Hz) δ 25.6, 27.6, 63.0, 82.8, 86.1, 88.0, 93.7, 99.5, 115.9, 128.2, 139.5, 140.4, 141.7, 153.2; HRMS (ESI+) calcd for C₁₄H₁₉N₄O₄ [M + H]⁺ 307.1401, found 307.1407 (error 2.0 ppm).

4-Amino-1-(5'-O-sulfamoyl-β-D-ribofuranosyl)-1H-imidazo[4,5-c]pyridine (24). To a solution of **23** (35 mg, 0.11 mmol, 1.0 equiv) in DME (2 mL) at 0 °C was added NaH (60 wt% in mineral oil, 17.6 mg, 0.44 mmol, 4.0 equiv). The suspension was stirred at 0 °C for 30 min. Next, a stock solution of sulfamoyl chloride in THF (2 mL, 0.11 M, 2.0 equiv) was added. The reaction was gradually warmed to 25 °C and stirred for 15 h. The mixture was concentrated *in vacuo* and redissolved in 10:90 MeOH–CH₂Cl₂ (20 mL). The suspension was filtered over Celite and the filtrate was concentrated *in vacuo*. Purification by flash column chromatography on silica gel (CH₂Cl₂→10:90 MeOH– CH₂Cl₂, linear gradient) afforded the title compound (34 mg, 80%) as a yellow foam: R_f = 0.15 (10:90 MeOH–CH₂Cl₂); [α]²³_D –56 (*c* 0.5, MeOH); ¹H NMR (CD₃OD, 400 MHz) δ 1.40 (s, 3H),1.64 (s, 3H), 4.31–4.33 (m, 2H), 4.58 (q, J = 2.8 Hz, 1H), 5.02 (dd, J = 6.4, 3.6 Hz, 1H), 5.10 (dd, J = 6.4, 3.6 Hz, 1H), 6.09 (d, J = 3.6 Hz, 1H), 6.99 (d, J = 6.0 Hz, 1H), 7.73 (d, J = 6.4 Hz, 1H), 8.28 (s, 1H); ¹³C NMR (CD₃OD, 100 Hz) δ 25.6, 27.6, 69.8, 82.4, 84.7, 85.6, 93.6, 99.5, 116.4, 127.2, 139.4, 141.0, 141.5, 153.3; HRMS (ESI+) calcd for C₁₄H₂₀N₅O₆S [M + H]⁺ 386.1129, found 386.1145 (error 4.1 ppm).

4-Amino-1-{5'-O-[N-(D-biotinoyl)sulfamoyl]-β-D-ribofuranosyl}-1H-imidazo[4,5clpvridine triethylammonium salt (11). The title compound was prepared from 24 (34.5 mg, 0.1 mmol) analogously to 10 and purified by preparative reverse-phase HPLC with a Phenomenex Gemini 10 µm C18 110A (250 × 21.2 mm) column at a flow rate of 18 mL/min using a linear gradient of $10 \rightarrow 40\%$ MeOH-10 mM triethylammonium bicarbonate (pH 7.0) over 15 min followed by 40% MeOH-10 mM triethylammonium bicarbonate (pH 7.0) for 5 min. The retention time of the product was 12.5 min and the appropriate fractions were pooled and lyophilized to afford the title compound (43.5 mg, 65% over 2 steps): $[\alpha]_D^{23}$ +16 (c 0.3, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 1.28 (t, J = 6.6 Hz, 9H), 1.41-1.45 (m, 2H), 1.52-1.56 (m, 1H), 1.62-1.72 (m, 3H), 2.22 (t, J = 7.2Hz, 2H), 2.64 (d, J = 12.6 Hz, 1H), 2.85 (dd, J = 12.0, 5.4 Hz, 1H), 3.09–3.17 (m, 7H), 4.22-4.25 (m, 1H), 4.31-4.36 (m, 4H), 4.40-4.43 (m, 1H), 4.53 (t, J = 6.0 Hz, 1H), 5.89 $(d, J = 7.2 \text{ Hz}, 1\text{H}), 7.11 (d, J = 5.4 \text{ Hz}, 1\text{H}), 7.72 (d, J = 6.6 \text{ Hz}, 1\text{H}), 8.44 (s, 1\text{H}); {}^{13}\text{C}$ NMR (CD₃OD, 150 MHz) δ 9.5, 27.4, 29.6, 30.0, 40.1, 41.2, 48.0, 57.1, 61.7, 63.4, 69.3, 72.4, 76.1, 85.3, 90.9, 111.6, 128.1, 139.9, 140.1, 142.5, 153.0, 166.3, 183.2; HRMS (ESI–) calcd for $C_{21}H_{28}N_7O_8S_2$ [M – H]⁻ 570.1446, found 570.1450 (error 0.7 ppm).

