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1. Details on Segmentation and Hidden Markov Model in derfinder

In derfinder, we fit linear models (as specified by equation (3.1) in the main text) at each base in

the genome. To do this, we use methods for estimating regularized linear contrasts as implemented

in the limma Bioconductor package (Smyth and others 2004, Smyth 2005). We use a customized

version of the lmFit function, keeping the default parameters. For the two-group comparison

presented in the manuscript, the test statistic s(l) is a moderated t-statistic, which is similar to

the ordinary t-statistic obtained from testing whether β2(l) = 0, but the standard error estimate

for β2(l) used it its calculation is shrunk toward a prior variance estimate. This framework allows

for the borrowing of information across bases, which makes the statistical results more reliable
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in experiments with small sample sizes. To be more specific, we present some of the details

from Smyth and others (2004) here; further details can be found in that paper. For ease of

notation, since we are in two-group case, we drop the “2” subscript from β2(l) in the following

discussion. Following the framework from Smyth and others (2004), we assume a distribution on

the estimated differential expression effect at base l:

ˆβ(l) | β(l), σ2

l ∼ N(β(l), vlσ
2

l )

where σ2

l represents the residual variance and vl represents the unscaled variance at base l. We

also assume a distribution on the estimated residual variance for the model at base l, assuming

dl is the residual degrees of freedom for that model:

s2l | σ2

l ∼ σ2

l

dl
χ2

dl

Then, a prior with parameters s2
0
and d0 is assumed on σ2

l :

1

σ2

l

∼ 1

d0s20
χ2

d0

The prior describes how variances are expected to vary across bases. A prior is also assumed on

β(l) when β(l) 6= 0:

β(l) | σ2

l ∼ N(0, v0lσ
2

l )

This prior describes the distribution of differential expression parameters (here, log fold-changes)

for differentially expressed bases. Under these priors, the posterior mean of σ−2

l given s2l is s̃−2

l ,

where:

s̃2l =
d0s

2

0 + dls
2

l

d0 + dl

Our test statistic s(l), here the moderated t-statistic at base l, is then defined by:

s(l) = t̃l =
ˆβ(l)

s̃l
√
vl

This empirical Bayes approach, where the posterior variance is used in the t-statistic calulation

instead of the sample variance, is implemented in the eBayes function in limma. Data-driven
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estimation of the values of d0 and s2
0
is built into the eBayes function, as described in Section 6

of Smyth and others 2004. This function has been incorporated into derfinder ’s functions.

The Hidden Markov Model is then fit on the moderated t-statistics. In the general case,

described in the main text, we assume a three-state Markov process D along genomic locations l,

such thatD(l) = 0 when base l is not expressed,D(l) = 1 when base l is equally expressed between

conditions, and D(l) = 2 when base l is differentially expressed. However, in our implementation,

we found it convenient to divide the differentialy expressed state into two separate states. So

in derfinder, we define D(l) = 0 and D(l) = 1 the same way we do in the general case, but we

assume here that D(l) = 2 corresponds to overexpression of base l in cases (compared to controls)

and D(l) = 3 corresponds to underexpression of base l in cases.

As input, the HMM requires several parameters: a transition matrix (defining probabilities of

transitioning from one hidden state to another in consecutive base-pairs), fixed probabilities of

being in each hidden state, and parameters defining the distribution of s(l) | D(l). For transition

probabilities, derfinder uses the following matrix as defaults:









0.999 (1/3) ∗ 0.001 (1/3) ∗ 0.001 (1/3) ∗ 0.001
0.001− 2× 10−12 0.999 1× 10−12 1× 10−12

0.001− 2× 10−12 1× 10−12 0.999 1× 10−12

0.001− 2× 10−12 1× 10−12 1× 10−12 0.999









(1.1)

where entry (k, k′) (k = 1, 2, 3, 4) of 1.1 defines Pr(D(l) = k − 1 | D(l − 1) = k′ − 1). Low

probabilities are intentionally assigned to transitions from a differentially expressed state to an

equally expressed state and vice versa, based on the assumption that discrete genomic features

are not usually only partially differentially expressed. These parameters may be changed by the

user in the derfinder package. Initial tests of derfinder indicate that the method is not sensitive

to changes in the parameters of the transition matrix as long as the diagonal entries are large

probabilities.

The parameters left to estimate are πd = Pr(D(l) = d), µd, and σ2

d for d = 0, 1, 2, 3. Recall

that we assume s(l) | D(l) = d ∼ N(µd, σ
2

d). We estimate π0 as the fraction of bases where
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average coverage is less than some threshold c, as described in the text. Estimates of π1, π2, and

π3 are obtained from the maximum likelihood approach of the two-groups model (Efron 2008).

