SUPPORTING INFORMATION

Dual-Emissive Difluoroboron Naphthyl-Phenyl β-Diketonate Polylactide Materials: Effects of Heavy Atom Placement and Polymer Molecular Weight

Jelena Samonina-Kosicka, Christopher A. DeRosa, William A. Morris, Ziyi Fan, Cassandra L. Fraser*

Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904

	Sample	Loading ^a	Time	M_n^{b}	PDI	M_n^c	Yield ^d
	#		(h)	(kDa)		(kDa)	(%)
DE aba DI A	0	1.50.1/50	1.0	5 1	1.05	2 0	0.45
BF2n0mPLA	9a	1:50:1/50	1.0	5.4	1.05	3.8	0.45
	9b	1:50:1/40	1.0	7.7	1.04	6.6	0.69
	9c	1:180:1/40	1.5	16.1	1.07	13.5	0.59
BF2n(Br)bmPLA	10a	1:50:1/50	1.5	6.8	1.03	3.9	0.44
	10b	1:50:1/50	2.0	8.8	1.04	7.1	0.54
	10c	1:100:1/50	4.0	11.7	1.04	14.6	0.65
	10d	1:300/1/40	9.0	26.2	1.07	35.7	0.55
BF ₂ bnmPLA	11a	1:50:1/50	1.0	5.2	1.09	3.3	0.64
	11b	1:100:1/40	1.5	7.5	1.08	7.1	0.56
	11 c	1:100:1/40	4.0	9.5	1.04	9.1	0.63
BF2b(Br)nmPLA	12a	1:50:1/45	1.0	5.6	1.07	4.1	0.40
	12b	1:150:1/40	3.0	12.9	1.04	9.4	0.57
	12c	1:300:1/40	1.5	16.6	1.07	13.5	0.40

Table S1. Polymer Synthesis (9-12).

^{*a*}Loading (initiator/monomer/cat.). ^{*b*}Number-average molecular weight detected by DAD, LS/RI detectors in THF solvent. ^{*c*}Number-average molecular detected by ¹H NMR. ^{*d*}Corrected for monomer conversion.

	monomer			
time	conversion	$M_{\rm w}$	M_n	PDI
0	0	0	0	-
5	23	2400	1800	1.33
10	30	3300	2600	1.24
30	51	4800	4700	1.05
60	67	5600	5500	1.04
80	75	6000	5700	1.03
105	83	6100	6000	1.03
135	87	6300	6100	1.03
190	93	6900	6600	1.05

Table S2. Kinetics Study of Ring Opening Polymerization using BF₂n(Br)bmOH as an initiator.

Table S3. Absorption and Emission Data for Boron Initiators and Polymer Samples in CH₂Cl₂.

		$\frac{\lambda_{abs}}{(nm)}^{a}$	ϵ^{b} (M ⁻¹ cm ⁻¹)	λ_{em}^{c} (nm)	$ au_{\rm F}^{\ d}$ (ns)	$\Phi_{\rm F}{}^{\it e}$	τ_{rad}^{f}	Stokes shift (cm ⁻¹)
BF ₂ nbmOH	5	414	59 000	452	1.55	0.40	3.9	2031
BF2nbmPLA	9a	414	62 000	458	1.73	0.39	4.4	2321
	9b	414	54 000	458	1.75	0.38	4.6	2321
	9c	414	48 000	455	1.75	0.46	3.8	2177
BF2n(Br)bmOH	6	417	65 000	448	0.53	0.19	2.8	1659
BF2n(Br)bmPLA	10a	416	63 000	449	0.52	0.18	2.9	1767
	10b	416	50 000	448	0.52	0.18	2.9	1717
	10c	417	64 000	446	0.50	0.19	2.6	1559
	10d	417	59 000	446	0.51	0.18	2.8	1559
BF ₂ bnmOH	7	418	52 000	505	3.41	0.64	5.3	4121
BF ₂ bnmPLA	11a	418	48 000	504	3.35	0.78	4.3	4082
	11b	418	43 000	501	3.32	0.71	4.7	3963
	11c	418	39 000	501	3.33	0.73	4.6	3963
BF ₂ b(Br)nmOH	8	425	48 000	521	3.33	0.75	4.4	4336
BF2b(Br)nmPLA	12a	425	25 000	514	3.27	0.72	4.5	4074
	12b	425	33 000	514	3.23	0.75	4.3	4074
	12c	425	24 000	512	3.21	0.91	3.5	3998

