501 SUPPLEMENTARY MATERIAL

502

Supplemental Table 1. Characteristics of within-population balancing selection versus
 local adaptation via SVS.

Feature	Balanced local polymorphism	Local adaptation (population divergence)	Notes
Spatial scale of environmental heterogeneity (patch size)	Fine patches (patch size << geographic range of population)	Coarse patches or clinal variation	"Coarse" patches are a simplified view of situations where relative contribution of "fine" patches to local environment differs.
Relative gene flow between patches	High	Low-moderate	Assortative mating, short-range dispersal, and oviposition/feeding preference can reduce gene flow and promote balanced local polymorphisms (and, if strong enough, promote host race formation). [1-3]
Observed fitness effects between patches	Antagonistic pleiotropy	Antagonistic pleiotropy; conditional neutrality	Conditional neutrality is not expected to maintain long-term polymorphism, but is often observed in local adaptation. Undetected antagonistic pleiotropy could be due to methodological biases/limitations, or result from low gene flow between populations. [4]
<i>Type of selection within populations on contextually beneficial alleles</i>	Antagonistic selection	Positive directional selection	Assumes a classical local adaptation model in which one allele sweeps to high frequency; local adaptation can also proceed through shifts in allele frequencies across populations.
Relative speed of a selective sweep	Slow	Fast	Sweeps are slower for antagonistic selection than other forms of balancing selection, but allelic dominance reversals across patches or co- occurring frequency dependent selection reduce the magnitude of this effect. [5]

Polymorphism at causative sites in contextually beneficial alleles	Elevated within populations; elevated at species level	Reduced within populations; elevated at species level	Fine and coarse-grained spatially variable selection maintain polymorphism over different scales (within vs. among populations).
Population divergence at causative sites in contextually beneficial alleles	Reduced	Elevated	Selection for standing variation can lead to <i>reduced</i> inter-population divergence between populations inhabiting similar habitats and <i>elevated</i> divergence between populations inhabiting dissimilar habitats.

507 Supplemental Table 2. Population and quantitative genetic methods to detect balancing

selection driven by spatial variation. Note that other forms of balancing selection may leave
 similar signatures when looking within single populations.

Temporal Scale [6]	Nature of evidence for adaptation [with key references]	Application to balanced local polymorphism	Application to locally adaptive divergence	Notes and/or explanations
Current Generation	Association of genotype with fitness or fitness-related traits [7-11]	QTL mapping, genome-wide association studies, evolve- and- resequence experiments	QTL mapping, genome-wide association studies, evolve- and- resequence experiments	Large mapping populations incorporate information from many recombination events, increasing mapping resolution.
Recent Past	Association of genotype with habitat characteristics in the field [12]	Correlation of genotype with habitat for individuals <i>within</i> populations	Correlation of allele frequencies with habitat characteristics across many populations	Allele frequency differences could be maintained by many forces, e.g. differential insect preference or performance on different plants, or plant performance when exposed to different insect communities.
	Interpopula- tion divergence [13-16]	↓ (F _{ST})	$\uparrow(F_{ST})$ between populations in divergent patches, but \downarrow (F_{ST}) following parallel adaptation to similar patches from standing genetic variation	Forces favoring within- population polymorphism or alternative alleles in different populations slow or accelerate divergence at those loci, respectively, relative to genetic drift. Hierarchical outlier analysis can identify alleles under SVS in a background of neutral population genetic structure.
	Linkage disequilibrium (LD) [5,17]	Each favored variant falls within	Locally favored variants will be within	Haplotype-based tests are powerful for detecting rapid partial sweeps, but unclear

		extended, intermediate frequency haplotypes	extended, high frequency haplotypes	whether many of the slow sweeps under spatially varying selection leave detectable genomic signatures.
	Allele frequency spectrum [18,19]	Excess of intermediate frequency alleles (Tajima's D)	Excess of rare alleles (Tajima's D)	Uncommon variants linked to selected haplotype(s) rise to intermediate frequency when multiple haplotypes are favored in a population (but see above). Demographic changes and population subdivision strongly affect Tajima's D.
Distant Past	Polymorphism (π) vs. divergence (d) [20-22]	Elevated π/d (HKA test), excess non- synonymous polymorphism (MK test)	Reduced π/d (HKA test), excess non- synonymous divergence (MK test)	Careful thought is required to identify the appropriate scale to estimate polymorphism and divergence (e.g. within or among populations or species). Using outgroups to polarize changes is desired.
	Trans-species polymorphism [23]	Small haplotypes shared between species		Various forms of balancing selection can preserve polymorphism for long periods, but recombination and mutation erode this pattern at neutral sites linked to the causal variants.

