

## Sequence profiling of the *Saccharomyces cerevisiae* genome permits deconvolution of unique and multi-aligned reads for variant detection

Claire Jubin\*, Alexandre Serero\*, Sophie Loeillet\*, Emmanuel Barillot§ and Alain Nicolas\*,1

\*Institut Curie Centre de Recherche, UMR3244 CNRS, Université Pierre et Marie Curie, 75248 Paris Cedex 05, France,<sup>§</sup>Institut Curie Centre de Recherche, INSERM U900, 75248 Paris, France. Ecole des Mines Paris Tech, 77300 Fontainebleau, France.

<sup>1</sup>Corresponding author: Alain Nicolas. Institut Curie Centre de Recherche, UMR3244 CNRS, 26 rue d'Ulm 75248 Paris Cedex 05, France. +33 1 56 24 65 20. E-mail: alain.nicolas@curie.fr.

Data are available at http://www.ncbi.nlm.nih.gov/Traces/sra with accession number: SRR1014750, SRR1014753, SRR1014752 and SRR1014754.

DOI: 10.1534/g3.113.009464



**Figure S1** M regions visualization through SGD browser (http://www.yeastgenome.org/). M regions are represented as blue arrows on the last track. M regions may correspond to already known repeated elements such as Ty and LTR elements (M14\_40) or to multi-copy genes. For example, the *YNL034W* (570,477-572,315) and *YNL033W* (572,999-573,853) loci, covered by M14\_43, are duplications of the locus *YNL018C* (601,774-599,936) covered by M14\_49, and the locus *YNL019C* (599,230-598,376) covered by M14\_48, respectively. The SGD interface includes functional annotations; for example, the meiotic "Double strand break hotspots: Pan et al. (2011)".



**Figure S2** Virtual HTS profile coverage of chromosome II. (A) 2kb window coverage along the whole chromosome II, computed at the base level. (B) Contribution of functional annotation to multi-aligned regions of the peak 13.



**Figure S3** Forward (F) and reverse (R) strand coverage of 50 nt-reads virtual HTS profile along the whole chromosome II. Some regions are repetitive on the both strands (1, 2) and some others are only repetitive on one strand (3, 4). This figure illustrates that virtual HTS profile is able to discriminate repetitiveness according to the strand in the reference genome.





**Figure S4** Application of the g-deNoise filtering on the duplicated histone H4 *HHF1* multi-aligned regions. (A) Pairwise alignments of *HHF1* (chr. II: 255,373-255,684) and *HHF2* (chr. XIV: 576,727-577,038). The two genes, *HHF1* and *HHF2*, exhibit eight base changes (numbered). (B) Multi-aligned simulated reads. As *HHF1* and *HHF2* are inverted copies, reads generated on *HHF1* are aligned on the forward strand and reads generated on *HHF2* are aligned on the reverse strand. (C) Multi-aligned reads in experimental data. Light green, yellow and red positions suggest one, two and three base changes respectively. Grey and blue positions: sequencing errors. (D) Alignments of experimental data after discarding alignments consistent with an intra SNV, and (E) remaining unique-alignments after discarding multi-alignments in (D). Here, with 50 nt-reads, we observe that the whole gene sequence is still covered by alignments and is therefore now reduced into a M<sub>u</sub> region prone to robust SNP polymorphism detection.

A Virtual HTS mapping before filtering



B Experimental HTS mapping before filtering



C Virtual HTS unique alignments after intra SNV filtering



**Figure S5** Visualization of reads mapping on the M regions of *YBLWTy2-1*. Alignments without filtering are represented along the 30,000-30,250 sequence of *YBLWTy2-1* (chr. II: 29,644-35,602) containing the TYA Gag gene, obtained in (A) the virtual HTS profile and in (B) the experimental HTS data. The (C) and (D) panels represent the M<sub>U</sub> regions along the *YBLWTy2-1* (~6kb) sequence in the virtual HTS profile and corresponding HTS experimental data, respectively. Note that two M<sub>U</sub> regions peaks, indicated by red arrows in virtual HTS profile (C), are missing in the HTS experimental data (D). This indicates the loss of specific polymorphism in the experimental sample, probably a loss or gain of an intra SNVs.

