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Supplementary Results and Discussion 

Genetic basis of aromatic hydrocarbons degradation  

 Five potential open reading frames (ORFs) for cytochrome P450 monooxygenases (MO) 

were identified. Most sphingomonads have from 1 to 5 ORFs for cytochrome P450-MO, whereas 

strains RW1 and F199 have 15 cytochrome P450-MO ORFs. These enzymes are versatile MO that 

can be involved in growth substrate activation, detoxification of toxic compounds and production of 

secondary metabolites. Cytochrome P450-MO can catalyze also the demethylation of aromatic 

metoxy or (di)methylamino groups [1]. Interestingly, PP1Y ORFs AT30146 and the adjacent 

AT30157 code for a cytochrome P450-MO and an arylamine-N-acetyltransferase, respectively. 

Together these enzymes could catalyze the detoxification of the toxic and mutagenic (di)methyl-

arylamines to acetanilides.  

Three potential ORFs for Baeyer Villiger monooxygenases/ketone monooxygenases 

(BVMO) were also identified. These enzymes, by catalyzing the monooxygenation of ketones to 

esters, perform a crucial role in the degradation of several xenobiotics [2]. The genomes of strains 

F199, L-1 and RW1 code for 11, 7 and 4 BVMOs respectively (Supplementary Figure S9). As in 

the case of ring cleavage dioxygenases (RCDs), each strain may have independently acquired a 

specific set of isoforms by horizontal transfer and in some cases by duplication (e.g., proteins 

4343338 and 334343418 from strain L-1). However, in this case, it is difficult to hypothesize the 

substrate specificity from the phylogenetic tree, at least for PP1Y BVMOs.  

Molybdopteryn-dependent oxygenases (MoMOs) are peculiar enzymes that use a 

molybdenum containing cofactor as redox center. These enzymes can catalyze complex reactions 

such as the monooxygenation of nitrogen-containing heterocyclic compounds (like xantine, 

quinoline and isoquinoline), the oxidation of carbon monoxide to CO2, and also the oxidation of 

several aldehydes [3]. Five PP1Y ORFs code for hypothetical MoMOs. The tree of MoMOs 

(Supplementary Figure S10) like that of RCDs and BVMOs, shows a heterogeneity among 

sphingomonads probably due to independent horizontal gene transfer events. As MoMOs are 

frequently involved in the catabolism of (iso)quinolines, we tested quinoline, isoquinoline and 

several methylquinolines dissolved in paraffin phases as the sole carbon and energy source as 

previously described for polycyclic aromatic hydrocarhons (PAHs) [4]. Strain PP1Y is not able to 

use isoquinoline or 3-methylquinoline, whereas it is able to grow, albeit slowly, using quinoline, 2-, 

4-, 6-, 7- and 8-methylquinoline as the sole carbon and energy source. Interestingly, these 

quinolines induce excessive production of extracellular material similar to that induced by pyrene 



and the heterocyclic compounds dibenzofuran, dibenzothiophene and carbazole [4]. The range of 

methylquinolines that can be used as carbon source suggests that at least two distinct initial 

hydroxylation events could take place in strain PP1Y (Supplementary Figure S11), however, at 

present it is not possible to hypothesize which MoMOs are involved. 

Genetic basis of extracellular polymer secretion (EPS) and biofilm formation  

 Strain PP1Y shows a very complex “social” behavior; in fact, it is able to form different 

types of multicellular amorphous aggregates and ordered biofilm. PP1Y cultures, in both rich and 

minimal media, contain variable amounts of amorphous flocks and often, in the presence of 

hydrophobic polymers like polypropylene and polystyrene, they form a biofilm on the tube wall. 

When growing on diesel oil, the strain also forms a biofilm at the surface of diesel oil: in static 

cultures it colonizes the entire interface, whereas, during orbital shaking, it stabilizes the oil/water 

emulsion by coating the oil drops with biofilm. However, the chemical composition of growth 

media can influence the behavior of the strain. For example, phosphates [4] and glutamate 

(unpublished results) stimulate the formation of amorphous flocks, whereas oil drops and phases are 

colonized only if they contain specific aromatic compounds like pyrene and heterocyclic aromatic 

compounds [4]. 

Cells constitutively release a “hormone” at a constant rate; this “hormone” accumulates in 

the medium and, above a threshold concentration, it binds to a cell receptor activating the 

transcription of a specific set of genes. Among gram-negative strains, the most common hormones 

are the acyl-homoserine lactones that are synthesized by the protein LuxI and bind the LuxR 

receptor [5]. The PP1Y genome contains two copies, on the Chr and Lpl, of three ORFs coding for 

LuxR, LuxI and a phytanoyl-CoA dioxygenase like protein (Supplementary Figure S13A). 

Phytanoyl-CoA dioxygenases catalyze the hydroxylation of phytane, a branched long chain fatty 

acids [6], and could be involved in the synthesis of the acyl-moiety of the acyl-homoserine lactones. 

Even in this case, each sphingomonad has its own peculiar set of ORFs/proteins. For example, 

strain F199 lacks both LuxI and phytanoyl-CoA dioxygenase, RW1 has a single isoform of each 

protein, US6-1 has a single isoform of LuxI and three of phytanoyl-CoA dioxygenase 

(Supplementary Figure S13B and C). The chromosomally coded LuxI and phytanoyl-CoA 

dioxygenase of PP1Y (ORFs AT16460 and AT16449) are closely related to two sequences from 

strain US6-1, whereas the two proteins coded by ORFs on Lpl (Lpl262 and Lpl265) are closely 

related to the proteins of S. alaskensis RB2256 (Supplementary Figure S13B and C). 



Several sphingomonads produce soluble acidic polysaccharides known as sphingans, which 

could have a wide spectrum of industrial applications. Examples are gellan, diutan and welan [7,8]. 

All these polysaccharides show the same repeated tetrasaccharidic unit but differ in the nature of the 

ramifications and/or modifications of the common backbone. The genes necessary for the synthesis 

of gellan, diutan and sphingans S-88 are known and form three very similar clusters of ORFs in 

strains Sphingomonas elodea, Sphingomonas sp. ATCC 53159 and Sphingomonas ATCC 31554 

[7]. A similar cluster is not present in the PP1Y genome. 

The cellulose synthase from Acetobacter xylinum is a prototype among the bacterial 

cellulose synthases [9]. (Saxena et al., 1994). These membrane enzymes synthesize, secrete and 

deposit cellulose fibrils outside the cell [9]. 

The machinery for the secretion of γ-PGA has been studied prevalently in Gram-positive 

strains and includes a membrane polymerase and a few accessory subunits that simultaneously 

synthesize and export the polymer [10]. In some cases, a transferase catalyzes the transfer of the 

chain to an acceptor on the cell surface (for example, a protein) thus avoiding the release in the 

medium [10]. 
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