^{*a*}Absorption maxima. ^{*b*}Extinction coefficients calculated at the absorption maxima. ^{*c*}Fluorescence emission maxima. ^{*d*}Fluorescence lifetime excited with a 369 nm light-emitting diode (LED) monitored at the emission maximum. All fluorescence lifetimes are fitted with single-exponential decay. ^{*e*}Relative quantum yield, with anthracene in EtOH as a standard. ^{*f*}Radiative lifetime, where $\tau_{rad} = \tau_F / \Phi_F$.

Full Computational Details

All compounds were modeled using the Gaussian 09 suite of programs¹ using density functional theory. We chose B3LYP/6-31+G(d) for ground state geometry optimization with a Tomasi polarized continuum for dichloromethane solvent. The vibrational frequencies for the optimized geometries were all positive, assuring that the geometries are at least a local minimum. Single point energy calculations were used to generate the molecular orbital diagrams utilizing B3LYP/6-31G(d). We used time-dependent density functional theory, TD-B3LYP/6-311+G(d) for estimates of the absorption spectra, at the respective optimized geometries.^{2,3} The first three excited states were computed for each compound. Molecular orbitals were depicted by GaussView 5 software.⁴

Part I. Gaussian 09 Specifications for Initiators 5-8 in CH₂Cl₂ Solvent.

Table S4. B3LYP/6-31+G(d) optimized structures for future TD-DFT calculation in dichloromethane. Coordinates given in Cartesian, in Angstroms.

5. $BF_2nbmC_2H_4OH$: E (HF) = -1336.17162124

C, -6.685130, -2.329233, 0.063048 C, -7.846586, -0.209347, -0.122328 H, -6.598347, 1.549068, -0.236135 C, -7.884248, -1.602604, -0.014995 H, -6.713278, -3.412147, 0.145506 H, -8.769915, 0.357854, -0.183414 H, -8.834829, -2.125289, 0.008020 C, 2.125621, 0.143911, -0.048020 C, 3.222272, 1.036000, -0.096713 C, 2.421034, -1.244468, 0.010808 C, 4.539665, 0.583127, -0.080836 H. 3.029091. 2.101802. -0.141342 C, 3.726847, -1.702547, 0.028079 H, 1.621061, -1.977062, 0.038705 C, 4.802524, -0.794141, -0.016746 H, 5.347256, 1.305630, -0.115638 H, 3.941329, -2.766349, 0.073060 O, 6.048829, -1.346718, 0.004774 C, 7.191899, -0.487490, -0.035670 H, 7.187350, 0.108512, -0.956906 H, 7.188924, 0.189688, 0.827587 C, 8.417252, -1.388658, 0.004449 H, 8.406918, -2.069392, -0.857112 H, 8.408663, -1.987405, 0.924878 O, 9.555948, -0.52550, -0.036401 H, 10.359134, -1.068058, -0.006203

6. $BF_2n(Br)bmC_2H_4OH$: E(HF) = -3907.30673415

 $\begin{array}{l} B,1.067747,3.057564,-0.065497\\ F,1.050160,3.618824,1.215305\\ F,1.093300,4.039382,-1.045949\\ O,-0.153543,2.230608,-0.247094\\ C,-0.152054,0.934120,-0.040788\\ C,1.046640,0.243978,0.134670\\ H,1.036101,-0.814045,0.340678\\ O,2.286915,2.214651,-0.202898\\ C,2.270496,0.919466,-0.000988\\ C,3.575922,0.267213,0.050473\\ C,3.717601,-1.139645,0.093980\\ C,4.745530,1.052464,0.062978\\ C,4.968435,-1.726684,0.152866\\ H,2.847341,-1.786172,0.068150\\ \end{array}$