512 Supplemental Table 3: Distribution records for *Scaptomyza flava* (including synonyms *S*.

513 flaveola, S. apicalis, and S. montana).

Country	Subnational area or island	S. flava reference
United States	Alaska	[2]
	New York	[2]
	Connecticut	[2]
	Massachusetts	Personal collection, [2]
	New York	[2]
	Indiana	[2]
	Maryland	[2]
	Washington, DC	[2]
	California	[2]
	Idaho	[2]
	Oregon	[2]
	Virginia	[2]
	Arizona	Personal collection
Canada	Nova Scotia	[2]
Russia	Far East	[8]
	Eastern Siberia	[8]
	Western Siberia	[8]
	European	[8]
China	Xinjiang	[9]
Portugal	Mainland	[11]
	Azores	[2]
	Madeira Islands	[2]

Spain	Mainland	[11]
	Canary Islands	[2]
Czech Republic		[4]
Slovakia		[4]
United Kingdom		[10]
Ireland		[10]
Germany		[10]
Italy		[10]
Netherlands		[10]
Belgium		[10]
Finland		[3]
Norway		[1]
Sweden		[1]
Denmark		[1]
Turkey		[1]
Austria		[1]
Switzerland		[1]
Estonia		[1]
Latvia		[1]
Lithuania		[1]
Poland		[1]
France	mainland	[11]
	Corsica	[11]
Greece	Mainland	[11]
	Crete	[11]

Ukraine	[11]
Bulgaria	[11]
Romania	[11]
Bosnia and Herzegovina	[11]
Slovenia	[11]
Serbia	[11]
Macedonia	[11]
Croatia	[11]
Uzbekistan	[8]
Mongolia	[6]
New Zealand	[5]
Iran	[7]
Japan	[8]

515 **References for Supplemental Tables 1-2**

516 [1] Levene H: Genetic equilibrium when more than one ecological niche is available. *Amer Nat* 517 1953, 87:331-333.

- 518 [2] Yeaman S, Otto SP: Establishment and maintenance of adaptive genetic divergence under 519 migration, selection, and drift. *Evolution* 2011, 65:2123-2129.
- 520 [3] Drès M, Mallet J: Host races in plant–feeding insects and their importance in sympatric 521 speciation. *Philosophical Transactions of the Royal Society of London.Series B: Biological*
- 522 Sciences 2002, 357:471-492.
- 523 [4] Colautti RI, Lee C, Mitchell-Olds T: Origin, fate, and architecture of ecologically relevant 524 genetic variation. *Curr Opin Plant Biol* 2012, 15:199-204.
- 525 [5] Connallon T, Clark AG: Antagonistic versus nonantagonistic models of balancing selection:
- characterizing the relative timescales and hitchhiking effects of partial selective sweeps.
 Evolution 2013, 67:908-917.
- [6] Hedrick PW: Genetic polymorphism in heterogeneous environments: The Age of Genomics.
 Annu Rev Ecol Evol Syst 2006, 37:67-93.
- 530 [7] Kloth KJ, Thoen MP, Bouwmeester HJ, Jongsma MA, Dicke M: Association mapping of plant 531 resistance to insects. *Trends Plant Sci* 2012,17:311-319.
- [8] Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC: Experimental evolution.
 Trends in Ecology & Evolution 2012, 27:547-560.
- [9] Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM: Population-based resequencing of
 experimentally evolved populations reveals the genetic basis of body size variation in
- 536 Drosophila melanogaster. *PLoS Genet* 2011, 7:e1001336.
- [10] Prasad KV, Song BH, Olson-Manning C, Anderson JT, Lee CR, Schranz ME, Windsor AJ,
 Clauss MJ, Manzaneda AJ, Naqvi I *et al.*: A gain-of-function polymorphism controlling complex
 traits and fitness in nature. *Science* 2012, 337:1081-1084.
- [11] Bradshaw WE, Emerson KJ, Catchen JM, Cresko WA, Holzapfel CM: Footprints in time:
 comparative quantitative trait loci mapping of the pitcher-plant mosquito, Wyeomyia smithii.
 Proceedings of the Royal Society B: Biological Sciences 2012, 22:4551-4558.
- [12] Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C,
 Roux F, Bergelson J: Adaptation to climate across the Arabidopsis thaliana genome. *Science*2011, 334:83-86.
- [13] Wright S: The genetical structure of populations. *Annals of Eugenics* 1951, 15:323-354.
- [14] Kolaczkowski B, Kern AD, Holloway AK, Begun DJ: Genomic differentiation between
 temperate and tropical Australian populations of Drosophila melanogaster. *Genetics* 2011,
 187:245-260.