This model estimates π1 directly, and we assume that π2 = π3, i.e., that differential expression

in either direction is equally likely. Thus we estimate both π2 and π3 as (1 − π0 − π1)/2. The

two-groups model also gives estimates for µ1 and σ2

1
, and we assign µ0 = 0 and σ2

0
= 1 × 10−7,

requiring virtually all emissions from state 0 to be 0. Finally, we estimate µ2, σ
2

2
, µ3 and σ3

2
with

a data-driven method. We will describe the procedure for estimating µ2 and σ2

2
; the method for

µ3 and σ2
3 is similar.

Define n to be the total number of nonzero t-statistics that were generated from differential

expression tests. Define the function n.above(x) as the observed number of nonzero t-statistics

greater than x. Also define the function c(p) = σ̂eΦ
−1(p)+µ1, where Φ represents the cumulative

distribution function of the standard normal distribution. Note that for p ∈ [0, 1], c(p) yields

the 100pth percentile of the normal distribution for the equally expressed t-statistics. Using an

iterative procedure, and using our estimate for π0, we find the value p ∈ [0, 1] such that

n.above[c(p)]− (1− p)π0n = 0.25(1− π0)n (1.2)

The reason behind finding this p is as follows: note that 0.25(1 − π0)n is the estimate of

half the number of nonzero t-statistics corresponding to bases with D(l) = 2: (1 − π0)n is the

estimated number of differentially expressed bases (D(l) = 2 or 3), half of those have D(l) = 2,

and we multiply by 0.5 again to get half that quantity. Also note that (1 − p)π0n gives the

expected number of equally expressed t-statistics greater than c(p). Thus, the difference between

the number of observed t-statistics greater than c(p) and (1 − p)π0n should yield the number of

t-statistics with D(l) = 2 that are greater than c(p). When we find a p such that this difference

equals half the estimated number of t-statistics with D(l) = 2, we can use c(p) as an estimate for

the median of the distribution of overexpressed t-statistics. Since we assume this distribution is

normal, c(p) also provides an estimate for its mean, µ2.
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We can use µ2 to estimate σ2

2
: assume that p solves 1.2 above, and choose any value p′ in

(p, 1). Define the quantity:

q = 1− n.above[c(p′)]− (1− p′)π0n

(1 − π0)0.5n
(1.3)

The numerator of the fraction in 1.3 gives the estimated number of overexpressed t-statistics

greater than c(p′), and the denominator gives the estimated total number of t-statistics with

D(l) = 2. Therefore, q denotes what percentile of of the distribution of s(l) | D(l) = 2 is given

by c(p′). Then, since we know Φ−1(q), c(p′), and µ2, we can solve the equation

Φ−1(q) =
c(p′)− µ2

σ2

(1.4)

for the unknown σ2. We then estimate µ3 and σ2

3
analagously.

Numerical failure can occur in estimating µ2, µ3, σ
2

2
, and/or σ2

3
. As backup, we estimate µ2

with the 95th percentile of a normal distribution with mean µ1 and variance σ2

1
, µ3 with the 5th

percentile of that distribution, and σ2
2 and σ2

3 with whatever was estimated for σ2
1 .

Simulation studies comparing our data-driven method to an EM algorithm, implemented with

the mclust package (Fraley and Raftery 2002), suggest that this algorithm is more conservative

(i.e., distributions for s(l) | D(l) = 2 and s(l) | D(l) = 3 are estimated to be further from the

distribution of s(l) | D(l) = 1) and more computationally efficient than the EM algorithm.

Using all these pre-set and estimated parameters, the HMM is fit in derFinder using a Viterbi

algorithm (Forney Jr 1973). In derfinder, the dthmm and Viterbi functions from the Hidden-

Markov package are utilized (Harte 2012). By default, a non-stationary, homogenous HMM is

fit (non-stationarity is the default in dthmm), though the user may fit a stationary HMM for

improved computational efficiency. The model outputs the most likely state for each base-pair in

the genome given the observed t-statistics.

Runtime. We suggest running DER Finder’s statistical analysis (beginning with the coverage

matrix as input) for each chromosome separately, since this enables the pipeline to be parallelized.
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The Y chromosome presented in this manuscript took about 1 hour to run. Larger chromosomes

take longer: statistical analyses of chromosomes 1 and 12 took about 27 hours and 8 hours,

respectively, when the HMMs were fit as non-stationary models. Assuming stationarity had very

little effect on runtime. Efforts to make the derfinder software more efficient are ongoing - so

future releases may have improved runtimes.

Correction to previous section (Supplement, Section 1)

In the original supplement, section 1 (above), imprecise notation was used in the description of

the method for estimating µ2, σ
2
2 , µ3, and σ2

3 . Beginning at the paragraph immediately preceding

equation (1.2), the supplementary material should read as follows:

Define n to be the total number of nonzero t-statistics that were generated from differential

expression tests. The two-groups model is only run on these n t-statistics, which means that it

gives a direct estimate of what we will call π0nz , i.e., the percentage of nonzero t-statistics with

true state D(l) = 1. Then π1 is estimated as π0nz(1 − π̂0), where π̂0 is the empirical estimate of

the percentage of t-statistics equal to 0).

