Additional file 1

Complete sequencing of *Novosphingobium* sp. PP1Y reveals a biotechnologically meaningful metabolic pattern

Valeria D'Argenio^{1,2,*}, Eugenio Notomista^{3,*}, Mauro Petrillo^{1,2,*}, Piergiuseppe Cantiello¹, Valeria Cafaro³, Viviana Izzo⁴, Barbara Naso^{1,2}, Luca Cozzuto¹, Lorenzo Durante³, Luca Troncone³, Giovanni Paolella^{1,2}, Francesco Salvatore^{1,5,§}, Alberto Di Donato³

*These authors contributed equally to the work

Corresponding author: Francesco Salvatore

E-mail: salvator@unina.it

¹CEINGE-Biotecnologie Avanzate, Napoli, Italy.

²Dipartimento di Medicina Molecolare e Biotecnologie Mediche,

Università di Napoli Federico II; ³Dipartimento di Biologia, Università di Napoli Federico II;

⁴Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno; ⁵IRCCS-Fondazione SDN, Naples, Italy **TABLE S1** Replication sites in the four PP1Y replicons.

	OriC/dnaA	parA/parB/parS	repA
Chr	yes/yes	yes/yes/yes	no
Mpl	no/no	yes/yes/yes	yes
Lpl	no/no	yes/yes/yes	yes
Spl	no/no	yes/yes/yes*	no

* Spl contains also a parS/parA/parB/parS operon (see section entitled "Evaluation of the putative DNA replication origins" in the main text under Results and Discussion) **TABLE S2** Complete list of the PP1Y potential ORFs for the three subunits of the RND-type Efflux Pumps.

Inner Mem	Membrane-fusion	Outer Mem	periplasm
AT477	AT501		
		AT26323	
AT26892	AT26745	AT26928	
	AT26450	AT26437	
	AT36239		
		AT37190	
AT9347	AT9368	AT9332	
AT28595	AT28585	AT28618	
AT16571	AT16559	AT16549	
	AT17967	AT17956	
<u>Mp12516</u>	<u>Mp12495</u>	<u>Mp12540</u>	
	<u>Mp15845</u>		
	<u>Mp19413</u>	<u>Mp19442</u>	
	<u> </u>	<u> </u>	<u> </u>
	A122000		
AT22740	AT22725	AT22714	
	AT21473	AT21444	

TABLE S3 PP1Y genes involved in glutathione metabolism.

ORFs AT4214 and AT30465 code for two glutathione peroxidases that could play a role in the detoxification of alkylhydroperoxides. ORFs AT14455 and AT32855 code for lactoylglutathione lyases that catalyze the condensation of glutathione and methylglyoxal to lactoylglutathione. AT13944 codes for hydroxyacylglutathione hydrolase that catalyzes the hydrolysis of glutathione thioesters regenerating free glutathione. AT25438, AT20884 and AT21125 code for enzymes that catalyze the condensation of glutathione and formaldehyde to the corresponding thioacetale (S-hydroxymethyl glutathione). The adjacent ORFs, AT9397 and AT9409, code for a S-hydroxymethyl glutathione dehydrogenase and a S-formylglutathione hydrolase that convert the thioacetale to glutathione and formate. ORF AT9427, close to AT9397 and AT9409, and ORFs AT21359, AT21382 and AT21411 code for the subunits of a formate dehydrogenase that, by oxidizing formate to CO_2 , completes the degradation pathway of formaldehyde.