C,6.008503,0.474323,0.124356 H,4.658569,2.132782,0.032371 C,6.128546,-0.926125,0.171380 H,5.077678,-2.806279,0.180071 H,6.883290,1.113229,0.138362 C,-1,477357,0.294092,-0.031104 C,-1.626175,-1.126522,-0.015352 C,-2.614755,1.092473,-0.043939 C,-2.873327,-1.701752,-0.008590 H,-0.753646,-1.769790,-0.024708 C,-3.911304,0.525434,-0.034737 H.-2.511297.2.172285.-0.055170 C,-4.050714,-0.900685,-0.015393 H,-2.972553,-2.783906,-0.002432 C,-5.082858,1.333528,-0.038455 C,-5.349542,-1.473070,-0.004721 C,-6.336114,0.763085,-0.025235 H,-4.979568,2.415331,-0.051571 C,-6.451413,-0.648011,-0.008482 H,-5.460070,-2.552597,0.008258 H,-7.227331,1.381046,-0.027716 Br.-8.201137.-1.414043.0.009793 0,7.301762,-1.593429,0.236540 C.8.536569.-0.855954.0.241637 H,8.600269,-0.237107,-0.661109 H,8.575687,-0.211341,1.128168 C,9.681818,-1.842447,0.280971 H,10.605287,-1.279920,0.477940 H,9.528141,-2.557993,1.099712 0.9.755470.-2.514555.-0.978124 H,10.450526,-3.189586,-0.931009

7. $BF_2bnmOC_2H_4OH$: E (HF) = -1336.17516942

B, 2.984043, 2.358484, 0.047310 F, 3.034083, 2.852428, 1.354130 F, 3.159119, 3.373069, -0.883282 O, 1.657598, 1.726235, -0.179877 C, 1.462154, 0.436080, -0.043696 C, 2.556220, -0.429127, 0.098668 H, 2.396069, -1.484238, 0.251195 O, 4.070950, 1.356495, -0.129587 C, 3.856136, 0.069905, -0.002061 C, 0.068021, -0.007176, -0.076275 C, -0.286237, -1.394533, -0.097518 C, -0.948106, 0.945016, -0.085980 C, -1.600925, -1.784337, -0.124042 H, 0.484576, -2.157031, -0.105540 C, -2.309208, 0.569959, -0.111106 H, -0.691793, 1.999260, -0.067493 C, -2.658242, -0.823899, -0.129883 H, -1.852553, -2.841513, -0.144676 C, -3.355734, 1.532112, -0.115953 C, -4.017402 -1.196553 -0.154747 C. -4.679776. 1.151453. -0.140547 H, -3.100283, 2.588580, -0.100467 C, -5.017247, -0.231458, -0.160736 H, -4.297638, -2.246132, -0.168562 H, -5.453735, 1.909837, -0.144799 O, -6.295956, -0.690947, -0.190849 C, -7.388423, 0.240114, -0.178168 H, -7.337669, 0.864407, 0.722233 H, -7.341523, 0.881429, -1.067081 C, -8.682300, -0.543422, -0.194339 H, -9.503933, 0.162764, -0.379829 H, -8.660921, -1.276241, -1.011883 O, -8.847605, -1.192211, 1.068710 H, -9.640355, -1.749950, 1.030692 C, 5.062947, -0.774590, 0.010723 C, 6.322585, -0.172250, 0.197134 C, 4.991286, -2.171009, -0.161398 C, 7.478923, -0.949666, 0.222461 H, 6.383441, 0.902155, 0.330008 C, 6.150827, -2.943423, -0.140058 H, 4.037725, -2.658696, -0.334035 C, 7.396738, -2.336314, 0.054661 H, 8.443935, -0.474619, 0.374544 H, 6.083240, -4.018334, -0.280949 H, 8.299081, -2.941419, 0.072454