(P/M)-5-(2-Aminophenyl)-1-[5'-O-(tert-butyldimethylsilyl)-2',3'-O-

isopropylidene-β-D-ribofuranosyl]-1H-imidazole-4-carbonitrile (25). To a suspension of Pd(OAc)₂ (1.1 mg, 0.0050 mmol, 0.05 equiv) and PPh₃ (3.9 mg, 0.015 mmol, 0.15 equiv) in DME (2 mL) were sequentially added 20 (51 mg, 0.10 mmol, 1.0 equiv), 2aminophenylboronic acid hydrochloride salt (26 mg, 0.15 mmol, 1.5 equiv) and 0.3 M aqueous Na₂CO₃ (1.0 mL, 0.30 mmol, 3.0 equiv) at 25 °C. The reaction was heated at 90 °C for 5 h and cooled down to 25 °C. TLC and MS analysis indicated the complete consumption of 20. The reaction mixture was partitioned between EtOAc (50 mL) and H_2O (10 mL). The aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with H₂O (25 mL), saturated aqueous NaCl (25 mL), dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography on silica gel (10:90 EtOAc-hexane \rightarrow 40:60 EtOAc-hexane, linear gradient) afforded the title compound (35.3 mg, 75%) as a yellow foam, which was a 2:1 mixture of atropisomers: R_f = 0.20 (50:50 EtOAc-hexane); ¹H NMR (CDCl₃, 400 MHz) δ 0.11 (d, J = 2.4 Hz, 2H), 0.13 (d, J = 4.8 Hz, 4H), 0.92 (s, 3H), 0.9 (s, 6H), 1.27 (s, 2H), 1.29 (s, 1H), 1.33 (s, 2H), 1.29 (s, 2H), 1.21.36 (s, 1H), 3.77–3.81 (m, 1.33H), 3.87–3.91 (m, 0.67H), 4.22–4.23 (m, 0.33 H), 4.28– 4.30 (m, 0.67H), 4.58–4.60 (m, 1H), 4.70–4.72 (m, 1H), 4.75–4.77 (m, 1H), 5.48 (d, J =2.4 Hz, 0.33H), 5.58 (d, J = 4.0 Hz, 0.67H), 6.77–6.85 (m, 2H), 7.09–7.26 (m, 1H), 7.25– 7.29 (m, 1H), 7.98 (s, 0.33H), 8.06 (s, 0.67H); LRMS (ESI+) 471.2.

4-Amino-1-(2',3'-O-isopropylidene-β-D-ribofuranosyl)-1H-imidazo[4,5-

c]quinoline (26). To a solution of 25 (34 mg, 0.07 mmol, 1 equiv) in MeOH (1 mL) at 25 °C was added NaOMe (12 mg, 0.21 mmol, 3 equiv). The reaction was heated at reflux for 15 h. The mixture was cooled to room temperature and concentrated *in vacuo*. The

residue was redissolved in 1:9 MeOH–CH₂Cl₂ (20 mL), filtered over Celite and the filtrate was concentrated. Purification by flash column chromatography on silica gel (CH₂Cl₂→1:9 MeOH–CH₂Cl₂, linear gradient) afforded the title compound (23.6 mg, 92% over 2 steps) as a yellow foam. $R_f = 0.25$ (1:9 MeOH–CH₂Cl₂); $[\alpha]_D^{23}$ +37.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 600 MHz) δ 1.39 (s, 3H), 1.70 (s, 3H), 3.87 (dd, J = 12, 6.0 Hz, 1H), 4.05 (dd, J = 12, 6.0 Hz, 1H), 4.57 (d, J = 1.8 Hz, 1H), 5.06–5.08 (m, 2H), 6.52 (d, J = 1.8 Hz, 1H), 7.23 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 6.0 Hz, 1H), 8.09 (d, J = 6.0 Hz, 1H), 8.39 (s, 1H); ¹³C NMR (CDCl₃, 150 Hz) δ 25.3, 27.2, 61.8, 81.2, 85.4, 87.7, 87.8, 93.1, 114.3, 121.0, 121.4, 122.6, 125.3, 127.5, 127.8, 132.8, 139.2, 150.9; HRMS (ESI+) calcd for C₁₈H₂₁N₄O₄ [M + H]⁺ 357.1557, found 357.1559 (error 0.6 ppm).