AT342 / AT11664 / AT11540 / AT9150 / AT4221 / AT11532 / AT28366 / AT21203 / AT11674 / AT11650 / AT20084 / AT28388 / AT28401 / AT33940 / AT11660	glutathione S transferase like (15)
AT6822	glutathione transferase zeta 1 / Maleylacetoacetate isomerase
AT31634 / AT15656 / AT29345	glutathione S transferase domain containing
AT25438 / AT20884 / AT21125	glutathione dependent formaldehyde activating (3)
	R-S ⁻ + H ₂ CO = R-S -CH ₂ -OH (thioacetal)
AT9397	S hydroxymethyl glutathione dehydrogenase /alcohol dehydrogenase
	R-S- CH_2 -OH = R-S- CH=O (thioester of formic acid)
AT9409	S formylglutathione hydrolase
	$\mathbf{R} \cdot \mathbf{S} \cdot \mathbf{C} \mathbf{H} = \mathbf{O} + \mathbf{H}_2 \mathbf{O} = \mathbf{R} \cdot \mathbf{S}^{-} + \mathbf{H} \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{H}$
AT4214 / AT30465	glutathione peroxidase
	2R-S ⁻ + R'-OOH = R-S-S-R + R'-OH
AT13944	hydroxyacylglutathione hydrolase
	R-S-CO-R' = R-SH + HOOC-R'
AT14455 / AT32855	lactoylglutathione lyase
	glutathione + methylglyoxal ⇔ hemithioacetal adduct ⇔ (R)- S-lactoylglutathione
AT29766	glutathione reductase
AT25503	glutathione synthetase

TABLE S4 The four large and five small clusters in PP1Y chromosome A coding for hypothetical glycosyl transferases, synthesis of nucleosidediphosphate-sugar precursors, polysaccharide polymerases and/or export proteins.

AT7751	pssK exopolysaccharide polymerization protein
AT7758	polysaccharide biosynthesis protein
AT7767	glycosyltransferase involved in LPS biosynthesis like protein
AT7779	dolichyl phosphate mannose synthase related protein
AT7787	glycosyl transferase family protein
AT7798	conserved hypothetical protein
AT7809	hexapeptide transferase family protein
AT7814	periplasmic protein involved in polysaccharide export/polysaccharide export outer membrane protein
AT7822	putative glycosyltransferase
AT7832	glycosyltransferase
AT7845	new prediction 34
AT7868	hypothetical protein/UDPglucose 6 dehydrogenase EC 1.1.1.22
AT7894	glycosyl transferase family 2
AT7905	ypch01112 glycosyltransferase
AT7911	glycosyl transferase family 2
AT7930	ATP binding protein of ABC transporter/ATP binding cassette subfamily B bacterial
AT7948	UDP glucose 4 epimerase
AT7958	NAD dependent epimerase dehydratase family protein/dTDP glucose 4 6 dehydratase EC 4.2.1.46
AT7968	glycosyl transferase group 1 family protein putative
AT7979	Putative uncharacterized protein
AT7986	FAD dependent oxidoreductase/glycerol 3 phosphate dehydrogenase EC 1.1.5.3
AT7994	dolichol phosphate mannosyltransferase EC 2.4.1.83
AT8000	glycosyl transferase family protein
AT8011	glycosyl transferase family protein
AT8041	NAD dependent epimerase dehydratase putative
AT8050	methyltransferase putative

AT10096	glycosyl transferase group 1
AT10111	putative glycosyltransferase protein
AT10122	putative sugar nucleotide epimerase dehydratase protein
AT10133	putative NDP hexose 3 C methyltransferase protein
AT10144	C methyltransferase
AT10159	IpcA galactosyltransferase protein
AT10170	new prediction 50
AT10175	pssL exopolysaccharide polymerization and or export protein
AT10188	glycosyl transferase family 2
AT10201	cellulose biosynthesis protein CelD
AT10209	glycoside hydrolase family 16
AT10230	protein involved in cellulose biosynthesis CelD like protein
AT10241	beta hydroxylase aspartyl asparaginyl family protein
AT10248	ypch01194 glycosyltransferase
AT10257	new prediction 51
AT10266	glycosyl transferase group 1
AT10272	conserved hypothetical protein
AT10294	conserved hypothetical protein
AT10309	rfbP undecaprenyl phosphate galactosephosphotransferase
AT10321	polysaccharide export outer membrane protein

