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ABSTRACT Most models of tumorigenesis assume that
the tumor grows by increased cell division. In these models, it
is generally supposed that daughter cells behave as do their
parents, and cell numbers have clear potential for exponential
growth. We have constructed simple mathematical models of
tumorigenesis through failure of programmed cell death
(PCD) or differentiation. These models do not assume that
descendant cells behave as their parents do. The models
predict that exponential growth in cell numbers does some-
times occur, usually when stem cells fail to die or differentiate.
At other times, exponential growth does not occur: instead, the
number of cells in the population reaches a new, higher
equilibrium. This behavior is predicted when fully differenti-
ated cells fail to undergo PCD. When cells of intermediate
differentiation fail to die or to differentiate further, the values
of growth parameters determine whether growth is exponen-
tial or leads to a new equilibrium. The predictions of the model
are sensitive to small differences in growth parameters.
Failure of PCD and differentiation, leading to a new equilib-
rium number of cells, may explain many aspects of tumor
behavior-for example, early premalignant lesions such as
cervical intraepithelial neoplasia, the fact that some tumors
very rarely become malignant, the observation of plateaux in
the growth of some solid tumors, and, finally, long lag phases
of growth until mutations arise that eventually result in
exponential growth.

The control of the cell cycle and cell death are frequently
deranged in tumors (1). The most frequently mutated locus in
tumors, TP53 (2), is centrally involved in pathways leading to
programmed cell death (PCD) (3-5). Failure of PCD may be
important in causing the development of a tumor and in
determining its response to antitumor therapy (6). The precise
role of PCD in tumorigenesis is, however, still unclear. There
are several ways in which the failure of PCD might lead to or
promote tumor growth. One such way may be to give cells the
equivalent of a replicative advantage, whereby failure to die is
effectively the same as more rapid cell division. Alternatively,
the failure of PCD may lead to an increase in the intrinsic
mutation rate by permitting cells to live on into senescence and
be exposed to mutagens or acquire more spontaneous muta-
tions. Failure of PCD can be regarded as a special case of
failure of cell differentiation, which may be of general impor-
tance in tumorigenesis.

Basic models of tumorigenesis assume that the tumor grows
by increased cell division (7-10). A single mutant cell replicates
at a maximum rate of 29 (where g is the number of divisions or
"generations" for the mutant). More generally, the rate of
replication in the tumor is (1 + w)g per generation, where w is
the selective advantage of the mutant (relative to a mean
nonincreasing population of normal cells). All descendants of
the original mutant cell simply replicate at that rate. Models of

tumorigenesis by failure of PCD or differentiation cannot be
assumed to occur via the same straightforward mathematical
pathway as tumorigenesis by increased cell division. The
reason for this is fundamental to models that incorporate cell
death and differentiation: even for the purpose of simplifica-
tion, it cannot be assumed that descendant cells behave as their
parents do. For example, a mutation occurring in a stem cell
may have no effect until the cell is fully differentiated and
about to undergo PCD. By that time, the cell may have divided
several times or not at all, depending on its function, or may
even have risked PCD at another stage in its development.
Consequently, it is not clear that tumor growth will necessarily
be exponential, if it occurs at all. When cells differentiate and
die a planned death, the effect of any mutation and its
importance in tumorigenesis are likely to vary, depending on
when and where it occurs and has its effects.

This study sets up simple mathematical models of tumori-
genesis by failure of PCD in particular and by failure of
differentiation in general. The models aim to demonstrate how
tumor growth proceeds under these circumstances and com-
pare it with potentially exponential growth under tumorigen-
esis simply by increased rates of cell division.