4-Amino-1-(2',3'-O-isopropylidene-5'-O-sulfamoyl-β-D-ribofuranosyl)-1H-

imidazo [4,5-*c*]quinoline (27). To a solution of 26 (25 mg, 0.07 mmol, 1.0 equiv) in DMA (1 mL) at 0 °C was added a 0.35 M stock solution of sulfamoyl chloride in CH₃CN (0.50 mL, 0.18 mmol, 2.5 equiv) over 5 min. The solution was stirred at 0 °C for 2 h, then quenched by the addition of NEt₃ (0.2 mL) and MeOH (0.2 mL). The mixture was diluted with EtOAc (50 mL), washed with 5% aqueous NaHCO₃ (2 × 25 mL), saturated aqueous NaCl (2 × 25 mL), then dried (MgSO₄) and concentrated *in vacuo* to afford the title compound (24 mg, 88%) as yellow foam: $R_f = 0.15$ (1:9 MeOH–CH₂Cl₂); $[\alpha]_D^{23}$ +54 (*c* 0.5, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 1.41 (s, 3H), 1.69 (s, 3H), 4.30–4.31 (m, 2H), 4.67 (t, J = 3.6 Hz, 1H), 5.09 (dd, J = 6.0, 3.3 Hz, 1H), 5.29 (dd, J = 6.6, 2.4 Hz, 1H), 6.65 (d, J = 1.8 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 8.47 (s, 1H); ¹³C NMR (CDCl₃, 150 Hz) δ 25.6,

27.5, 69.6, 82.4, 85.9, 86.2, 94.1, 116.0, 116.2, 123.2, 123.7, 126.8, 129.1, 129.2, 134.5, 140.8, 145.9, 153.2; HRMS (ESI+) calcd for $C_{18}H_{22}N_5O_6S [M + H]^+$ 436.1285, found 436.1276 (error 2.1 ppm).

4-Amino-1- $\{5'-O-[N-(D-biotinoy])$ sulfamoy]- β -D-ribofuranosy}-1H-imidazo[4,5c]quinoline triethylamonium salt (12). The title compound was prepared from 27 (39.5 mg, 0.100 mmol) analogously to 10 and purified by preparative reverse-phase HPLC with a Varian Dynamax Microsorb 100-8 C18 column (250 × 41.4 mm) at a flow rate of 35 mL/min using a linear gradient of $10 \rightarrow 48\%$ MeOH-10 mM triethylammonium bicarbonate (pH 7.0) over 10 min followed by 48% MeOH-10 mM triethylammonium bicarbonate (pH 7.0) for 10 min. The retention time of the product was 18.2 min and the appropriate fractions were pooled and lyophilized to afford the title compound (62% over 2 steps): $\left[\alpha\right]_{D}^{23}$ +76 (c 0.05, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 0.99 (t, J = 6.6 Hz, 9 H), 1.18–1.33 (m, 2H), 1.35–1.50 (m, 1H), 1.54–1.65 (m, 3H), 2.07–2.18 (m, 2H), 2.50 (d, J = 12.6 Hz, 1H), 2.85 (dd, J = 12.6, 5.4 Hz, 1H), 2.82 (q, J = 6.6 Hz, 9 H), 2.92-2.99(m, 1H), 4.09-4.15 (m, 1H), 4.24-4.29 (m, 2H), 4.30-4.35 (m, 3H), 4.61 (t, J=12.0 Hz, 1H), 6.38 (d, J = 4.8 Hz, 1H), 7.29 (t, J = 8.4 Hz, 1H), 7.45 (t, J = 8.4 Hz, 1H), 7.63 (d, J= 7.8 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.60 (s, 1H); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 13.9, 25.2, 28.0, 28.2, 37.8, 40.0, 47.2, 55.4, 57.9, 59.1, 61.0, 69.7, 74.3, 82.3, 89.9, 113.7, 116.8, 121.9, 122.7, 127.3, 128.1, 129.6, 132.9, 140.3, 150.9, 162.3, 184.3; HRMS (ESI–) calcd for $C_{25}H_{30}N_7O_8S_2$ [M – H]⁻ 620.1603, found 620.1608 (error 0.8 ppm).