AT33104	mannosyltransferase
AT33116	conserved hypothetical protein
AT33128	polysaccharide biosynthesis protein putative
AT33142	conserved hypothetical protein
AT33150	new prediction 148
AT33153	exoY succinoglycan exopolysaccharide synthesis protein
AT33162	conserved hypothetical protein
AT33178	polysaccharide pyruvyl transferase

AT21571	polysaccharide export protein Periplasmic protein involved in polysaccharide export
AT21576	lipopolysaccharide biosynthesis Chain length determinant protein ;
AT21592	putative exopolysaccharide biosynthesis protein;
AT21603	conserved hypothetical protein
AT21618	ATPase Type II secretory pathway
AT21629	polysaccharide deacetylase
AT21636	glycosyl transferase group 1
AT21638	conserved hypothetical protein
AT21661	ABC transporter related

AT942	glycosyl transferase group 1
AT955	O antigen polymerase

AT749	Transglycosylase SLT domain protein
AT752	UTP glucose 1 phosphate uridylyltransferase
AT764	UDP N acetylglucosamine 1 carboxyvinyltransferase/ UDP-N-acetylglucosamine enolpyruvyl transferase

AT837	sugar transferase
AT851	OstA like protein/ lipopolysaccharide export system protein LptA
AT855	lipopolysaccharide export system protein LptC

AT12196	glycosyl transferase family 14
AT12206	polysaccharide biosynthesis protein/ Membrane protein involved in the export of O-antigen and teichoic acid
AT12221	glycosyl transferase family 2

AT20178	dolichyl phosphate beta D mannosyltransferase
AT20190	glycosyl transferase family protein Dolichyl-phosphate-mannose-protein O-mannosyl transferase

TABLE S5 Three small clusters of ORFs on megaplasmid B coding for hypothetical glycosyl transferases, synthesis of nucleoside-diphosphate-sugar precursors, polysaccharide polymerases and/or export proteins.

Mpl1952	polysaccharide deacetylase
MpI1955	glucose galactose transporter/ fucose permease;
Mpl1975	glycosyl transferase group 1
MpI1986	conserved hypothetical protein
MpI1995	conserved hypothetical protein
MpI2000	glycosyl transferase group 1

Mpl9979	glycosyl transferase group 1
Mpl9992	inner membrane protein YghQ; Membrane protein involved in the export of O-antigen and teichoic acid

TABLE S6 Distribution of glycosyl hydrolases and glycosyl transferases among sphingomonadales and related groups of alpha proteobacteria, including strain PP1Y.

	PP1Y	L-1	UT26	RW1	SYK-6	DSM 12444	RB-22 56
GH	53	32	43	16	21	44	25
GT	57	55	54	53	50	32	15

	ATCC 10988	HTCC 2594			
GH	13	19			
GT	20	22			

GH: glycosyl hydrolases GT: glycosyl transferases

STRAINS

L-1: Sphingobium chlorophenolicum UT26: Sphingobium japonicum RW1: Sphingomonas wittichii SYK-6: Sphingobium sp. DSM12444: Novosphngobium aromaticivorans RB2256: Sphingopyxis alaskensis ATCC10988: Zymomonas mobilis mobilis HTCC2594: Erythrobacter litoralis

Supplementary Figure S1

FIG S1 Dotplots of PP1Y Chr. The Chr proteome was compared with itself (A), and with those of *Erythrobacter litoralis* (B), *Novosphingobium aromaticivorans DSM 12444* (C), and *Sphingonium japonicum* (D).

FIG S2 Genes and proteins. Distribution of Chr and MpI genes with respect to enzyme classes (A) and most frequently found protein families according to KAAS (B). N, number of genes.