## File S1

## Supporting data

File S1 is available for download as a .zip file at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.009464/-/DC1

| #реак | M region start | M region stop | Systematic name         | Standard name |
|-------|----------------|---------------|-------------------------|---------------|
| 1     | 1              | 5856          | TEL02L                  | -             |
| 1     |                |               | TEL02L-YP               |               |
| 1     |                |               | YBL113C                 |               |
| 1     |                |               | YBL113W-A               |               |
| 1     |                |               | TEL02L-YP_repeat_region |               |
| 1     |                |               | YBL112C                 |               |
| 1     |                |               | YBL111C                 |               |
| 1     |                |               | YBL109W                 |               |
| 1     |                |               | TEL02L-XR               |               |
| 1     | 5905           | 8310          | YBL109W                 |               |
| 1     |                |               | TEL02L-XR               |               |
| 1     |                |               | TEL02L-XC               |               |
| 1     |                |               | YBL108C-A               | PAU9          |
| 1     |                |               | YBL108W                 |               |
| 1     | 8328           | 8420          | YBL108W                 |               |
| 1     | 8864           | 8915          | YBLWdelta2              |               |
| 1     | 8944           | 9012          | YBLWdelta2              |               |
| 1     | 9080           | 9434          | YBLWdelta3              |               |
| 1     | 9569           | 9684          | tL(UAA)B1               |               |
| 2     | 29623          | 35611         | YBLWdelta4              |               |
| 2     |                |               | YBLWty2-1               |               |
| 2     |                |               | YBLWdelta5              |               |
| 2     |                |               | YBWdelta6               |               |
| 2     | 35838          | 36229         | YBLCtau1                |               |
| 2     | 36385          | 36496         | tF(GAA)B                |               |
| 3     | 59834          | 60099         | YBL087C                 | RPL23A        |
| 3     | 60101          | 60192         | YBL087C                 | RPL23A        |
| 4     | 68267          | 68356         | YBL084C                 | CDC27         |
| 5     | 72337          | 72410         | YBL081C                 |               |
| 6     | 88512          | 89126         | YBL072C                 | RPS8A         |
| 6     | 92826          | 92875         | YBL068W                 | PRS4          |
| 7     | 166365         | 166436        | YBL029W                 |               |
| 7     | 168808         | 168889        | YBL027W                 | RPL19B        |
| 7     | 168927         | 169201        | YBL027W                 | RPL19B        |
| 7     | 169209         | 169379        | YBL027W                 | RPL19B        |
| 7     | 175875         | 175929        | YBL023C                 | MCM2          |
| 8     | 187312         | 187368        | YBL017C                 | PEP1          |
| 8     | 187673         | 187781        | YBL017C                 | PEP1          |
| 8     | 187991         | 188054        | YBL017C                 | PEP1          |
| 8     | 188351         | 188418        | YBL017C                 | PEP1          |
| 8     | 188477         | 188590        | YBL017C                 | PEP1          |
| 8     | 188592         | 188742        | YBL017C                 | PEP1          |
| 8     | 188877         | 188928        | YBL017C                 | PEP1          |
| 8     | 188930         | 188994        | YBL017C                 | PEP1          |
| 8     | 189002         | 189051        | YBL017C                 | PEP1          |
| 9     | 197488         | 197583        | tI(AAU)B                |               |
| 10    | 197616         | 198069        | tG(GCC)B                |               |
| 10    |                |               | YBLWsigma1              |               |
| 11    | 205746         | 205813        | YBL011W                 | SCT1          |
| 12    | 221028         | 226963        | YBI Wdelta8             | 5071          |
| 12    |                |               | YBI Wdelta9             |               |
| 12    |                |               | YBI WTv1-1              |               |
| 12    |                |               | YBI Wdelta10            |               |
|       | 227062         | 227177        |                         |               |