8. BF₂b(Br)nmOC₂H₄OH; E(HF) = -3907.30337535

B,1.268271,3.056378,0.042504 F,1.250971,3.565001,1.343566 F,1.306860,4.075295,-0.898639 O,0.037720,2.249976,-0.176763 C,0.016469,0.943626,-0.068921 C,1.217688,0.228947,0.053728 H,1.200207,-0.840977,0.184947 0,2,480546,2.207033,-0.124574 C,2.436605,0.901394,-0.023038 C,3.746451,0.228242,-0.005991 C.3.869864,-1.159917,-0.201931 C,4.910132,0.992705,0.199166 C,5.119472,-1.772733,-0.185966 H.2.996643.-1.775270.-0.388760 C,6.164728,0.389752,0.215882 H,4.827289,2.063097,0.349714 C,6.256679,-0.989977,0.024690 H,5.205785,-2.842204,-0.342868 H,7.056349,0.984979,0.379568 C.-1.304847.0.318417.-0.106379 C,-1.468966,-1.102287,-0.179460 C,-2.440040,1.124480,-0.069683 C,-2.719143,-1.665093,-0.212444 H.-0.602129.-1.751910.-0.225595 C,-3.737851,0.569679,-0.098406 H,-2.328486,2.202322,-0.011815 C,-3.896208,-0.856760,-0.171709 H,-2.826561,-2.744905,-0.274048 C,-4.904402,1.380939,-0.055269 C,-5.192701,-1.408644,-0.201188 C,-6.165021,0.825676,-0.084101 H,-4.793481,2.460822,0.000869 C,-6.313667,-0.588167,-0.158595 H,-5.328551,-2.485137,-0.255160 H,-7.033744,1.472199,-0.050242 Br,7.968431,-1.824337,0.051619 O,-7.518950,-1.214622,-0.195670 C,-8.727064,-0.441594,-0.132746 H,-8.741778,0.155349,0.787193 H,-8.786568,0.227680,-1.000226 C,-9.903086,-1.392712,-0.152264 H,-10.816397,-0.798909,-0.298550 H,-9.802044,-2.090456,-0.994246 O,-9.950421,-2.096640,1.091018 H,-10.665166,-2.751250,1.051324

Table S5. Characterizations of Spectra Computed in Solvent Dichloromethane (PCM-Tomasi as implemented in Gaussian).

Note: Max amplitude is 0.70714 for a pure one-electron excitation. The highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) transitions are in bold.

5. BF₂nbmC₂H₄OH

Excited State 1: Singlet-A 2.5736 eV 481.76 nm f=0.6333 <S**2>=0.000 99 ->100 0.70358

Excited State 97 ->100	2: 0.101	Singlet-A 41	2.9728 eV	417.06 nm	f=1.0186	<s**2>=0.000</s**2>
98 ->100	0.696	530				
Excited State	3:	Singlet-A	3.6424 eV	340.39 nm	f=0.0725	<s**2>=0.000</s**2>
96 ->100	0.11	216				
97 ->100	0.67	779				

Excited State 116 ->117	1: Singlet-A 0.70224	2.9230 eV 424.17 nm f=1.1826 <s**2>=0.000</s**2>
Excited State 114 ->117 115 ->117	2: Singlet-A 0.17290 0.67634	3.1889 eV 388.80 nm f=0.3501 <s**2>=0.000</s**2>
Excited State 114 ->117 115 ->117 116 ->119	3: Singlet-A 0.66024 -0.17869 0.11843	3.6507 eV 339.62 nm f=0.0734 <s**2>=0.000</s**2>

Excited State 1: Singlet-A 2.6838 eV 461.98 nm f=0.6974 <S**2>=0.000 99 ->100 0.70145

Excited State 2: Singlet-A 3.2668 eV 379.53 nm f=0.5237 <S**2>=0.000 98 ->100 0.69405 Excited State 3: Singlet-A 3.7571 eV 330.00 nm f=0.2364 <S**2>=0.000 96 ->100 -0.16456

97 ->1000.6493099 ->1010.1022299 ->1020.17709

8. BF₂b(Br)nmOC₂H₄OH

Excited State	1: Singlet-A	2.6327 eV 470.93 nm f=0.7578 <s**2>=0.000</s**2>
116 ->117	0.70161	

Excited State 2: Singlet-A 3.2063 eV 386.69 nm f=0.6128 <S**2>=0.000 115 ->117 0.69568 Excited State 3: Singlet-A 3.6188 eV 342.61 nm f=0.2426 <S**2>=0.000

Excited State 3: Singlet-A 3.6188 eV 342.61 nm f=0.2426 <S**2>=0.000 114 ->117 0.67741 116 ->119 -0.15970

Table S7. Luminescence Data for Films Made from Boron Polymers of Different Molecular Weights.