В

FIG S3 A) Regions of plasmid pNL1 duplicated on the chromosome of strain PP1Y. The ORFs coding for the alpha subunits of the dioxygenases contained in the regions A, A', A", and B, B' are indicated above each box (gi accession numbers are shown in the case of pNL1). The 3 couples of ORFs sharing 100% identity are in the duplicate region B' whereas the 4 couples of ORFs sharing a 90-95% identity are in regions A' and A". (B) Proposed pathway for the degradation of (methyl)naphthalene coded by plasmid pNL1 of strain F199 (black arrows). The pathway with the red arrows is a hypothetical expansion of the naphthalene pathway obtained by duplication and divergence of the ORFs involved in the metabolism of (methyl)naphthalene. DO, soluble dioxygenase; DDH dihydrodiol dehydogenase; RCD, ring cleavage dioxygenase; ALD, aldolase; DH, dehydrogenase; SDO, salicylate dioxygenase; mMO, membrane bound monooxygenase; BDO/NDO, benzoate/naphthoate dioxygenase.

FIG S4 Neighbor-Joining tree summarizing the relationships between the alpha subunits of the oxygenases of strains PP1Y (blue), F199 (red), RW1 (green) and L-1 (magenta) and some dioxygenases whose structure has been determined (black). The analysis involved 146 amino acid sequences. For the sake of clarity the two divergent branches of the tree are shown separately in panels A and B. The genome of strain L-1 codes for only 6 oxygenases all in the branch of panel A. The genome of strain RW1 codes for 26 potential dioxygenases (panel A) and 32 potential oxygenases/demethylase (panel B). The numbers in the names of the oxygenases from *sphingomonadales* refer to the *gi* accession numbers of the NCBI protein database. PDB codes are in bold. BiphDO, biphenyl-DO; CumDO, cumene-DO; TolDO, toluene-DO; NBenDO, nitrobenzene-DO; NapDO, naphthaleneDO; PAHDO, PAH-DO; QAmmDM, quaternary ammonium-demethylase; CarDO, carbazole-DO; OQ8MO, 2-Oxoquinoline 8-Monooxygenase; 3Kst9Hy, 3-ketosteroid-9-alpha-hydroxylase, DicambaDM, Dicamba (3,6-dichloro-2-methoxybenzoic acid) demethylase.

FIG S4 Neighbor-Joining tree summarizing the relationships between the alpha subunits of the oxygenases of strains PP1Y (blue), F199 (red), RW1 (green) and L-1 (magenta) and some dioxygenases whose structure has been determined (black). The analysis involved 146 amino acid sequences. For the sake of clarity the two divergent branches of the tree are shown separately in panels A and B. The genome of strain L-1 codes for only 6 oxygenases all in the branch of panel A. The genome of strain RW1 codes for 26 potential dioxygenases (panel A) and 32 potential oxygenases/demethylase (panel B). The numbers in the names of the oxygenases from *sphingomonadales* refer to the *gi* accession numbers of the NCBI protein database. PDB codes are in bold. BiphDO, biphenyl-DO; CumDO, cumene-DO; ToIDO, toluene-DO; NBenDO, nitrobenzene-DO; NapDO, naphthaleneDO; PAHDO, PAH-DO; QAmmDM, quaternary ammonium-demethylase; CarDO, carbazole-DO; OQ8MO, 2-Oxoquinoline 8-Monooxygenase; 3Kst9Hy, 3-ketosteroid-9-alpha-hydroxylase, DicambaDM, Dicamba (3,6-dichloro-2-methoxybenzoic acid) demethylase.

PP38178,	1	${\tt MDALRYFLVPAMTLTGVAGFILGGPFVwlGIATFAVLMLLDIVLPSDHK{\tt A}RSRGIALVAD$
PP37257,	1	MDALRYFLVPAMTLTGVAGFILGGPFVWLGIATFAVLMLLDIVLPSDHKVRSRGIAPVAD

PP38178,	61	IAIYLQFPLMVALYLAFANS VATGTNPIWGT DGSAWQLIGSIASLAWLSAVPTLPVAHEL
PP37257,	61	IAIYLQLPLIVALYLAFANSVVSGTNPIWGADGSAWQLIGSIASLAWLSAVPTLPVAHEL
		***** ** ******************************
PP38178,	121	MHRRHWFPRAVAKGLSAFYGDPNRDVAHIVTHHVHLDTAKDSDTPLRGQTIYSFVFQATW
PP37257,	121	MHRRHWFPRAVAKGLSAFYGDPNRDVAHIVTHHVHLDTAKDSDTPLRGQTIYSFVFQATW