Table S1 Functional annotation of M regions along chromosome II

| 13       | 235403  | 235810  | YBL003C      | HTA2     |
|----------|---------|---------|--------------|----------|
| 13       | 236618  | 236763  | YBL002W      | HTB2     |
| 13       | 255367  | 255688  | ARS209       | ARS209   |
| 13       |         |         | YBR009C      | HHF1     |
| 13       | 256374  | 256624  | YBR010W      | HHT1     |
| 13       | 256683  | 256737  | YBR010W      | HHT1     |
| 13       | 258689  | 258810  | YBRCdelta11  |          |
| 13       | 258859  | 258926  | YBRCdelta11  |          |
| 13       | 259564  | 263149  | YBR012C      |          |
| 13       | 233301  | 200110  | VBRW/delta12 |          |
| 13       |         |         | VBRW/Ty1-2   |          |
| 12       | 262164  | 265504  |              |          |
| 12       | 203104  | 205504  | VPPCdolta14  |          |
| 13       | 200172  | 200230  |              |          |
| 12       | 200307  | 200405  |              |          |
| 13       | 270424  | 270488  | YBRU16W      | 55/44    |
| 14       | 300159  | 301247  | YBR031W      | RPL4A    |
| 15       | 326780  | 326872  | tv(UAC)B     |          |
| 15       | 32/163  | 32/352  | YBRWdelta15  |          |
| 16       | 332826  | 332880  | YBR048W      | RPS11B   |
| 16       | 333383  | 333810  | YBR048W      | RPS11B   |
| 16       | 343123  | 343181  | YBR054W      | YRO2     |
| 16       | 343564  | 343616  | YBR054W      | YRO2     |
| 17       | 347591  | 347704  | /            |          |
| 17       | 350815  | 350906  | tQ(UUG)B     |          |
| 17       | 353582  | 353664  | /            |          |
| 17       | 372325  | 372392  | YBR067C      | TIP1     |
| 18       | 405845  | 406059  | tR(UCU)B     |          |
| 18       |         |         | tD(GUC)B     |          |
| 19       | 414180  | 414350  | YBR084C-A    | RPL19A   |
| 19       | 414358  | 414632  | YBR084C-A    | RPL19A   |
| 19       | 414670  | 414751  | YBR084C-A    | RPL19A   |
| 20       | 427755  | 428109  | YBR092C      | РНОЗ     |
| 20       | 428336  | 428399  | YBR092C      | РНОЗ     |
| 20       | 428485  | 428576  | YBR092C      | РНОЗ     |
| 20       | 428671  | 428830  | YBR092C      | РНОЗ     |
| 20       | 428883  | 428984  | YBR092C      | РНОЗ     |
| 20       | 429576  | 429959  | YBR093C      | PHO5     |
| 20       | 430186  | 430249  | YBR093C      | PHO5     |
| 20       | 430335  | 430426  | YBR093C      | PHO5     |
| 20       | 430521  | 430680  | YBR093C      | PHO5     |
| 20       | 430698  | 430834  | YBR093C      | PHO5     |
| 20       | 430881  | 430936  | YBR093C      | PHO5     |
| 21       | 463997  | 464290  | YBR112C      | CYC8     |
| 22       | 477659  | 479049  | YBR118W      | TEF2     |
| 23       | 541431  | 541526  | YBR150C      | TBS1     |
| 23       | 541577  | 541639  | YBR150C      | TBS1     |
| 24       | 591706  | 592422  | YBR181C      | RPS6B    |
| 25       | 604937  | 605061  | YBR189W      | RPS9B    |
| 25       | 605069  | 605152  | VBR189W      | RPSQR    |
| 25       | 605195  | 605451  | VBR189W      | RDSOR    |
| 25       | 606653  | 606731  | VRP101W      | PDI 21 A |
| 25<br>25 | 606724  | 606731  |              | DDI 71 A |
| 23       | 606020  | 607121  |              |          |
| 20<br>25 | 600920  | 627264  |              | KPLZIA   |
| 25       | 02/30/  | 02/304  |              | IVICIM7  |
| 20       | 042988  | 043084  |              |          |
| 26       | 643470  | 643865  | YBRCtau2     |          |
| 26       | <i></i> | <i></i> | YBRWaelta18  |          |
| 26       | 645147  | 645250  | tE(UUC)B     |          |
| 26       | 646075  | 646133  | /            |          |