		Fluorescence						ГР	
Polymer	M_n^a (GPC)	λ_{em}^{b} (nm)	$\tau_{\rm F}$ (ns)	%	$\frac{\tau_{\rm pw0}}{(\rm ns)}^c$	λ_{em}^{d} (nm)	$ au_{ m P}$ (ms)	%	$rac{ au_{\mathrm{pw0}}}{(\mathrm{ms})}^{e}$
9a	5.4	526	9.56 2.64 24.50	46.76 21.32 31.92	12.85	558	44.03 132.5 6.24	59.98 32.36 7.66	69.76
9b	7.7	496	6.98 1.78 18.32	47.17 25.00 27.84	8.84	555	8.24 60.04 185.9	5.32 58.63 36.06	102.7
9c	16.1	461	0.64 2.37 8.35	37.56 48.14 14.30	2.57	552	76.87 291.3 20.18	49.09 30.56 20.35	130.9

10a	6.8	491	0.79 2.36 6.82	62.74 29.32 7.94	3.69	568	3.27 10.31 19.89	10.94 78.98 10.08	10.50
10b	8.8	483	0.84 2.58 7.32	64.55 30.14 5.31	1.71	565	1.28 16.85 9.72	4.06 31.34 64.59	11.61
10c	11.7	467	0.71 2.08 5.11	83.07 14.34 2.58	1.02	566	13.89 37.37 3.31	90.09 4.45 5.46	14.36
10d	26.2	444 460	0.63 0.76	100 100	0.63 0.76	565	70.61 6.12 15.37	1.08 13.64 85.28	14.64
11a	5.2	533	2.80 9.89 22.31	12.06 52.81 35.13	13.39	550	16.16 41.47 3.79	69.26 20.98 9.76	20.26
11b	7.5	512	3.04 7.77 18.9	23.74 54.22 22.00	9.10	540	117.2 36.74 7.47	34.73 55.90 9.37	61.94
11c	9.5	505	2.78 7.04 17.89	31.48 49.73 18.78	7.74	545	50.80 185.1 9.96	54.86 33.57 11.56	91.14
12a	5.6	518	1.59 4.49 11.87	23.09 60.91 15.99	5.00	538	19.21 70.67 4.81	55.33 20.00 24.67	25.95
12b	12.9	500	0.74 3.10 8.22	11.35 76.15 12.49	3.47	538	29.59 110.7 7.52	56.04 20.22 23.74	40.76
12c	16.6	495	2.39 5.06 13.2	73.80 24.95 1.17	3.25	539	6.68 28.85 111.82	18.64 55.93 25.43	45.81

^{*a*}Number-average molecular weight detected by DAD, LS/RI detectors in THF solvent. ^{*b*}Steadystate fluorescence spectra emission maximum under air. Excitation source: 369 nm xenon lamp. ^{*c*}Fluorescence lifetime excited with a 369 nm light-emitting diode (LED) monitored at the emission maximum. All fluorescence lifetimes are fitted with single-exponential decay. ^{*d*}Delayed emission spectra maximum under N₂. Excitation source: xenon flash lamp ^{*e*}Pre-exponential weighted RTP lifetime. Excitation source: xenon flash lamp; RTP lifetime fit to tripleexponential decay. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
 Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

(2) Becke, A. D. J. Chem. Phys. **1993**, *98*, 5648-5652.

(3) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988, 37, 785-789.

(4) Dennington, R.; Keith, T.; Millam, J. In *Shawnee Mission KS*; Semichem Inc.: 2009; Vol. GaussView Version 5.