Next, define the function n.above(x) as the observed number of nonzero t-statistics greater

than x. Also define the function c(p) = σ̂1Φ
−1(p) + µ1, where Φ represents the cumulative

distribution function of the standard normal distribution. Note that for p ∈ [0, 1], c(p) yields the

100pth percentile of the normal distribution for the equally expressed t-statistics, i..e, t-statistics

emitted from bases with hidden state D(l) = 1. Using an iterative procedure, and using our

estimate for π0nz , we find the value p ∈ [0, 1] such that

n.above[c(p)]− (1− p)π0nzn = 0.25(1− π0nz)n (1.5)

The reason behind finding this p is as follows: note that 0.25(1 − π0nz)n is the estimate

of half the number of nonzero t-statistics corresponding to bases with D(l) = 2: (1 − π0nz)n
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is the estimated number of differentially expressed bases (D(l) = 2 or 3), half of those have

D(l) = 2, and we multiply by 0.5 again to get half that quantity. Also note that (1 − p)π0nzn

gives the expected number of equally expressed t-statistics (D(l) = 1) greater than c(p). Thus,

the difference between the number of observed t-statistics greater than c(p) and (1 − p)π0nzn

should yield the number of t-statistics with D(l) = 2 that are greater than c(p). When we find a

p such that this difference equals half the estimated number of t-statistics with D(l) = 2, we can

use c(p) as an estimate for the median of the distribution of overexpressed t-statistics. Since we

assume this distribution is normal, c(p) also provides an estimate for its mean, µ2.

We can use µ2 to estimate σ2
2 : assume that p solves 1.5 above, and choose any value p′ in

(p, 1). Define the quantity:

q = 1− n.above[c(p′)]− (1 − p′)π0nzn

(1− π0nz)0.5n
(1.6)

The numerator of the fraction in 1.6 gives the estimated number of overexpressed t-statistics

greater than c(p′), and the denominator gives the estimated total number of t-statistics with

D(l) = 2. Therefore, q denotes what percentile of of the distribution of s(l) | D(l) = 2 is given

by c(p′). Then, since we know Φ−1(q), c(p′), and µ2, we can solve the equation

Φ−1(q) =
c(p′)− µ2

σ2

(1.7)

for the unknown σ2. We then estimate µ3 and σ2
3 analagously.

These changes do not affect the results presented in the manuscript, but they clarify the

details of the methods implemented in the manuscripts analysis and in the beta version of the

DER Finder R package.

2. HMM Assumptions

Here we provide explanations and empirical evidence regarding the assumptions made in the

HMM step in the DER Finder pipeline.



8 Frazee et al.

2.1 Correlation

DER Finder by default fits a first-order Hidden Markov Model. The data used as input to

DER Finder is the base-by-sample coverage matrix. We expect adjacent bases to have high

correlation in their coverage values, especially considering the 101-bp read length used in the

Y-chromosome experiment presented. To explore the autocorrelation in coverage values across

the genome, we estimated the average correlation between base-pairs at increasing distances from

each other (Supplementary Figure 3). The plot does display high correlations between bases that

are close together, but also shows that this correlation is close to what would be expected under

an autoregressive (order 1) model. This correlation structure is acceptable under a first-order

Markov model, so we believe the first-order model is sufficient for this analysis.

2.2 Stationarity and Homogeneity

By default, we assume that D(l) is a non-stationary, homogeneous Markov chain with hidden

state probabilities πd = Pr(D(l) = d). However, the user may assume stationarity (i.e., constant

transition and probabilities across the genome) to improve computation time, i.e., he or she may

assume the transition probabilities are the same across the genome. Assuming homogeneity means

we assume the parameters of the mixture distribution generating the test statistics are the same

across the genome. Both these assumptions seem reasonable: even though gene density differs

across the genome, the probability of staying in the same state is quite high even in areas of high

gene density (i.e., transitions between states are relatively rare), since genomic features like exons

and introns tend to be hundreds of bases long, but only the two bases at the beginning and end

of the feature will actually show the state changing. Therefore, fitting a stationary HMM is a

reasonable way to speed up computation time (though the non-stationary model can also be fit

for analyses where it is computationally feasible, such as the one presented in the manuscript).

Also, along the entire genome, a test statistic high in absolute value should indicate differential



Supplement to Differential expression analysis of RNA-seq at single-base resolution 9

expression, while a test statistic low in absolute value indicates no differential expression, so using

the same parameters for the test statistics’ mixture distribution seems reasonable. If the user is

particularly concerned about violations of these assumptions, separate HMMs (with different

parameters and transition probabilities) can be fit on different sections of the genome. A non-

stationary, non-homogenous HMM could also be implemented, but functions for this may not be

available off the shelf, and computation time is likely to be greatly increased. Another option is to

implement an alternative segmentation algorithm, such as circular binary segmentation (Olshen

and others 2004). This segmentation option is available in the region-finding function (called

getRegions) in the derfinder R package.