5520170	101	
PP381/8,	181	GSYKDTWERQGEILSRLGHSPWSWRNAMWLQLVLVGAIILGVAAAAGPIAGFATVGAMFF
PP37257,	181	GSYKDTWEKQGEILTRLGYSPWSWRNAMWLQLVLVGAIILGVAAAAGPIAGFATFGAMFF

PP38178.	241	AKMEVEGENYFOHYGLLRVEGDPIAKHHAWNHLGMIVRPIGVEITNHINHHLDGHIPFYE
PP37257.	241	AKMFVEGFNYFOHYGLLRVEGDPIAKHHAWNHLGMIVRPIGVEITNHINHHLDGHIPFYE
,		*****
PP38178,	301	LQPEPKAPQMPSLFLCFLCGLVPPVWHRFIAQPRLKDWDLHFASPSERKLAMAANAQAGW
PP37257,	301	LQPEPKAPQMPSLFLCFLCGLVPPVWHKFIAQPRLKDWDLHFASSTERQLAMAANARAGW

5520170	261	
PP381/8,	361	PAWATTD
PP37257,	361	PAWATTD

FIG S5 Pairwise alignment between the two potential membrane

monooxygenases of strain PP1Y. The differences are shown in red, hypothetical transmembrane helices in green, catalytic residues in blue. The red line indicates the hypothetical substrate binding region.

FIG S6. Neighbor-Joining tree summarizing the relationships among PP1Y RCDs (highlighted in yellow), the RCDs from several sphingomonads (each highlighted in a different color) and several other RCDs. The numbers in the names of the oxygenases refer to the *gi* accession numbers of the NCBI protein database. The PDB codes of known structures are shown in bold. Three of the PP1Y ORFs are present in double copy with a 100% identity. The AT15671/AT31616 and AT15599/AT31688 couples are located on chromosome in the pNL1 derived duplicated region B' (Supplementary Figure S3), whereas the Mpl4329/Mpl4634 couple derives from a further duplication on the megaplasmid. The analysis involved 62 amino acid sequences. All positions containing gaps were eliminated. There were a total of 189 positions in the final dataset.

Abbreviations: Naro, *N. aromaticivorans* F199; SwitRW1, *S. wittichii* RW1; NpenUS6-1, *N. pentaromativorans* US6-1; SchlL1, *S. chlorophenolicum* L-1; SphiKC8, *Sphingomonas* sp. KC8; SphiSYK6, *Sphingobium* sp. SYK-6; SpauTZS7 *Sphingomonas paucimobilis* TZS-7; SphiLH128, *Sphingomonas* sp. LH128; SphiA8AN3, *Sphingomonas* sp. A8AN3; Sagr, *Sphingomonas agrestis*; Sxen, *Sphingobium xenophagum*; SagIAM12614, *Stappia aggregata* IAM 12614; PseuDOC21, *Pseudomonas* sp. DOC21; CyclP1, *Cycloclasticus* sp. P1; BxenLB400, *Burkholderia xenovorans* LB400; MtubH37Rv, *Mycobacterium tuberculosis* H37Rv; PseuC18, *Pseudomonas* sp. C18; PputMT2, *Pseudomonas* putida MT2; Bfus, *Brevibacterium fuscum*; Aglo, *Arthrobacter globiformis*; RjosRHA1, *Rhodococcus jostii* RHA1; Afec, *Alcaligenes faecalis*; Bcep, *Burkholderia cepacia*; PseuKKS102, Pseudomonas sp. KKS102; BrspORS278, *Bradyrhizobium* sp. ORS278; AcauORS571, *Azorhizobium caulinodans* ORS 571; PlavDS-1, *Parvibaculum lavamentivorans* DS-1.