The Model

General Features. The model is based on a simple system of
cell differentiation, resembling a colonic crypt (11), but ap-
plicable generally (Table 1). A self-renewing population of
stem cells (Fo) is normally fixed at number No. The stem cells
give rise to a cell population of intermediate differentiation
(F1) with number N1, where N1 is dependent on the number of
cells coming through from Fo and on the number lost to the
population of fully differentiated cells (F2, with number N2).
Cells in the F2 stage may undergo PCD to form a nominal
population of dead cells (F3).
The number of cells in any Fn (n = 0, 1, 2, 3) depends on the

following variables: (i) the number of cells in Fn-1 (1 c n c 3);
(ii) the rate of division of cells in the Fn-1; (iii) the probability
that cells in Fn-1 differentiate into Fn cells, rather than remain
in Fn01 or die; (iv) the rate of division of cells in Fn; and (v) the
probability that cells in Fn differentiate into cells in Fn 1 or die,
rather than remain in Fn.
We denote the time for one cell division to occur in

population Fn as tn (where, for convenience, values are nor-
mally measured relative to baseline to). The number of cells
after G divisions is denoted by Nn(G). After each cell in Fn
divides, it may (i) die, (ii) differentiate to form a Fn+1 cell, or
(iii) renew itself. These proportions are denoted in the Fo by
al, a2, and a3, respectively. 13i, 132, and 133 are the respective
proportions for F1. -y is the probability of a cell in the F2
population dying (that is, passing through to the F3 stage per
unit time).
The following restrictions apply to the values of a, ,B, and y:

(i) a1 + a2 + a3 = 1; /31 + /32 + (33 = 1; (ii) al, a2, a13, /31, 132,

Abbreviation: PCD, programmed cell death.
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Tablc 1. Model of cell division, differentiation, and death

Stage of
differentiation Fo Fl F2 F3

, a,-* death ,-+death
/ /

Number of cells No-- a2------ N1-- j2 ------> N2 ---......... N3 death

Xa3 renew l 3 renew
//

Generation time to tj t2

Fo, Fl, and F2 represent stem cells, semidifferentiated cells, and fully differentiated cells, respectively.

13, y . 0; (iii) a3 (normally) = 1/2; (iv) 132 (normally) c 1/2
(owing to differences among t values); and (v) y c. 1.

Results

Model 1: Normal Cell Division. Cell numbers in successive
generations in Fo are related according to

NO(G + 1) = 2a3tNo(G). [1]

At equilibrium,

NO(G + 1) = No(G),

a 2a3No(G) = No(G),
=> a3 = 0.5. [2]

There is, as expected, a unique point of equilibrium at which
the population of stem cells exactly renews itself. If a3 rises
above or falls below 0.5, No respectively increases or decreases
exponentially.
For F1,

N1(G + 1) = 2,f3N1(G)tO/tj + 2a2No(G), [3]

and at equilibrium

N1(G + 1) = N1(G),

> N1(G) = 2133N1(G)to/t1 + 2a2Wo(G),

=> NI(G) = [-2a2No(G)~'N()=[1 - (2133t0/t1)]f [4]

Unlike Fo, therefore, there are multiple equilibria depending
on No(G), a2, 13, to, and tl. No equilibrium exists when No is
not at equilibrium or when 2,13to/tl > 1. In the latter case, N1
increases exponentially because of self-renewal of F1 cells
above the number required simply to maintain their steady
state.
For F2,

N2(G + 1) = 212N1(G)to/tl + N2[1 - (Yto/t2)], [5]

and at equilibrium

N2(G + 1) = NAG),

= N2(G) = 202N,(G)to/tl + N2[1 - (tOt2fl,

a N2(G) = 212N,(G)t2/tl
'1'

[6]

As for Fl, there exist multiple equilibria depending on NI(G),
12, y, t2, and t1. However, when N1 is at equilibrium, so is N2.

The simple results illustrate the increased complexity of
behavior that accompanies models that consider cell differ-
entiation and PCD. Parameters of replication are constrained
within limits for the cell population to be at equilibrium. The
limits for stem cells are restrictive but are less so for partially
or fully differentiated cells. We now analyze the case in which
a mutation has altered the proportions of cells differentiating,
dying, or renewing themselves in order to determine the effects
on tumorigenesis. The models deliberately do not specify in
which cells the mutation occurs or the locus at which it might
occur.
Model 2: Change in y, Proportion of Differentiated Cells