| 27 | 659261 | 659328 | YBR218C   | PYC2  |
|----|--------|--------|-----------|-------|
| 27 | 659576 | 659630 | YBR218C   | PYC2  |
| 27 | 659645 | 659730 | YBR218C   | PYC2  |
| 27 | 659774 | 659853 | YBR218C   | PYC2  |
| 27 | 660212 | 660594 | YBR218C   | PYC2  |
| 27 | 660610 | 660759 | YBR218C   | PYC2  |
| 27 | 660791 | 660948 | YBR218C   | PYC2  |
| 27 | 661274 | 661362 | YBR218C   | PYC2  |
| 27 | 661406 | 661455 | YBR218C   | PYC2  |
| 27 | 661460 | 661757 | YBR218C   | PYC2  |
| 27 | 661835 | 661965 | YBR218C   | PYC2  |
| 27 | 701990 | 702056 | /         |       |
| 27 | 780350 | 780468 | YBR289W   | SNF5  |
| 28 | 801690 | 801919 | YBR297W   | MAL33 |
| 29 | 804863 | 808394 | YBR298C-A |       |
| 29 |        |        | YBR299W   | MAL32 |
| 29 | 808396 | 813178 | YBR300C   |       |
| 29 |        |        | YBR301W   | PAU24 |
| 29 |        |        | YBR302C   | COS2  |

Table S2 Constitutive SNPs found in the U regions in the wild-type mutation accumulation lines

| Line       | Chrom.  | Position | ORF        | Gene      | Ref. | Variant | Aa change  | Sequence Ontology term |
|------------|---------|----------|------------|-----------|------|---------|------------|------------------------|
| wt_ABCE100 | chrll   | 15 101   | YBL105C    | PKC1      | Т    | G       | 1866L      | missense_variant       |
| wt_ABCE100 | chrIII  | 143 131  | Intergenic | -         | Т    | С       | -          | intergenic_variant     |
| wt_ABCE100 | chrIII  | 162 361  | Intergenic | -         | Т    | С       | -          | intergenic_variant     |
| wt_ABCE100 | chrIII  | 162 640  | YCR024C-B  | YCR024C-B | Т    | G       | S76R       | missense_variant       |
| wt_ABCE100 | chrIII  | 162 694  | YCR024C-B  | YCR024C-B | G    | A       | synonymous | synonymous_variant     |
| wt_ABCE100 | chrIII  | 163 059  | YCR024C-A  | PMP1      | Т    | С       | synonymous | synonymous_variant     |
| wt_ABCE100 | chrV    | 48 384   | Intergenic | -         | Т    | С       | -          | intergenic_variant     |
| wt_ABCE100 | chrV    | 154 531  | YER001W    | MNN1      | Т    | A       | S338T      | missense_variant       |
| wt_ABCE100 | chrV    | 352 394  | YER096W    | SHC1      | А    | G       | K233E      | missense_variant       |
| wt_ABCE100 | chrV    | 517 529  | Intergenic | -         | Т    | С       | -          | intergenic_variant     |
| wt_ABCE100 | chrXIII | 448 333  | Intergenic | -         | G    | A       | -          | intergenic_variant     |
| wt_ABCE100 | chrXIII | 680 936  | YMR207C    | HFA1      | Т    | С       | K877E      | missense_variant       |
| wt_ABCE100 | chrXIII | 680 940  | YMR207C    | HFA1      | С    | Т       | synonymous | synonymous_variant     |

| Table S3 Acquired SNPs found in the U regions in the wild-type mutation accumulation line |
|-------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------|