FIG S7 Homology models of PP1Y RCDs. A and B show models of the RCD coded by Mpl3065 with 4-hydroxyoestradiol (4-OHE) and 2,3-dihydroxybiphenyl (2,3-DHBP), respectively, docked into the active site. The active site of this enzyme can host only catechols with substituents at position 3 which can adopt an orientation perpendicular to the catechol ring, like 2,3-dihydroxybiphenyl, propylcatechol and isopropylcatechol. This is due to the steric hindrance of residues F175, F187 and I286 that prevent the positioning of polycyclic catechols. C and D show models of the RCDs coded by AT15599/AT31688 and AT32663, respectively, with 4-OHE docked into the active site. The active site pockets of both RCDs are wider than that of Mpl3065 and opened to the solvent. In particular, AT32663, due to a deletion of the C-terminus, has a very wide active site. Both enzymes should be able to bind substrates with 3-4 rings or larger.

FIG S8 A) Schematic drawing of the active sites of the 7 RCDs from strain PP1Y. B) Possible metabolism of mono and polycyclic aromatic hydrocarbons during growth on complex mixtures of hydrocarbons (e.g. gasoline and diesel oil).

FIG S9 Neighbor-Joining tree summarizing the relationships among PP1Y BVMOs (highlighted in yellow), the BVMOs from several sphingomonads (each highlighted in a different color) and several other BVMOs. The numbers in the name of the oxygenases refer to the *gi* accession numbers of the NCBI protein database. PDB codes of known structures are shown in bold. The analysis involved 47 amino acid sequences. All positions containing gaps were eliminated. There were a total of 222 positions in the final dataset. OTEMO is 2-oxo- Δ (3)-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase, which catalyses a key step in the metabolism of camphor by *Pseudomonas putida* ATCC 17453.

Abbreviations as in Supplementary Figure S6.

FIG S10 Neighbor-Joining tree summarizing the relationships among PP1Y MoMOs (highlighted in yellow), the MoMOs from several sphingomonads (each highlighted in a different color) and several other BVMOs. The numbers in the name of the oxygenases refer to the *gi* accession numbers of the NCBI protein database. PDB codes of known structures are shown in bold. The analysis involved 35 amino acid sequences. All positions containing gaps were eliminated. There was a total of 374 positions in the final dataset. Abbreviations: SphiSKA58, *Sphinogomonas* sp; SKA58; SalaRB2256, *Sphingopyrix alaskensis RB2256; PputKT2440, Pseudomonas putida KT2440.* Other abbreviations are as in Supplementary Figure S6.

FIG S11 Hypothetical hydroxylation reactions involved in the degradation of methylquinolines. A) Initial hydroxylation at positions 2 and 4 followed by hydroxylation at position 3. Both pathways have been already described for quinoline degrading bacteria. B) A methyl group at position 3 (3-methylquinoline) could inhibit the first and or the second hydroxylation reaction, which explains why 3-methylquinoline is not a growth substrate.

A) RND type Efflux Pumps (Inner Membrane subunit)

aromatic compounds

0.1

B) P-type-ATPases

0.1

FIG S12 ClustalW tree showing the evolutionary relationships among the inner membrane subunit of RND-type efflux pumps (A) and the P-type ATPases (B). Proteins from Sphingomonads are highlighted. The numbers in the name of the oxygenases refer to the gi accession numbers of the NCBI protein database. The sequences shown in red came from *Cupriavidus metallidurans* CH34, a benchmark among the strains able to tolerate very high concentrations of transition metals.