- 550 [15] Le Corre V, Kremer A: The genetic differentiation at quantitative trait loci under local 551 adaptation. *Mol Ecol* 2012, 21:1548-1566.
- [16] Narum SR, Hess JE: Comparison of FST outlier tests for SNP loci under selection.
 Molecular Ecology Resources 2011, 11:184-194.
- [17] Charlesworth D: Balancing Selection and Its Effects on Sequences in Nearby Genome Regions. *PLoS Genet* 2006, 2:e64.
- 556 [18] Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA 557 polymorphism. *Genetics* 1989, 123:585-595.
- [19] Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME,
 Cheeseman IH, Newbold CI, Holder AA, Knuepfer E *et al.*: Population Genomic Scan for
 Candidate Signatures of Balancing Selection to Guide Antigen Characterization in Malaria
- 561 Parasites. *PLoS Genet* 2012, 8:e1002992.
- 562 [20] Hudson RR, Kreitman M, Aguadé M: A test of neutral molecular evolution based on 563 nucleotide data. *Genetics* 1987, 116:153-159.
- [21] McDonald JH, Kreitman M: Adaptive protein evolution at the *Adh* locus in *Drosophila*.
 Nature 1991, 351:652-654.
- [22] Verrelli BC, McDonald JH, Argyropoulos G, Destro-Bisol G, Froment A, Drousiotou A,
 Lefranc G, Helal AN, Loiselet J, Tishkoff SA: Evidence for Balancing Selection from Nucleotide
 Sequence Analyses of Human< i> G6PD. *The American Journal of Human Genetics* 2002,
 71:1112-1128.
- 570 [23] Leffler EM, Gao Z, Pfeifer S, Ségurel L, Auton A, Venn O, Bowden R, Bontrop R, Wall JD,
- 571 Sella G *et al.*: Multiple Instances of Ancient Balancing Selection Shared Between Humans and 572 Chimpanzees. *Science* 2013, published online 14 Feb 2013.
- 573

574 References for Supplemental Table 3

- 575 [1] Bächli G, Vilela, CR, Andersson Escher, S, Saura, A: The Drosophilidae (Diptera) of
- 576 Fennoscandia and Denmark. Brill; 2004.
- 577
- [2] Hackman W: On the genus Scaptomyza Hardy (Dipt., Drosophilidae): with descriptions of
- new species from various parts of the world. *Acta Zool. Fenn.* 1959, 97.
- 580
- 581 [3] Hackman W: On the genera Scaptomyza Hardy and Parascaptomyza Duda (Dipt.,
- 582 Drosophilidae) 1955, 35.
- 583
- 584 [4] Maca J: Czechoslovak species of the genus Scaptomyza Hardy (Diptera,
- 585 Drosophilidae) and their bionomics. *Act. Ent. Bohemoslov.* 1972, 69: 119-132.
- 586

- 587 [5] Martin NA: History of an invader, Scaptomyza flava (Fallen, 1823) (Diptera:
- 588 Drosophilidae). *N.Z. J. Zool.* 2004, 31: 27-32.
- 589
- [6] Okada T: Drosophilidae and Diastatidae from Mongolia (Diptera). Ann. Hist.-nat.
- 591 Mus. Nat. Hung. 1973, 65: 271-279.
- 592
- 593 [7] Seraj AA: Comparison of Plant Species as Host for Cabbage Leaf Miner in
- 594 Khuzestan Province. *J. Agr. Sci. Tech.* 2000, 2: 127-135. 595
- [8] Toda MJ, Sidorenko VS, Watabe H, Kholin SK, Vinokurov NN: A revision of the
- 597 Drosophilidae (Diptera) in the east Siberia and Russian far east: Taxonomy and 598 Biogeography. *Zool. Sci.* 1996, 13: 455-477.
- 598 Biogeography. *Zool. Sci.* 1996, 13: 4 599
- 600 [9] Watabe H, Toda MJ, Li GC, Duan CL, Rahman I, Borrathybay E, Abdukerim M: Drosophilid 601 Fauna (Diptera, Drosophilidae) of Chinese Central Asia. *Jpn. J. Ent*. 1993, 61: 525-545.
- 602
- [10] Entomology specimen collections database, Natural History Museum, London:
- 604 <u>http://www.nhm.ac.uk/research-curation/scientific-resources/collections/entomological-</u> 605 <u>collections/entomology-specimen-database.</u>
- 606
- [11] Bächli, G. (2012) Fauna Europaea: Drosophilidae. In: Pape, T. & Beuk, P. (2012) Fauna
- 608 Europaea: Diptera. Fauna Europaea version 2.5, http://www.faunaeur.org.