Undergoing Programmed Death. y only affects the value ofN2.
It is assumed for the purposes of the model that a mutation
causes y to change by value 8, where (O c y + 8 c 1). This
mutation may have occurred in the F2 population itself but
would be unlikely to have a large effect, since only one cell and
its descendants are affected. It is more likely that the mutation
has occurred in the Fo or F1 population but only has an effect
on F2 cells.
After the mutation has occurred,

N2(G + 1) = 2132Nj(G)tO/tj + N2(G)[1- (y + 8)t0/t2]. [7]

At equilibrium

N2(G + 1) =N2(G),

# N2(G) = 202N,(G)to/tl + N2(G)[1 - (Y + 8)t0/t2],

202N,(G)t2/tl
(ly+ 8) [8]

Therefore, a change in the proportion of differentiated cells
undergoing apoptosis does not lead to exponential tumor
growth but rather to a new equilibrium. When 8< 0, N2(G) will
be larger than before, and when 8 > 0, N2(G) will be smaller
than before. Clearly, if -y + 8 0, N2 can be very large at
equilibrium. N1 and No populations are always unchanged. Fig.
1 shows how N2(G) depends on 8 for representative values of
132, N1, t2, t1, and y.
Model 3: Change in f81, the Proportion of Semidifferentiated

Cells Undergoing Programmed Death. Here, it is assumed a
mutation occurs in an Fo or F1 cell that causes 1 to be reduced
by an amount 8 (O < 8 < 61). The cells that fail to die are
partitioned between 2 and 3 relative to their original values.
Here,

N1(G + 1)

= 213[1 + 8/(A2 + 13)]Nl(G)to/t, + 2a2No(G), [9]

and at equilibrium
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That is, the existence of an equilibrium depends solely on
whether NI(G) is at equilibrium. N2 is always increased,
however. It will increase exponentially when N, is also increas-
ing exponentially. Fig. 2 shows both the approach ofN1 and N2
to equilibrium and the exponential growth for N1 and N2 (with
different values of 6 and appropriate values of 132, 33, N1, t2, ti,
and y).
Model 4: Change in al, Proportion of Stem Cells Under-

going Programmed Death. Here, it is assumed that a, is
reduced by an amount 5(0 < 8 < a,) and that the cells that fail
to die are partitioned between a2 and a3. This model, which
considers stem cells, provides a comparison with the previous
model, which considered semidifferentiated cells. In successive
generations

0.25 0.5 0.75 1
8

FIG. 1. Model 1: dependence of N2 at equilibrium on 8. a1 is set
at 0.1, a2 is 0.4, a3 is 0.5, PI3 is 0.275, 132 is 0.5, /B3 is 0.225, y is 0.2, to
is 2, t, is 1, and t2 is 0.5. Under normal growth, the equilibrium value
of No is 50, that of N1 is 400, and that of N2 is 1000. These values and
those used in the other figure have been chosen for illustrative
purposes.

N1(G) = 213[1 + 61(132 + 133)]N1(G)to/t1 + 2a2No(G),

2a2No(G)
a' N1(G) = 1 - 213(t0/tl)[1 + 16/(32 + 1,3)]

There is no equilibrium when

213(to/t1)[1 + 6/(132 + 133)] > 1,

> 2133(to/t1) + 28613(to/t1)/(132 + 13) > 1,

{1 - 2183(t0/t1)}{132 + 133} -
293(t0/t1) [11]

If this condition is fulfilled, cell numbers in the F1 population
undergo exponential growth, but they do not do so otherwise.
In the model of normal cell differentiation, the condition
2933to/tl > 1 must hold for the population not to reach
equilibrium. Therefore, the tendency to nonequilibrium is
made more likely by the term 28613(tO/t1)/(P2 + 13) (when 8 is
positive). Again, however, failure of PCD does not necessarily
lead to exponential tumor growth. Thus, when 8 is less than the
limit given in Eq. 11, N1(G) simply approaches a new, higher
equilibrium. At each such stage, however, the probability that
a decrease in 13i caused by a new mutation then leads to
exponential growth of F1 cells (and hence of the tumor overall)
must increase.
No is unchanged here. For F2 in this case, however,