2-(3,3-Dimethyl-1-butyn-1-yl)adenosine (29). To a stirring solution of 2iodoadenosine **28** (590 mg, 1.5 mmol, 1.0 equiv), CuI (14 mg, 0.075 mmol, 0.05 equiv), Pd(PPh₃)₂Cl₂ (105 mg, 0.15 mmol, 0.10 equiv) in DMF (10.5 mL) was added NEt₃ (0.25 mL, 1.8 mmol, 1.2 equiv) and 3,3-dimethyl-1-butyne (0.22 mL, 1.8 mmol, 1.2 equiv). The reaction was stirred at 88 °C for 16 h. ESI-MS indicated complete conversion and the reaction was concentrated *in vacuo*. The residue was redissolved in CHCl₃ (20 mL) and solid potassium sodium tartrate hydrate was added. The suspension was filtered through a Celite pad and washed with CHCl₃ (3 × 5 mL). The filtrate was concentrated *in vacuo*. Purification by silica gel column chromatography (CH₂Cl₂→10:90 MeOH–CH₂Cl₂) afforded the title compound (401 mg, 77%) as a light yellow solid: $R_f = 0.13$ (10:90 MeOH–CH₂Cl₂); $[\alpha]_D^{24}$ –47.3 (*c* 0.2, MeOH); mp 143–145° C; ¹H NMR (CD₃OD, 600 MHz) δ 1.37 (s, 9H), 3.78 (d, *J* = 12.3 Hz, 1H), 3.93 (d, *J* = 13.0 Hz, 1H), 4.17–4.20 (m, 1H), 4.32–4.35 (m, 1H), 4.69 (t, *J* = 5.3 Hz, 1H), 5.97 (d, *J* = 5.8 Hz, 1H), 8.35 (s, 1H); ¹³C NMR (CD₃OD, 150 MHz) δ 28.9, 31.0, 63.5, 72.6, 75.8, 79.8, 88.2, 91.2, 96.5, 120.3, 142.5, 147.9, 150.4, 157.3 (missing 1 carbon); HRMS (ESI+) calcd for C₁₆H₂₂N₅O₄ [M + H]⁺ 348.1666, found 348.1676 (error 2.9 ppm).

2-(3,3-Dimethyl-1-butyn-1-yl)-2',3'-O-isopropylideneadenosine (30). To a solution of 29 (310 mg, 0.89 mmol, 1.0 equiv), 2,2-dimethoxypropane (0.53 mL, 4.4 mmol, 4.9 equiv) in acetone (10.5 mL) was added *p*-toluenesulfonic acid monohydrate (188 mg, 0.97 mmol, 1.1 equiv). The reaction was stirred at 23° C for 16 h and quenched with solid NaHCO₃. The resulting suspension was stirred for an additional 30 min, then filtered, and the filtrate was concentrated. Purification by silica gel column chromatography (75:25 hexane–EtOAc→25:75 hexane–EtOAc) afforded the title compound (293 mg, 85%) as a light yellow foam: $R_f = 0.6$ (10:90 MeOH–CH₂Cl₂); $[\alpha]_D^{24}$ –53.7° (*c* 0.2, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 1.36 (s, 9H), 1.39 (s, 3H), 1.63 (s, 3H), 3.74 (dd, J = 12.0, 3.5 Hz, 1H), 3.81 (dd, J = 12, 3.5 Hz, 1H), 4.36–4.39 (m, 1H), 5.04 (dd, J = 5.9, 1.8 Hz, 1H), 5.20–5.23 (m, 1H), 6.15 (d, J = 3.5 Hz, 1H), 8.35 (s, 1H); ¹³C NMR (CD₃OD, 150 MHz) δ 25.7, 27.8, 28.9, 31.0, 63.8, 79.9, 83.0, 85.5, 86.1, 92.7, 96.4, 111.6, 115.5, 120.0, 142.3, 148.2, 150.5; HRMS (ESI+) calcd C₁₉H₂₆N₅O₄ [M + H]⁺ 388.1979, found 388.2013 (error 8.8 ppm).