2.3 Test Statistic Distribution

We assume that the test statistic at base l, s(l) has latent state D(l) = 1, 2, or 3, and is a

draw from a normal distribution, i.e., s(l) | D(l) = d ∼ N(µd, σ
2

d). We choose this normal dis-

tribution because the pre-built functions in the HiddenMarkov R package (Harte 2012) provided

the computational framework for fitting this HMM, and because the observed distribution of

test statistics seemed well-captured by a normal mixture distribution. As empirical evidence,

we consider the test statistics obtained from the Y chromosome analysis presented in the paper

(Supplementary Figure 4): the normal mixture distribution estimated using the process described

in section 1 seems to fit the observed data quite well, though the distribution of the underex-

pressed statistics overlaps almost entirely with that of the equally expressed statistics, which is

to be expected in Y chromosome data. We also investigated the effect of the prior estimate for

π1, the proportion of base-pairs that are not differentially expressed, using the simulated data

described in Section 7.1: there, we set 90% of transcripts to be differentially expressed, and DER

Finder produced exactly the same results using π̂1 = 0.8, π̂1 = 0.9, and π̂1 = 0.98, the latter

being the conservative estimate from the two-groups model. In general, we expect DER Finder
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to be quite robust to choice of parameters for the test statistic distribution: as long as large test

statistics are classified as differentially expressed and test statistics close to zero are classified as

not differentially expressed in a systematic manner, DER Finder will produce reasonable results.

3. Validity of p-value and FDR estimates

DER Finder assignes a measure of statistical significance to each candidate DER using a per-

mutation p-value, as described in Section 3.3 in the main text. Each candidate DER is assigned

a test statistic, defined as the mean base-level statistic over all bases contained in the region.

To estimate the null distribution of region-level test statistics, permutation is used, and the null

distribution is created by pooling null statistics from the entire genome. Using permutation with

pooled null statistics is standard practice, first introduced in Storey and Tibshirani (2003). It

has been demonstrated that strong control of the FDR and FWER are guaranteed when a sub-

set pivotality condition holds (see, e.g., Dudoit and Van Der Laan 2008). The subset pivotality

requires that for any subset of the null hypotheses, the joint distribution of the p-values for the

subset is identical to that under the complete null (Westfall and others 1993). This condition

holds provided that the p-values under the null hypothesis are jointly uniform (see e.g. Leek and

Storey 2011). Further justification for our approach is that this type of permutation procedure has

been thoroughly studied both empirically and theoretically and is widely applied in the analysis

of fMRI data: see for example, Genovese and others (2002) or Nichols and Holmes (2002).

We show empirically that our null p-values are uniformly distributed and that our estimated

FDRs are conservative: using the simulated dataset described in Section 6.1, we analyzed all

p-values from regions known to contain no differentially expressed bases and found that the

distribution was approximately uniform (Supplementary Figure 5). Additionally, the true FDR

in the simulation study at a q-value cutoff of 0.05 was 0, meaning our FDR estimate of 0.05 was

indeed conservative. A false discovery in this case would be defined as calling a region differentially
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expressed when it did not overlap a transcript set to be differentially expressed.

We can also use the Y-chromosome experiment to show that the p-values and FDR adjust-

ments used by DER Finder’s permutation test are reasonable: for the Y-chromosome data, p-value

histograms for each method were created (Supplementary Figure 6). P-values were assigned to

each region assigned latent state D = 2 by the HMM step in DER Finder, to each transcript

in Cufflinks, and to each exon in EdgeR and DESeq. The observed distributions were shaped as

expected in the results from DER Finder, EdgeR, and DESeq: in the comparison between sexes,

many low p-values were observed, corresponding to the fact that most of the Y chromosome

should be differentially expressed. However, based on the p-value histogram generated from the

Cufflinks transcripts, the analysis of differential expression between sexes did not produce a very

substantial number of small p-values. Instead, it produced a cluster of p-values between 0.2 and

0.4, which is an unexpected finding given the nature of Y chromosome expression differences be-

tween males and females. This simple analysis shows that the statistical methodologies used by

DER Finder, EdgeR, and DESeq produce reasonable results on an easy problem, while Cuffdiff

exhibits problems even in a very simple scenario.