In (A), the blue/green branch define a subfamily of RND pumps specific for neutral aromatic molecules like aromatic hydrocarbons (green branches) and acriflavine. The red/magenta branch define a subfamily of RND pumps specific for mono (magenta) and divalent (red) transition metals. None of the proteins belonging to the intermediate branches shown in black have been characterized, therefore it is not possible to speculate about the physiological role of the AT477 and AT16571 PP1Y RND-type pumps. Abbreviations: MexB-PaerPAO1, multidrug efflux transporter MexB from Pseudomonas aeruginosa PAO1; TTGB-PfluPf5, multidrug/solvent transporter TtgB from Pseudomonas fluorescens Pf-5; HAE1-PfluPf01, hydrophobe/amphiphile efflux-1 HAE1 from P. fluorescens Pf0-1; TTGB-Pput, toluene efflux pump TtgB from Pseudomonas putida; TTGB-Sodo, toluene efflux pump TtgB from Serratia odorifera; ACRF-EcolK12, acriflavine resistance protein F from E. coli K12; ACRB-EcolK12, acriflavine resistance protein B from E. coli K12; NCCA-Axyl, nickel-cobalt-cadmium resistance protein NccA from Alcaligenes xylosoxydans; CUSA-EcolK12, cation efflux system protein CusA from E. coli K12; BEPE-Bsui, efflux pump BepE from Brucella suis. Cupriavidus metallidurans CH34 (CmetCH34) proteins: HmuA, heavy metal cation tricomponent efflux pump; NccA, proton antiporter cation efflux protein; HmyA, heavy metal cation tricomponent efflux pump; ZneA, heavy metal cation tricomponent efflux pump; ZniA, heavy metal cation tricomponent efflux pump; CusA, copper and silver tricomponent efflux pump; SiIA, proton antiporter cation efflux protein; CzcA, heavy metal efflux pump. Other abbreviation as in Supplementary Figure S6.

In (B), the orange branches define a subfamily of P-type ATPases specific for copper, the green branches a subfamily able to excrete the divalent toxic metals cobalt, nickel, lead, cadmium, mercury, and zinc, the gray branches a subfamily specific for potassium, the magenta branches a subfamily specific for calcium and the black branches uncharacterized subfamilies. The red branches define a subfamily of H⁺ transporters found only in plants. The PP1Y P-type ATPase belonging to this subfamily (coded by AT23059) was probably acquired by horizontal gene transfer. It could generate an H⁺ gradient at the expense of ATP hydrolysis thus providing energy to the H⁺ dependent RND type pumps. When known, the specificity is reported in parentheses. Abbreviations: CADA-Bsub, cadmium, zinc and cobalt-transporting ATPase from B. subtilis; ZOSA-Bsub, zinc transporting ATPase from B. subtilis; COPA-Bsub, copperexporting ATPase A from *B. subtilis*; ATCU-Smed, copper-transporting ATPase from Sinorhizobium medicae WSM419; ATZN-Syne, zinc-transporting ATPase from Synechocystis sp. ATCC 27184; ATCU-Rleg, copper-transporting ATPase from Rhizobium leguminosarum; ATZN-EcolK12, lead, cadmium, zinc and mercurytransporting ATPase from *E. coli* K-12; LMCA-Lmon calcium-transporting ATPase from Listeria monocytogenes; ATCL-Bsub, calcium-transporting ATPase from B. subtilis; PMA1-Nplu, plasma membrane ATPase 1 from *Nicotiana plumbaginifolia*; PMA4-Nplu, plasma membrane ATPase 4 from N. plumbaginifolia; PMA11-Atha, plasma membranetype ATPase 11 from Arabidopsis thaliana; FIXI-Rmel, nitrogen fixation protein FixI from Rhizobium meliloti. C. metallidurans CH34 proteins: CopF, copper efflux ATPase; PbrA, Pb(II) resistance ATPase; ZntA, ATPase involved in Zn(II), Cd(II), Tl(I) and Pb(II) resistance; CzcP, cation efflux ATPase.

phytanoyl-CoA dioxygenases

FIG S13 Cluster of the ORFs coding for LuxR, LuxI and a phytanoyl-CoA dioxygenase like protein located on chromosome and on the large plasmid LpI (A). Neighbor-Joining tree showing the evolutionary relationships among LuxI (B) and phytanoyl-CoA dioxygenase (C) in different sphingomonads.

Abbreviation: SphiSKA58, *Sphinogomonas* sp SKA58; SalaRB2256, *Sphingopyxis alaskensis* RB2256; Bgluy,; *Burkholderia glumae;* Paer, *Pseudomonas aeruginosa;* Pste, *Pantoea stewartii.* Other abbreviations as in Supplementary Figure S6. PDB codes are shown in boldface type.

