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METHODS   

1. Experimental protocol  

This study was approved by the Institutional Animal Care and Use Committee. Four 
experimental groups of domestic female pigs (50-60 Kg, n=7 each) were studied over 
10 weeks of observation. Pigs were randomized to untreated shams (Normal), RVH 
(n=7), and RVH treated with either Valsartan (RVH+Valsartan, n=7) or conventional 
triple therapy including Hydralazine, Reserpine, and Hydrochlorothiazide (RVH+TT, 
n=7). All pigs were fed the same amount of isocaloric diets of standard chow containing 
0.15-0.65% sodium chloride (NaCl), and had free access to water.  

   Unilateral RAS was induced by placing a local irritant coil in the right main renal artery, 
leading to gradual obstruction of its lumen within the following days, as previously 
described.1 A telemetry transducer (TA-D70, Data Sciences International, MN) was 
implanted in the left femoral artery in each animal2, 3 to continuously monitor blood 
pressure during the observation. The day-night patterns of the blood pressure were also 
evaluated as previously described.4 The degree of RAS was determined by renal 
angiography at 6 weeks, before initiation of antihypertensive regimens.  

     Medications were started and fed with food 6 weeks later for 4 additional weeks. 
Magnetic resonance imaging (MRI) and multi-detector computed-tomography (MDCT) 
studies were then performed to assess left ventricle (LV) myocardial oxygenation, 
remodeling, and function. Blood samples were collected at the time of imaging studies.  

    For each in vivo study animals were weighed, induced with Telazol and xylazine (5 
mg/kg and 2 mg/kg, respectively, intramuscular injection) and intubated. For MDCT, 
animals were anesthetized during study by continuous intravenous infusion of Ketamine 
and ventilated with room air. During MRI, pigs were maintained anesthetized by 
ventilation of 2% isoflurane-contained oxygen. 

   Three days following the completion of in vivo studies, pigs were euthanized, by 
intravenous sodium pentobarbital (100mg/kg, Fatal Plus, Vortech Pharmaceuticals, Fort 
Washington, PA).5 Hearts were removed, preserved, and prepared for ex-vivo tissue 
studies.  

2. Antihypertensive treatment and dosage determination 

Valsartan (Molecular Weight 435.5) was delivered at 320mg daily. The dosage of TT 
was initiated at Reserpine 0.1 mg/day, hydralazine 25 mg/day, and hydrochlorothiazide 
12.5 mg/day, then titered based on the telemetry records to achieve comparable blood 
pressure control to the RVH+Valsartan groups.6 

3. Cardiac hemodynamic, oxygenation, and function  

    Cardiac function and structure were assessed in vivo using 64-slice multi-detector 
computer tomography (MDCT, Somatom Definition-64, Siemens Medical Solution, 
Forchheim, Germany).3, 7, 8 Two parallel 6-mm-thick mid-LV levels were selected for 
evaluation of myocardial perfusion and LV function. A bolus injection of nonionic, low 
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osmolar contrast medium (Isovue-370, 0.33 ml/Kg over 2 seconds) into the right atrium 
was followed by a 50-s flow study during respiratory suspension. Subsequently, the 
entire LV was scanned 20 times throughout the cardiac cycle to obtain parameters of 
cardiac function, including LV end diastolic volume, E/A ratio, stroke volume, and 
ejection fraction. LV muscle mass was acquired at the end-diastole by tracing the LV 
endocardial and epicardial borders, and LV mass/chamber volume (M/V) calculated to 
assess remodeling,9, 10 LV myocardial perfusion was measured at both baseline and 
after adenosine infusion to assess microvascular function. The rate pressure product 
(RPP; systolic blood pressure x HR) served as an index of oxygen demand. After a 15-
minutes interval, the same process was repeated during a 5-minute intravenous infusion 
of adenosine (400µg/kg/min).3, 7, 11 The images were analyzed with the AnalyzeTM 
software package (Biomedical Imaging Resource, Mayo Clinic, Rochester, MN).7 

    To assess LV myocardial oxygenation, pigs were positioned in the MRI scanner 
(Signa EXCITE 3T system, GE, Waukeshau, WI) and blood oxygen level dependent 
(BOLD) images (4-5 axial-oblique) were acquired along the cardiac short axis during 
suspended respiration.7, 12 Gated Fast Gradient Echo sequence was used with 
TR/TE/number of echoes/Matrix size/FOV/Slice thickness/Flip angle=6.8 ms/1.6-4.8 
ms/8/128x128/35/0.5 cm/30°. Data was acquired before and after intravenous injection 
of adenosine (400 mg/kg/min) through the ear vein catheter, to evaluate the 
oxygenation level under basal conditions and its response to a vasodilator. In each slice 
on T2*-weighted images obtained, the BOLD index, R2*, was estimated in each voxel 
by fitting the MR signal intensity vs. echo times to a single exponential function and 
calculating the MR intensity decay rate. Images were subsequently analyzed using 
MATLAB 7.10 (MathWorks, Natick, MA).  

Blood samples were collected from inferior vena cava during in-vivo studies to 
measure plasma creatinine and aldosterone.  