| Line    | Chrom.  | Position  | ORF        | Gene    | Ref. | Variant | Aa change  | Sequence Ontology term |
|---------|---------|-----------|------------|---------|------|---------|------------|------------------------|
| wt_A100 | chrll   | 468 275   | YBR114W    | RAD16   | С    | Т       | T343M      | missense_variant       |
| wt_B100 | chrIII  | 1 989     | YCL076W    | YCL076W | G    | A       | G200S      | missense_variant       |
| wt_B100 | chrIV   | 191 155   | YDL147W    | RPN5    | с    | A       | Q78K       | missense_variant       |
| wt_A100 | chrIV   | 573 098   | YDR060W    | MAK21   | A    | Т       | D817V      | missense_variant       |
| wt_B100 | chrIV   | 738 528   | YDR141C    | DOP1    | A    | С       | 1490M      | missense_variant       |
| wt_A100 | chrIV   | 866 198   | YDR207C    | UME6    | С    | Т       | R442Q      | missense_variant       |
| wt_E100 | chrlV   | 1 171 524 | YDR348C    | PAL1    | G    | A       | P101L      | missense_variant       |
| wt_E100 | chrIV   | 1 452 784 | YDR501W    | PLM2    | G    | Т       | E478STOP   | stop_gained            |
| wt_B100 | chrIV   | 1 486 605 | YDR523C    | SPS1    | G    | Т       | A145D      | missense_variant       |
| wt_C100 | chrV    | 234 495   | YER041W    | YEN1    | т    | С       | S679P      | missense_variant       |
| wt_C100 | chrV    | 312 202   | Intergenic | -       | A    | G       | -          | intergenic_variant     |
| wt_E100 | chrV    | 404 934   | YER123W    | ҮСКЗ    | A    | G       | Q41R       | missense_variant       |
| wt_C100 | chrVII  | 313 763   | YGL100W    | SEH1    | G    | Т       | R177I      | missense_variant       |
| wt_E100 | chrVII  | 376 132   | YGL067W    | NPY1    | A    | Т       | H11L       | missense_variant       |
| wt_C100 | chrVII  | 1 041 377 | YGR274C    | TAF1    | G    | Т       | synonymous | synonymous_variant     |
| wt_B100 | chrVIII | 137 015   | YHR016C    | YSC84   | G    | A       | P425S      | missense_variant       |
| wt_A100 | chrVIII | 275 555   | YHR084W    | STE12   | A    | G       | Y461C      | missense_variant       |
| wt_A100 | chrVIII | 368 794   | YHR132C    | ECM14   | A    | G       | L334S      | missense_variant       |
| wt_A100 | chrVIII | 390 799   | YHR146W    | CRP1    | с    | Т       | T167I      | missense_variant       |
| wt_A100 | chrX    | 618 251   | YJR101W    | RSM26   | G    | A       | synonymous | synonymous_variant     |
| wt_A100 | chrXI   | 8 145     | Intergenic | -       | G    | С       | -          | intergenic_variant     |
| wt_A100 | chrXI   | 291 061   | Intergenic | -       | С    | Т       | -          | intergenic_variant     |
| wt_B100 | chrXI   | 480 315   | YKR021W    | ALY1    | A    | С       | E361A      | missense_variant       |
| wt_E100 | chrXII  | 197 723   | YLR027C    | AAT2    | Т    | A       | K121N      | missense_variant       |
| wt_B100 | chrXII  | 318 957   | YLR089C    | ALT1    | с    | A       | Q353H      | missense_variant       |
| wt_C100 | chrXII  | 357 349   | YLR106C    | MDN1    | G    | A       | synonymous | synonymous_variant     |
| wt_E100 | chrXII  | 360 374   | YLR106C    | MDN1    | Т    | G       | Y1122S     | missense_variant       |
| wt_B100 | chrXII  | 837 516   | Intergenic | -       | с    | Т       | -          | intergenic_variant     |
| wt_E100 | chrXII  | 935 171   | YLR409C    | UTP21   | G    | С       | S688W      | missense_variant       |
| wt_E100 | chrXII  | 1 034 119 | YLR450W    | HMG2    | Т    | G       | F498C      | missense_variant       |
| wt_B100 | chrXIII | 470 741   | YMR102C    | YMR102C | Т    | A       | S538C      | missense_variant       |
| wt_A100 | chrXIII | 912 702   | Intergenic | -       | G    | Т       | -          | intergenic_variant     |
| wt_B100 | chrXIV  | 275 036   | YNL193W    | YNL193W | G    | A       | synonymous | synonymous_variant     |
| wt_C100 | chrXIV  | 752 345   | YNR065C    | YNR065C | G    | С       | S452R      | missense_variant       |
| wt_A100 | chrXV   | 406 610   | Intergenic | -       | Т    | С       | -          | intergenic_variant     |
| wt_C100 | chrXV   | 594 444   | Intergenic | -       | A    | Т       | -          | intergenic_variant     |
| wt_C100 | chrXVI  | 120 124   | Intergenic | -       | A    | Т       | -          | intergenic_variant     |
| wt_A100 | chrXVI  | 307 821   | YPL128C    | TBF1    | G    | A       | T134I      | missense_variant       |
| wt_A100 | chrXVI  | 510 123   | Intergenic | -       | G    | Т       | -          | intergenic_variant     |