2-(3,3-Dimethyl-1-butyn-1-yl)-2',3'-O-isopropylidene-5'-O-(sulfamoyl)adenosine (31). To a solution of 30 (146 mg, 0.38 mmol, 1.0 equiv) and Et₃N (0.16 mL, 1.1 mmol, 3.0 equiv) in DMF (5.0 mL) at 0 °C was added sulfamoyl chloride (130 mg, 1.1 mmol, 3.0 equiv). The reaction was stirred for 2 h at 0 °C, then allowed to warm to 25 °C and stirred for 16 h. TLC and MS indicated complete conversion and the reaction was concentrated *in vacuo*. Purification by silica gel column chromatography (CH₂Cl₂→8:92 MeOH–CH₂Cl₂) afforded the title compound (141 mg, 80%) as a light yellow foam: $R_f =$ 0.4 (10:90 MeOH–CH₂Cl₂); $[\alpha]_D^{23} = -18.4$ (*c* 1.4, MeOH); ¹H NMR (CD₃OD, 600 MHz) 1.36 (s, 9H), 1.40 (s, 3H), 1.62 (s, 3H), 4.29–4.35 (m, 2H), 4.51–4.54 (m, 1H), 5.10 (dd, *J* = 6.0, 3.0 Hz, 1H), 5.34 (dd, *J* = 5.4, 2.4 Hz, 1H), 6.24 (d, *J* = 2.4 Hz, 1H), 8.29 (s, 1H); ¹³C NMR (CD₃OD, 150 MHz) δ 25.7, 27.6, 28.9, 31.0, 70.0, 80.0, 82.9, 85.62, 85.64, 91.4, 96.3, 115.9, 119.6, 141.8, 148.3, 150.7, 157.1; HRMS (ESI+) calcd C₁₉H₂₇N₆O₆S [M + H]⁺ 467.1707, found 467.1712 (error 1.1 ppm).

5'-O-[N-(D-Biotinoyl)sulfamoyl]-2-(3,3-dimethyl-butyn-1-yl)adenosine

triethylammonium salt (13). The title compound was prepared from 31 (42.6 mg, 0.1 mmol) analogously to 10 and purified by preparative reverse-phase HPLC with a Phenomenex Gemini 10 μ m C18 110A (250 × 21.2 mm) column at a flow rate of 30 mL/min and an isocratic elution of 15% MeOH–10 mM triethylammonium bicarbonate

(pH 7.0) over 15 min. The retention time of the product was 10.5 min and the appropriate fractions were pooled and lyophilized to afford the title compound (65% over 2 steps): $[\alpha]_{D}^{23}$ +17 (*c* 1.0, MeOH); ¹H NMR (CD₃OD, 600 MHz) δ 1.28 (t, *J* = 7.2 Hz, 9H), 1.35 (s, 9H), 1.40–1.43 (m, 2H), 1.54–1.58 (m, 1H), 1.61–1.64 (m, 2H), 1.65–1.74 (m, 1H), 2.21 (t, *J* = 6.6 Hz, 2H), 2.65 (d, *J* =12.6 Hz, 1H), 2.87 (dd, *J* = 12.6, 4.8 Hz, 1H), 3.10–3.12 (m, 1H), 3.15 (q, *J* = 7.2 Hz, 6H), 4.25–4.30 (m, 3H), 4.32–4.35 (m, 1H), 4.38 (t, *J* = 4.2 Hz, 1H), 4.45 (dd, *J* = 7.8, 4.8 Hz, 1H), 4.56 (t, *J* = 4.8 Hz, 1H), 6.08 (d, *J* = 5.4 Hz, 1H), 8.52 (s, 1H); ¹³C NMR (CD₃OD, 150 MHz) δ 9.5, 27.4, 28.9, 29.6, 29.9, 31.1, 40.0, 41.2, 48.0, 57.1, 61.7, 63.4, 69.2, 72.2, 76.6, 80.1, 84.6, 89.3, 96.0, 119.5, 141.7, 148.2, 151.2, 157.1, 166.3, 183.2; HRMS (ESI–) calcd for C₂₆H₃₅N₈O₈S₂[M – H]⁻ 651.2025, found 651.2020 (error 0.8 ppm).