4. Details for Y chromosome experiment

The results section of the main text presents an experiment in which we compared male and female

gene expression on the Y chromosome. The data consisted of unpaired, 101-bp RNA-seq reads

from 15 control samples (9 male, 6 female) of postmortem brain tissue. These reads were aligned to

the Ensembl GRCh37 genome (Illumina 2012) using Tophat version 2.0.8 with default parameters,

which allow mutiple alignments per read to be reported. DER Finder’s coverage matrix was

calculated based on these Tophat alignments. Results from DER Finder were compared to results

from the Cufflinks/Cuffdiff pipeline, EdgeR, and DESeq. EdgeR and DESeq analyses were run

at the exon level, using exon-by-sample count tables created based on the Tophat alignment
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file with RSamtools (Morgan and Pagès) and GenomicRanges (Aboyoun and others). Exon-

level expression summaries for EdgeR and DESeq were calculated using the summarizeOverlaps

function in GenomicRanges, using the union model to count reads falling within overlapping exons

(mode="Union" option in summarizeOverlaps). Default parameters and library size adjustments

were used in EdgeR and DESeq. For these exon-by-sample count tables and for determining DER

Finder’s regions’ overlaps with exons, we considered all annotated exons in the Ensembl GRCh37

build, as annotated in the databases used by the biomaRt Bioconductor package (Durinck and

others 2005).

For Cufflinks/Cuffdiff, we used Cufflinks version 2.0.2 for transcript assembly and Cuffdiff

version 2.0.2 for differential expression analysis. Default parameters were used for both steps.

Detailed commands used are available upon request from the corresponding authors.

The main model for DER Finder (model 3.1) was fit as follows: g was defined as the function

g(x) = log2(x+32), X2i = 1 if sample i was male and 0 if sample i was female (this is essentially

the case/control scenario, so P = 2), and Wi1 was defined as the median of nonzero coverage

values for each sample. Using this model setup, β̂2(lj) represents the estimated log (base 2) fold

change in expression of base lj for males compared to females, when all coverage values are

offset by 32 to ensure that zero counts would not cause problems in the log transformation. No

other confounders were included in the analysis. The test statstic on the base level was limma’s

moderated t statistic (see section 1), and the HMM with derfinder ’s default parameters was run

on these t statistics to obtain candidate DERs (details are described in the supplement). To

obtain p-values for the candidate DERs, a permutation test was run as described in section 3.3 of

the main manuscript, using B = 10 permutations. All p-values (from all pipelines) were adjusted

for multiple testing by controlling the false discovery rate, so the q-value (Storey and Tibshirani

2003) was used as a measure of statistical significance.

To connect the results from this experiment to annotated features, we labeled each DER
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with what type of genomic event it might indicate and which annotated features are involved

(Supplementary Table 1). These labels aid in determining which exons and genes are showing

differential expression signal and finding regions that may indicate phenomena like possible al-

ternative splicing. Further exploration of these regions is possible using assemble-then-annotate

methods to evaluate potential alternative or differential splicing events. Due to variance in read

coverage across the genome, we observed some regions shorter than the length of an individual

read. These small regions are particularly detrimental in the annotation and labeling step. We

therefore choose to disregard regions shorter than the read length. Regions flanking very short

transitions between states are merged.

5. Additional figures illustrating problems with annotate-then-identify

methods

Figure 5 in the main text illustrates specific instances in the analysis of the human Y chromosome

where DER Finder correctly identifies differential expression between sexes and EdgeR and DESeq

do not, either because an exon was incorrectly annotated or because the differential expression

did not occur within an exon at all. The instances shown in the text are not isolated: in fact,

280 non-exonic regions of the Y chromosome were identified by DER Finder as significantly

differentially expressed (q < 0.05).

Additionally, Supplementary Figure 1 demonstrates that differential expression does not al-

ways occur within exon boundaries, and as such, an identify-then-annotate method may be nec-

essary to achieve high sensitivity. We examined differentially expressed Y-chromosome regions

found by DER Finder that overlapped only part of an exon: for a fixed percentage x, we gathered

the DERs (identified with DER Finder) that overlapped no more than x% of an exon. Then we

calculated the fraction of the set exons overlapped by those DERs that EdgeR and DESeq called

differentially expressed (q < 0.05). Supplementary Figure 1 plots different values of x against
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these fractions. The figure’s message is that many exons showing a differential expression signal

when analyzed with DER Finder are not called differentially expressed by EdgeR and DESeq,

even in an easy analysis of differential expression between males and females on the Y chromo-

some. Figure 2 in the main text is a specific example of this problem, and Supplementary Figure

1 suggests that the issue is not confined to only one example.

Supplementary Figure 2 shows how DER Finder’s agreement with EdgeR and DESeq’s find-

ings changes based on how much of an exon we require a DER to overlap in order to call that exon

differentially expressed. (While Supplementary Figure 1 looked at how much EdgeR and DESeq

agreed with DER Finder’s results, this figure examines how much DER Finder agrees with EdgeR

and DESeq’s results). Given a percentage x to use as a cutoff for how much an exon must be over-

lapped by a DER in order to be called differentially expressed by DER Finder, Supplementary

Figure 2 shows how many of the exons identified by DESeq or EdgeR as differentially expressed

are also x% covered by a DER. As more overlap is required for a differential expression call, the

percent agreement between DER Finder and the identify-then-annotate methods decreases, but

overall, most of the exons identified by EdgeR and DESeq also show a signal in DER Finder.