N2(G + 1) = 212[1 + A/(12 + 3)]1(G)tO/t,

+ (1 -Yto/t2)N2(G),

and at equilibrium

N2(G) = 212[1 + 8/(12 + 13)] N1(G)tO/tj

+ (1 -Yto/t2)N2(G),

=> N2(G)[1 -(Yto/t2)]

= 212[1 + A/(12 + P3)]N1(G)tO/tj,

=> N2(G) = 212[1 + 6/(12 + 13)]N1(G)t2
Ytl

NO(G + 1) = 2a3[l + 6/(a2 + a3)]NO(G),

and at equilibrium

No(G) = 2a3[1 + 6/(a2 + a3)]No(G),

> 2a3[1 + 6/(a2+ a3)]= 1,

a> 6 = (a2 + a3)[(1/2a3) - 1].

There is no equilibrium when these special conditions are not
met (6 = 0, a3 = 0.5). Otherwise, there is exponential growth
in cell numbers in all F,. N1 andN2 rise exponentially according
to their normal dependence on No.
Model 5: Change in C2, Proportion of Stem Cells Under-

going Differentiation, Relative to c3. A mutation causes a2 to
be reduced or increased by an amount 8 (-a2 < 6 < 1 - a2).
The cells that fail to die are added to a3. Then

No(G + 1) = 2(a3 + 6)No(G),

and at equilibrium

No(G) = 2(a3 + 6)No(G).

100,000

10,000'

1,000

[12]

G

FIG. 2. Model 3: approach of N1(G) and N2(G) to a higher
equilibrium or exponential growth. Values of a,, a2, a3, ,13, /32, 13, Y,
to, t1, and t2 are as given in Fig. 1. in this model is set at 0.05 (see text)
when equilibrium occurs [Ni(G)eq, N2(G)eq] and at 0.1 when there is

[13] exponential growth [Ni(G)exp, N2(G)exp]. Once exceeds 0.08056 in
this model, exponential growth occurs.
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Clearly, there is no equilibrium (unless 8 = 0), and No always
rises or falls. Simulation shows that, with 6 < 0, there is a
transient rise in N1 and N2, followed by a decline to zero as the
stem cell population is exhausted. In reality, a single mutation
may affect only the cell in which it occurs. Hence, 8 may
become zero once all of the progeny of that cell are dead. With
6> 0, there is a transient fall in N1 and N2, followed by an
exponential rise.
Model 6: Change in 182, Proportion of Semidifferentiated

Cells Undergoing Differentiation, Relative to 183. A mutation
causes 2 to be reduced or increased by an amount 8 (-12 <
6 < 1 - 32). The cells that fail to die are then added to 03, and
so

N1(G + 1) = 2(f3 + 5)Nj(G)to/tj + 2a2No(G), [18]

and at equilibrium

2a2NO(G)-
N1(G) = [1- 2(13 + 6)t0/t1] [19]

There is no equilibrium and there is exponential growth in cell
numbers when 2(13 + 6)to/tl > 1, again setting lower limits on
6 for exponential growth, as in the case of a decrease in the
proportion, 13i, of cells undergoing PCD (Model 4). No does
not change. N2 changes with changes in N1 as it would in a
normal population. Hence, the model shows that the effects on
semidifferentiated cells of changing 12 are again to make
equilibrium less likely, but not necessarily to abolish it.
Model 7: Effects of Proliferative Advantage on Cell Differ-

entiation Models. For the sake of completeness, we shall
consider what happens when a proliferative advantage is
superimposed on the normal model of cell differentiation and
PCD.
Assume first that cells in the F1 population gain a prolifer-

ative advantage w and still differentiate into F2 cells. Then

N2(G + 1)

= 2132(1 + w)N1(G)to/tj + (1 - Yto/t2)N2(G), [20]

and at equilibrium

2132(1 + w)N1(G)t2
N2(G) = . [21]

Hence, this proliferative advantage does not overcome apo-
ptosis to cause exponential tumor growth, although it does
increase the number of cells at equilibrium by (1 + w), perhaps
a small quantity. Similarly, if cells in Fo gained the proliferative
advantage w' and differentiated into Fl cells,

N1(G + 1) = 2P33N1(G)tO/tj + 2a2No(G)(1 + w'), [22]

and at equilibrium

N,(G) = 2a2NO(G)(1 + w') [31 - 21A33t/tl [23]

Hence, the conditions for equilibrium are unchanged from
the normal population, although the number of cells at any
time is increased by (1 + w'). Without PCD and differentia-
tion, cell numbers in each generation would have been given
by (1 + w')G.