II. General description of ITC experiments

ITC experiments were as essentially as previously described.⁴ Briefly, all experiments were performed on a Microcal VP-ITC microcalorimeter (GE Healthcare) thermostated to 20 °C using ITC buffer (10 mM Tris pH 7.5, 200 mM KCl, 2.5 mM MgCl₂). The nominal concentration of BirA was determined using the protein's extinction coefficient and the active concentration was determined by titrating the enzyme (20 μ M) with biotin (150 μ M) and adjusting the enzyme concentration *in silico* until an *n* of 1 was achieved. Once the precise active concentration of BirA was calculated 5 μ M of the enzyme was titrated with 75 μ M of each compound. For 10, 11 and 12, the quantity $c = K_A M_t(0)$, in which $M_t(0)$ is the total concentration of enzyme in the experiment, was greater than 1000. Therefore, displacement ITC experiments were performed using biotin as a competitive ligand. For 10 and 11 we employed 10 µM BirA and 250 µM biotin and for 12 we used 20 μ M BirA and 500 μ M biotin in the cell. The inhibitor concentrations used in the syringe for the competitive experiments were 75 μ M for 10 and 11 and 200 μ M for 12. Initial analyses were carried out using the Origin software package included with the instrument. For competitive experiments the association constant was determined using equation 1:

$$K_A = K_A^{app} (1 + K_A^B[B]) \tag{1}$$

where [*B*] is the concentration of biotin and K_A^B is the association constant of biotin (1.08 x 10⁶ M⁻¹). The thermodynamic parameters were then calculated using equation 2:

$$\Delta G = -RT \ln K = \Delta H - T \Delta S \tag{2}$$

where R = 1.98 cal mol⁻¹K⁻¹, T is the absolute temperature, and ΔH is the value determined from the direct titration experiment.

III. Antitubercular activity assay

The MIC **9–13** were determined for *Mycobacterium tuberculosis* H37Rv by a broth microdilution assay using a 2-fold dilution from 50 μ M down to 0.1 μ M employing a 20 mM stock solution. Aliquots of GAST medium with 0.5% DMSO containing two-fold serial dilutions of compounds were inoculated with logphase *Mycobacterium tuberculosis* H37Rv to a final OD₆₀₀ of 0.002 and incubated at 37 °C for 10–14 days in presence of CO₂. The MIC was defined as the lowest concentration of compound that prevented growth, as determined by measuring the endpoint OD₆₀₀ values.

Figure S1: A two-fold serial dilution of inhibitors namely $9(\bullet)$, $10(\lor)$, $11(\blacktriangle)$, $12(\blacksquare)$, and $13(\diamond)$ was prepared and their activity tested by inhibition of growth as measured by optical density. Graph indicates the normalized growth calculated as the OD₆₀₀ at a particular drug concentration divided by the OD₆₀₀ in the absence of drug. Error bars indicate standard error of the mean (SEM) from 8 measurements in two independent experiments.

IV. References

- (1) Ikeuchi, H.; Meyer, M. E.; Ding, Y.; Hiratake, J.; Richards, N. G. J. A critical electrostatic interaction mediates inhibitor recognition by human asparagine synthetase. *Bioorg. Med. Chem.* **2009**, *17*, 6641–6650.
- (a) Shaw, E. A convenient preparation of 5-amino-4-imidazolecarboxamide riboside. Ring opening of N¹-p-toluenesulfonyl-inosine. J. Am. Chem. Sci. 1959, 81, 6021–6022. (b) Minakawa, N.; Takeda, T.; Sasaki, T.; Matsuda, A.; Ueda, T. Nucleosides and nucleotides. 96. Synthesis and antitumor activity of 5-ethynyl-1-β-D-ribofuranosylimidazole-4-carboxamide (EICAR) and its derivatives. J. Med. Chem. 1991, 34, 778–786.
- (3) Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.; Nomoto, R.; Miyasaka, T.; Watanabe, Y.; Abiru, T. Nucleosides and nucleotides. 103. 2-alkynyladenosines: a novel class of selective adenosine A2 receptor agonists with potent antihypertensive effects. *J. Med. Chem.* 1992, 35, 241–252.
- (4) Duckworth, B. P.; Geders, T. W.; Tiwari, D.; Boshoff, H. I.; Sibbald, P. A.; Barry, C. E. III; Schnappinger, D.; Finzel, B. C.; Aldrich, C. C. Bisubstrate adenylation inhibitors of biotin protein ligase from *Mycobacterium tuberculosis*. *Chem. Biol.* 2011, *18*, 1432–1441.