Together, these two figures show that DER Finder identifies most of the differential expression

found by EdgeR and DESeq, but the identify-then-annotate methods miss signals identified by

DER Finder due to the heavy reliance on pre-specified exon annotation.

6. Additional Y-chromosome analysis: agreement between methods

To determine the extent to which the different pipelines discovered the same features to be differ-

entially expressed, we quantified differential expression and overlap between findings at varying

q-value cutoffs, comparing DER Finder to Tophat-Cufflinks-Cuffdiff (Supplementary Table 2)

and DER Finder to EdgeR and DESeq (Supplementary Table 3). The new method produces

better results than Cufflinks: we find differential expression between males and females on the Y
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chromosome, and find no differential expression between the males, while Cufflinks does not find

differential expression between sexes unless the q-value cutoff is above 0.45. When the q-value

cutoff is high (0.50), only 5.3% of the differentially expressed Cufflinks transcripts are also called

differentially expressed by the new method: as expected, transcripts with high q-values are not

overlapped by differentially expressed regions from the new method (regions that are equally

expressed will not make it past the HMM segmentation step). On the other hand, 32.5% of the

differentially expressed regions (q < 0.50) are overlapped by differentially expressed transcripts,

which shows some agreement between the methods.

The comparison to EdgeR and DESeq shows the annotation-based results to be somewhat

similar. The q-value cutoff did not seem to matter when assessing exon-specific results from DER

Finder for the male-to-female comparison of the Y chromosome (Supplementary Table 3). Overall,

the DER Finder results and the EdgeR and DESeq results were somewhat comparable on the

exon level. The q-value cutoff had no bearing on the DER Finder results: all the differentially

expressed regions covering at least 80% of an annotated exon had small q-values. At low q-values,

DER Finder identifies more exons as differentially expressed than EdgeR and DESeq do, with

some agreement between all three methods. Results from Supplementary Table 3 are from the

comparison between sexes; the males showed no differential exon expression in EdgeR/DESeq

(all but two q-values 1), or DER Finder (minimum q-value of 0.86). It is worth noting that

the method of summarizing the number of reads per exon affects EdgeR and DESeq results:

in particular, the common counting methods do not allow reads to be counted toward more

than one feature, so overlapping exons do not usually get any reads assigned to them at all.

In our experiment, this led to 345 exons having overlapping DERs assigned to them but not

even being tested by EdgeR or DESeq. This issue explains some of the discrepancy between the

exon-level findings for DER Finder and EdgeR/DESeq. Also, though DER Finder identifies more

exons overall as being differentially expressed, 54 exons are identified only by EdgeR or DESeq.
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Closer examination of the coverage patterns of these exons revealed that most of them were

either (a) very lowly expressed overall, or (b) were less than 80% covered by DERs, so the exons

themselves were not called differentially expressed because of the cutoffs defined in Table 1 of

the main manuscript. Users can adjust DER Finder parameters if they are particularly interested

in discovering differential expression of lowly-expressed features (e.g., the function g() chosen in

model 3.1 could be g(x) = log2(x+0.5) rather than log2(x+32), which is what was was used the

Y chromosome comparison). Also, DER Finder generally does show signal in the general area of

the exons in question, even if that signal does not overlap the exon by 80%, so the results still

give meaningful information. Overall, these findings confirm the result that EdgeR, DESeq, and

DER Finder perform similarly when analyzing already-annotated features.

7. Experimental Design Concerns

Biologists who collect RNA-seq data must make several decisions when designing their exper-

iments. Two important considerations are whether to use single-end or paired-end reads and

how deeply to sequence the samples. We address these considerations and their impact on DER

Finder’s results in this section, using a small simulation study to support the conclusions drawn.

7.1 Simulation set-up

A small, 20-sample RNA-seq dataset with pre-defined differential expression was simulated using

Flux Simulator version 1.2 (Griebel and others 2012). We simulated 76-bp paired-end reads from

1000 randomly selected transcripts on chromosome 22. For these 1000 transcripts, we simulated

approximately 400,000 reads per sample. We then randomly chose 50 of these transcripts to be

overexpressed in 10 of the samples (group A) and 50 different transcripts to be overexpressed

in the other 10 samples (group B). Overexpression was simulated by generating an additional

80,000 reads from the designated 50 transcripts for each sample. Essentially, this process mimicked
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a 5x fold change per overexpressed transcript. The default error model for 76-bp reads was

utllized, and all other parameters were left at the default value. The command run for each

simulated sample was flux-simulator -t simulator -x -l -s -p sample.par. An example

parameter (.par) file is available on github. The simulated reads from each dataset were aligned

to the Ensembl GRCh37 genome (Illumina 2012) using Tophat 2.0.8 with default parameters,

and coverage matrices were created from the Tophat alignment file.