Consider now the situation in which the cells with the
proliferative advantage do not differentiate. For the F0 pop-
ulation,

No(G + 1) = 2a3(1 + w")No(G). [24]

There is no equilibrium, and the situation is formally very
similar to Eq. 16 in Model 5, above with exponential growth.
The effects are nearly identical, with differences only in the
rate of tumor growth. Similarly, for Fl, when an F1 cell with a
proliferative advantage does not differentiate,

N1(G + 1) = 213(1 + w"')N1(G)to/tj + 2a2No(G), [25]

and at equilibrium

N1(G) = [1-2t2a2NO(G)N()=[1 - 2133(1 + W"')tO/tl]' [26]

and there is no equilibrium when 213(1 + W"')tO/tl > 1.
Hence, the effects on semidifferentiated cells are again to

make equilibrium less likely but not necessarily to abolish it.
The situation is formally almost identical to Eqs. 18 and 19 in
Model 6 above.
The models in this section show that cell proliferation that

might otherwise have been considered to lead to tumorigenesis
may not do so under a situation where cells differentiate and
undergo PCD. In some cases, however, proliferation may
substitute for the failure of PCD or differentiation in leading
to tumor growth.

Conclusions

The failure of PCD or differentiation is sometimes sufficient
but is not necessary for tumorigenesis. When stem cells (Fo
here) fail to undergo PCD or to differentiate in the models
above, exponential growth in cell numbers occurs. This result
is intuitive: extra stem cells produce both more differentiated
cells and more stem cells, which in turn produce yet more stem
cells and so on. This situation is formally very similar to that
of tumorigenesis via stem cell proliferation, which also can
result in an exponential growth in cell numbers. These are
powerful mechanisms for causing tumors to develop.

If, however, a mutation causes semidifferentiated cells (Fl in
the models) to fail to undergo PCD or to differentiate further,
exponential tumor growth does not always result. Sometimes,
the cell population reaches an equilibrium at higher numbers
than normal; sometimes, exponential growth occurs. As long
as the Fo is at equilibrium, whether the F1 population reaches
equilibrium or shows exponential growth depends solely on
whether a particular function of the parameters of cell repli-
cation exceeds some threshold value (see above).

Since the F1 population is potentially self-renewing like the
stem cell Fo population, why does exponential growth not
always occur in the former when PCD or differentiation fails?
The answer is that the semidifferentiated F1 cell population is
normally only partly self-renewing: many cells arise not just
from the previous generation's F, but also from the Fo
population. In the Fo, any increase in the number of stem cells
that subsequently remain as stem cells causes exponential
growth because precisely 50% of the Fo daughters self-renew
under normal circumstances. When a mutation causes the F1
to become more than self-renewing, exponential growth does
occur, just as in the Fo. In the Fl, however, a mutation must
raise the number of F1 cells giving rise to more F1 cells to
>50% from a normal value some way <50%. Therefore, many
mutations acting on the F1 population may not have a large
enough effect on their own to cause exponential growth of cell
numbers.
When PCD of fully differentiated cells (here F2) fails to

occur, there is no exponential growth in cell numbers. A
decrease in apoptosis in the F2 population leads only to
potentially linear growth, since the F2 cells do not themselves
proliferate. Although a large decrease in the proportion of
cells dying can lead to a significant growth in cell numbers, this
always leads to a new equilibrium (at which the linear rate of
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increase in cell numbers is balanced by the numbers dying per
generation). It has been assumed above that a fixed proportion
of cells die per generation, since this is arguably the most
realistic scenario. If a constant (or maximum) number of cells
dies per generation, failure of PCD in the F2 could lead to
linear growth with no equilibrium.
How might the predicted exponential growth and growth to