4. Ex vivo studies  

1) Myocyte hypertrophy:  

  Wheat germ agglutinin (WGA, Invitrogen) staining was performed on tissue sections of 
left ventricular myocardium to assess cardiomyocyte hypertrophy. Immunoflurosecent 
images were taken at 40x magnification at areas of transversely cut muscle fibers and 
examined using a computer-aided image-analysis program (AxioVision® v4.7.2.0, and 
ZEN 2012, Carl Zeiss MicroImaging, Thornwood, NY). Cardiomyoctes with round nuclei 
were included for measurement. Lines were drawn to delineate the border of each cell 
according to WGA staining that highlights the cell membrane, then the area within the 
border were automatically calculated. Around 50-100 cardiomyocytes were measured 
and averaged for each animal.  

2) Microcirculation:  

    The left-anterior-descending coronary artery was perfused with a radio-opaque 
polymer under physiological pressure, and a transmural portion of the LV was then 
prepared and scanned at 0.5° angular increments at 20-µm resolution, as previously 
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described.2, 11, 13 The spatial density of microvessels (defined as diameters <500 µm) in 
the subepicardium and subendocardium was calculated and classified according to 
diameter as small (20-200 µm) and large (200-500 µm) microvessels. Expression of 
vascular endothelial growth factor (VEGF), angiopoietin-1 and hypoxia-inducible factor 
(HIF)-1α were examined by western blotting and immunofluorescence for angiogenesis.  

3) Myocardial autophagy and mitochondrial turnover 

Autophagy was examined by the expression of the autophagy initiator Beclin, 
autophagosome formation hallmarks autophagy-related gene (Atg)12-Atg5, and 
microtubule-associated protein1 light chain (LC) 3-II, as well as the LC3-II/LC3-I ratio.  
Expression of mammalian target of rapamycin (mTOR) was also assessed. 
Apoptosis was evaluated by Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) and caspase-3 staining, western blotting for Bax and Bcl-xL, and their 
ratio (Bax/Bcl-xL).  
Mitochondrial degradation: Myocardial expression of dynamin-related protein (DRP) 
which participates selective degradation of mitochondria14 was examined by Western 
blotting. Cardiomyocyte mitophagy was also examined by immunofluorescence staining 
for Parkin (green, Santa Cruz) and the mitochondrial outer membrane marker Tom20 
(red, Santa Cruz) for Parkin translocation (yellow).15, 16 Images were taken at 40x with a 
zoom factor of 1.5 using the LSM780 microscope (Carl Zeiss MicroImaging), and with a 
zoom factor of 2.5 for inserts. Parkin-translocation+ cells were counted to represent 
mitophagic cardiomyocytes.  
Mitochondrial biogenesis Signals for mitochondrial biogenesis were detected by the 
expression of chief modulator peroxisome proliferator-activated receptor gamma 
coactivator (PGC)-1α,17 and its effectors nuclear respiratory factor (NRF)-1, and 
uncoupling protein (UCP)-2. Mitochondrial respiratory chain subunits proteins were 
examined by cytochrome c oxidase (COX) I, COXIV and mitochondrial NADH 
dehydrogenase (MTND)-1.  
 
4) Oxidative stress and fibrosis 

Oxidative stress was assessed by dihydroethidium (DHE) staining and western 
blotting for the expression of NAD(P)H oxidase gp91. Myocardial fibrosis was evaluated 
by Masson’s trichrome staining, and expression of tissue growth factor (TGF)-β and 
matrix metalloproteinase (MMP)-2. 

5) Western blotting  

Standard blotting protocols were followed, using specific polyclonal antibodies 
against target proteins VEGF (Santa Cruz 1:200), angiopoietin-1(Santa Cruz, 1:200), 
and HIF-1α(abcam, 1:1000) for angiogenesis; Beclin (abcam, 1:500), Atg12-Atg5 (Cell 
Signaling, 1:1000), LC3 (abcam, 1:500), and mTOR (abcam, 1:2000) for autophagy; 
Bax and Bcl-xL (both Santa Cruz, 1:200) for apoptosis; DRP-1 (Cell Signaling, 1:1000) 
for mitophagy; PGC-1α, NRF-1, and UCP-2 for mitochondrial biogenesis signals (all 
Abcam, 1:1000); MTCO1 (abcam, 1:2000), COXIV (Cell Signaling, 1:1000), and MTND-
1 (abcam, 1:1000) for mitochondria production; NAD(P)H oxidase gp91 (abcam, 1:1000) 
for oxidative stress, and TGF-β and MMP-2 (both Santa Cruz, 1:200) for fibrosis. 
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Horseradish peroxidase secondary antibodies (GE Healthcare UK Limited) were used 
and chemiluminescence determined using the SuperSignal West Pico 
Chemiluminescent Substrate or SuperSignal West Femto Maximum Sensitivity 
Substrate (Thermo Scientific, IL) according to vendor's instructions. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH, 1:5000 Covance, Emeryville, CA) served as 
loading control.  

 
5. Statistics 

Data are expressed as mean±SEM. Comparisons within groups were performed using 
the paired Student’s t-test and among groups ANOVA followed by unpaired t-test. 
Statistical significance was accepted at P< 0.05.   
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Figure S10
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Figure S7-S10. Whole gel images for all proteins examined by western blotting. Images are shown 
in the order in which the proteins expression is reported in the Results section of the manuscript. 
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