7.2 Paired-end data in RNA-seq analysis

It is generally accepted that using paired-end data, i.e., data consisting of reads from both ends

of the mRNA fragments instead of just one end, is better than using single-end data, even though

paired RNA-seq experiments can cost up to twice as much as a single-end experiment (Katz and

others 2010, Trapnell and others 2012). Mate-pair information is used during read alignment to

more accurately determine the reads’ best mappings. Furthermore, paired-end data is especially

important in assemble-then-identify methods because it yields more reliable transcript assemblies

and better per-transcript abundance estimates. Because annotate-then-identify and identify-then-

annotate methods do not involve assembly or transcript-level quantification, paired-end data only

improves these methods inasmuch as it improves the read alignment step. Therefore, since read

alignment can be done with either single-end or paired-end reads, it is appropriate to use DER

Finder with either type of data. The coverage matrix would be calculated the same way for paired

data as it is for single-end data; each mate of a mate pair would contribute a coverage value of 1

to all the bases to which it aligns.

The Y-chromosome analysis in this manuscript was done using single-end data, which may

put Cufflinks/Cuffdiff (the assemble-then-identify method) at a disadvantage when comparing

it to the other tools. To determine whether the poor statistical results from Cufflinks/Cuffdiff

may have been due to using single-end data, we ran Cufflinks and Cuffdiff (version 2.0.2, with
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default parameters) on the simulated dataset. Even though this dataset was paired-end and

contained transcripts known to be highly differentially expressed, the statistical results from Cuf-

flinks/Cuffdiff were unreasonable: they did not reflect any differential expression (Supplementary

Figure 7). Therefore, we contend that while paired-end data may improve assembly methods, it is

not the deciding factor in whether the Cufflinks/Cuffdiff pipeline produces reasonable statistical

results.

7.3 Effect of sequencing depth

Sequencing depth (or read coverage) refers to how many times each mRNA nucleotide in the

sample is read by the sequencing machine. Experiments with greater sequencing depth are better

able to detect expression differences for features that are lowly expressed overall. This property

holds for most existing differential expression analysis methods, including DER Finder. Therefore,

experimenters wishing to use DER Finder and detect differential expression in for lowly expressed

feature should deeply sequence their samples. One specific consideration in DER Finder is the

choice of g() in model (3.1). In general, we recommend using g(x) = log2(x + k), where k is a

constant that allows the method to avoid taking the log of 0. In our experiment, we set k = 32

because we were not particularly interested in differential expression in areas with low coverage,

and offsetting all counts by 32 attenuates the fold changes observed in very low-coverage regions.

However, if the sequencing depth is high, the user may want to increase k (if lowly-expressed

features are not of interest), since the method will be more sensitive to differential expression of

lowly-expressed features with deep sequencing. Similarly, if the samples are not sequenced very

deeply, the user may want to decrease k, since true differential expression may not be detected if

the samples’ coverage values are offset too much.

We also investigated the effect of sequencing depth using the simulated dataset described

above in addition to two more simulated datasets. These additional datasets were generated



Supplement to Differential expression analysis of RNA-seq at single-base resolution 19

in the same manner as the first dataset except for read coverage: the first additional dataset

had half as many reads as the original dataset, and the second had 1/4 as many reads as the

original dataset. Based on the median length of the transcripts included in these experiments,

the coverages for these datasets were approximately 24x, 12x, and 6x, respectively. Coverage

matrices were created using Tophat alignments, and DER Finder was run on the chromosome 22

coverage matrix for each dataset, with model 3.1 defined as follows: g(x) = log2(x+ 32), Xi = 1

for samples in group A and 0 for samples in group B, and Wi1 was set as the median nonzero

coverage value for each sample.

In this simulated dataset, DER Finder using the 24x and 12x datasets found 435 and 433

differentially expressed regions, respectively (q < 0.05), while the 6x dataset did not find any

differential expression (minimum q-value 0.18). This is consistent with what we expect: the same

offset (k = 32) was used for all three datasets, and this appears to be too much of an offset

for the low-coverage (6x) dataset. To further investigate these findings, we used varying q-value

cutoffs to create ROC curves for the different coverage levels (Supplementary Figure 8). DER

Finder appears to be performing well in terms of sensitivity and specificy for the 12x and 24x

experiments: for example, in the 24x experiment, 97 out of the 100 pre-set differentially expressed

transcripts were overlapped by a significant (q < 0.05) DER, while 93% of the transcript features

(exons, etc.) that were not simulated as differentially expressed were overlapped by regions in

the equally expressed state or with q > 0.05. In general, there was very little difference between

12x and 24x coverage in this simulation, but 6x read coverage appears to be too shallow when

the offset is set at 32.

8. Code

Code - both general R functions and code used to do this particuar analysis - is available on

github: (https://github.com/alyssafrazee/derfinder).
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Fig. 1. Percentage of the exons overlapped by no more than x% (for varying values of x) of a differentially
expressed region (q < 0.05) from DER Finder that are also identified as differentially expressed (q < 0.05)
by EdgeR and DESeq. (The EdgeR line was lowered by 0.01 so the differences between the two lines on
the left side of the plot would be visible.)
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Result Flag
A set of regions of state D = 2 overlaps more than
80% of an annotated exon.