an equilibrium be reflected in observations of tumors? In both
cases, cells gain a selective advantage over normal cells, the
essential component of tumorigenesis. Either type of growth
may therefore be causal in initiating or promoting tumor
growth, no doubt in conjunction with other mutations. Muta-
tions need not occur in, or have their effects on, stem cells for
tumors to grow. It is tempting to suggest that growth to
equilibrium, which clearly tends to be slower than exponential
growth, is more likely to occur in benign lesions or premalig-
nant states such as cervical intraepithelial neoplasia. Malig-
nancies may be more likely to show the rapid, exponential
growth. Perhaps the tendency of some tissues to produce
benign tumors and others to produce malignant tumors re-
flects the relative susceptibilities of stem cells in each tissue to
mutations affecting PCD and/or the replicative parameters of
each tissue. An increase in cell numbers to a new equilibrium
is also consistent with the plateaux of growth and lag phases
observed in some solid tumors (12). Once equilibrium has been
attained, there may be a delay until a new mutation occurs to
cause further growth, whether exponential or to another equi-
librium; but each such new state reached increases the chance
that a further mutation, advantageous to tumorigenesis, will
lead to exponential growth and to malignancy.
The interaction between failure of PCD and tumor growth

via cell proliferation has been commented on by many workers
(13-15). For example, a mutation may cause a cell to prolif-
erate to an excessive degree and thereby initiate tumorigenesis.
If, however, all of the daughters of the mutant cell undergo
PCD, tumorigenesis will be rapidly aborted. It has been
suggested, therefore, that a cell must acquire both a prolifer-
ation mutation and a mutation preventing PCD if a tumor is
to develop. Two such mutations can undoubtedly give a cell a
greater selective advantage than just one mutation-and hence
will tend to be observed together in many tumors-but the
models suggest that both mutations are not necessary for
tumor growth.
There are two reasons for this. First, some models of the

failure of PCD and differentiation are very similar to those of
proliferation. A single mutation can both overcome PCD and
lead to exponential growth in cell numbers. For example, the
proportion of cells undergoing PCD in the stem cell (Fo)
generation may fall and thereby lead, in effect, to a prolifer-
ative advantage for the cells involved. Therefore, failure of
PCD may sometimes be sufficient for tumorigenesis: there is
no need to invoke a separate proliferative advantage. Second,
it is true that if all differentiated cells undergo PCD in each and
every generation and the exponential growth of Fo or F1 cells
does not continue indefinitely, two mutations are necessary.
This is, however, an extreme case and unlikely to apply in
reality, since apoptosis probably includes some stochastic
element and is unlikely to apply uniformly to a population of
differentiated cells.
The models have been deliberately imprecise as to the type

of mutation that might lead to the differences proposed in the

proportion of cells undergoing PCD or differentiation. While
the roles of genes such as TP53, MYC, and BCL2 in PCD are
being discovered (5, 16-21), the pathways that lead to apo-
ptosis are likely to be complex and varied. There is little virtue
in incorporating such complexity into models of tumorigenesis.
It is sufficient to ensure that the assumptions made in the
models are not known to be unrealistic in any important
feature. Further developments of the model will include simu-
lations of stochastic effects and incorporation of successive
mutational steps, with mutation rates and selective parameters
chosen from appropriate distributions.

In summary, the models presented illustrate the possible
roles played in tumorigenesis by the failure of PCD in partic-
ular and of differentiation in general. Perhaps most impor-
tantly, they show that the incorporation of differentiation and
PCD into genetic models of tumor growth can have profound
effects. Tumors may, for example, grow to some equilibrium
rather than the continuing exponential growth that might have
been expected. Which path the tumor follows depends on
functions of growth parameters, on the values of those param-
eters and on the stage of differentiation of the cell that fails to
apoptose or differentiate. Small changes in these parameters,
causing them to exceed or fall below threshold values, can
profoundly alter tumor behavior. We believe, therefore, that
these models provide effective explanations for the develop-
ment of benign tumors and premalignant growths as well as the
stepwise, gradual growth of many tumors, with sometimes very
long apparent lag phases.
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