FIG S14 Clusters of ORFs potentially coding for the synthesis of extracellular polysaccharides on the Mpl (A). Regions probably involved in the synthesis of exopolysaccharides on the Lpl (B). Two close couples of ORFs code for the enzymes necessary for the synthesis of the precursors GDP-mannose and GDP-rhamnose, i.e., the products of Lpl800 and Lpl822 convert mannose-6-phosphate to GDP-mannose, whereas the products of Lpl601 and Lpl613 convert GDP-mannose to GDP-rhamnose.

Lpi6	51	Lp1694	Lpl706	LpI720		_pl731
Lpi651 (12 Lpi694: hy	257aa): glyco /pothetical pro 95aa): glyco	syl transferase	group 1			
Lp1720 (3) Lp1731 (4)	94aa): glyco 20aa): putati	syl transferase ive glycosyl tra	nsferase			
LpI745	LpI754	Lpl762 L	pl773	LpI783	Lpl800	Lpl822
4				phosp m	homanno utase	Man-1- phosphate Guanylyl transferase
LpI745 (22)	3aa): ABC-type	e polysacchario	de transport	system, AT	Pase com	ponent
type polys	accharide exp	ort systems, pe	ermease cor	nponent		
LpI762 (369 LpI773 (399	9aa): capsular 5aa): polysacc	polysaccharid haride export o	e transport : outer memb	system pern rane protein	nease prot	tein
LpI783 (43)	0aa): glycosylt	transferase put	ative EC:2.4	.1.		
						В
Lpl651:	Not present in	other sphingo	omonadas			
LpI706:	Only in S. japo	onicum UT26 (2	29% id)			
LpI720:	Not present in	n other sphingo	omonadas			
LpI731:	Not present in	n other sphingo	omonadas			
Lpl745: id; 73% :	<i>N. aromaticivo</i> sim)	orans F199 (69%	% id; 86% siı	n); S. sp. Sk	(A58 (55%	
Lpl754: (65% id; (36% id;	S. japonicum (82% sim); S 56% sim)	JT26 (83% id; 9 . sp. SKA58 (56	2% sim); <i>N.</i> 5% id; 77% s	aromaticivo im); S. witti	orans F199 chii RW1)
LpI762: sim); <i>N.</i> id; 52% s	S. japonicum U aromaticivora sim)	JT26 (73% id; 8 <i>ns</i> F199 (51% id	6% sim);	sp. SKA58 (; <i>S. wittichii</i>	(59% id; 76 RW1 (34%	5% 5
Lpl773: (51% id;	S. japonicum L 70% sim); S. s	JT26 (68% id; 8 sp. SKA58 (50%	80% sim); <i>N.</i> 5 id; 66% sir	<i>aromaticivo</i> n)	orans F199)
LpI783:	Only in S <i>. jap</i> o	onicum UT26 (6	5% id; 76%	sim)		
315 Lpl ORF		alvoovil tropa	forecos	d 4 subun	its of an A	ABC-type
-	s coaing for	giycosyi trans	sierases ar			
	s coding for (sierases ar			

.

close homologue of the hypothetical glycosyl transferase LpI783 was found in *S. japonicum*

UT26, whereas only very distantly related homologues of glycosyl transferases LpI706,

LpI720 and LpI731 can be found among sphingomonads.

FIG S16 Lpl ORFs coding for a cellulose synthase and a hypothetical cellulose (A). Chromosome ORF coding for a hypothetical cellulase (AT36325) near to an ORF coding for an exo-1,3/1,4-beta-glucanase (B). ORFs coding for γ-PGA polymerases (C). One of these ORFs (Mpl768) is adjacent to an ORF coding for a hypothetical membrane protein. The same couple of ORFs is present in the genome of *N. aromaticivorans* F199 but not in other sphingomonads. The other two ORFs are part of two similar clusters of three ORFs located on the chromosome and megaplasmid. Interestingly, this cluster is not present in other sphingomonads.