Differentially Expressed Exon

There exists a set of regions of state D = 2 with
differentially expressed exon flags such that all ex-
ons in a given gene are flagged by the set

Differentially Expressed Gene

There exists a set of regions of state D = 2 with
differentially expressed exon flags such that at
least one, but not all, of the exons in a given gene
are flagged by the set

Unknown Event of Interest (e.g., alternative splic-
ing)

Region of state D = 1 does not overlap any anno-
tated exons

Novel Transcribed Region

Region of state D = 2 does not overlap any anno-
tated exons

Novel Differentially Transcribed Region

Table 1. Genomic events indicated by HMM results

q-value # DE regions # DE transcripts # agreeing regions # agreeing transcripts

(a) males vs. females
0.05 534 0 NA 0
0.10 1009 0 NA 0
0.50 1185 758 40 385
0.80 1259 787 48 412

(b) males vs. males
0.05 0 0 NA NA
0.10 0 0 NA NA
0.50 0 0 NA NA
0.80 0 458 0 NA

Table 2. Comparison of results from DER Finder to Tophat-Cufflinks-Cuffdiff. The first column is the
number of differentially expressed regions found by DER Finder, while the second column is the number
of differentially expressed transcripts found by Cufflinks, both at the specified q-value cutoff. The third
column shows how many of the differentially expressed Cufflinks transcripts are at least 80% overlapped
by a differentially expressed region from DER Finder, while the fourth column shows how many of
the differentially expressed regions are at least 80% overlapped by a differentially expressed Cufflinks
transcript.
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Fig. 2. Percentage of exons called differentially expressed (q < 0.05) by EdgeR and DESeq that are
overlapped by at least x% of a differentially expressed region (q < 0.05) from DER Finder, for varying
values of x.
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Fig. 3. Observed average correlation (y-axis) between bases of varying distances apart (x-axis), with the
predicted AR(1) correlation for this data superimposed in red. Each black line represents one of the nine
male samples used in the Y-chromosome analysis.
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Fig. 4. Estimated normal mixture distribution of test statistics generated from bases on the Y chromo-
some. This figure illustrates the plausibility of the assumption that s(l) | D(l) = d ∼ N(µd, σ

2
d). The

separate components of the mixture distribution are plotted in different colors.
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P−values from null regions, simulated data
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Fig. 5. Histogram of null p-values from a small simulation study, where a region is considered null if none
of the bases in that region were contained in a transcript that was set to be differentially expressed. This
distribution is approximately uniform, which implies that these p-values have good theoretical properties.
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Fig. 6. P-value histograms for tests of differential expression on the Y chromosome between males and
females. For all methods except Cufflinks, substantial differential expression is evident in the comparisons
between sexes, as expected. The Cufflinks p-value distribution is quite unusual and indicates that using
p-values adjusted for multiple testing to assess significance may be problematic.
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Fig. 7. P-value histograms from a small, paired-end simulation study with known differentially expressed
transcripts. DER Finder’s p-values have the expected distribution, while Cuffdiff produces unreasonable
statistical results, calling nothing differentially expressed (minimum q-value 0.999) despite 10% of tran-
scripts being overexpressed (fold change = 5) in one condition. This figure demonstrates that paired-end
sequencing does not eliminate the problems with Cuffdiff’s statistical analysis.

q-value # DE
Regions

# DE
DER
Finder
exons

# DE
EdgeR
exons

# DE
DESeq
exons

DER
Finder
/EdgeR
overlap

DER
Finder
/DESeq
overlap

EdgeR
/DESeq
overlap

All over-
lap

0.05 534 411 113 115 66 76 97 65
0.10 1009 417 125 120 76 81 106 74
0.50 1185 417 143 165 80 86 127 79
0.80 1259 417 153 187 83 89 134 82

Table 3. Comparison of results from DER Finder to EdgeR and DESeq, analyzing differential expression
at the exon level on the Y chromosome between males and females. The first column is the number
of differentially expressed regions found by DER Finder, and the second, third, and fourth columns
are the number of differentially expressed exons found by each method at the specified q-value cutoff.
Differentially expressed exons for DER Finder were defined as exons that were more than 80% covered
by regions of state D = 2; the q-value for each exon was taken to be the q-value of the region most
overlapping it. The last four colums show the number of exons found by two or all three methods.
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Fig. 8. ROC curves from DER Finder, created based on the simulation study with known differential
expression. Sequencing depth is noted by color, while line type denotes different ways of determining
differential expression calls: the dashed lines were created at the feature level, i.e., the true positive rate
was the percentage of differentially expressed transcript features (exons, etc.) that were overlapped by
a significant DER. The solid lines were created at the transcript level, i.e., the true positive rate was
the percentage of transcripts with at least one feature overlapped by a significant DER. DER Finder is
performing well in terms of sensitivity and specificity when the sequencing depth is sufficient.


