# The oxygen and carbon dioxide compensation points of  $C_3$  plants: Possible role in regulating atmospheric oxygen

(photosynthetic carbon/ $O_2$  inhibition/photorespiration/Nicotiana tobacum/Spinacea oleracea)

### N. E. TOLBERT\*, C. BENKER<sup>†</sup>, AND E. BECK<sup>†</sup>

\*Department of Biochemistry, Michigan State University, East Lansing, MI 48824; and tLehrstuhl Fur Pflanzenphysiologie, Universitat Bayreuth, 95440 Bayreuth, Germany

Contributed by N. E. Tolbert, August 15, 1995

ABSTRACT The  $O_2$  and  $CO_2$  compensation points  $(O_2 \mid$ and  $CO<sub>2</sub>$ ) of plants in a closed system depend on the ratio of  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  concentrations in air and in the chloroplast and the specificities of ribulose bisphosphate carboxylase/oxygenase (Rubisco). The photosynthetic  $O_2$  is defined as the atmospheric  $O_2$  level, with a given  $CO_2$  level and temperature, at which net  $Q_2$  exchange is zero. In experiments with  $C_3$ plants, the  $O_2$   $\lceil$  with 220 ppm  $CO_2$  is 23%  $O_2$ ;  $O_2$   $\lceil$  increases to 27% with 350 ppm  $CO<sub>2</sub>$  and to 35%  $O<sub>2</sub>$  with 700 ppm  $CO<sub>2</sub>$ . At  $O_2$  levels below the  $O_2$   $\lceil$ ,  $CO_2$  uptake and reduction are accompanied by net  $O_2$  evolution. At  $O_2$  levels above the  $O_2$ , net  $O_2$  uptake occurs with a reduced rate of  $CO_2$  fixation, more carbohydrates are oxidized by photorespiration to products of the  $C_2$  oxidative photosynthetic carbon cycle, and plants senesce prematurely. The  $CO<sub>2</sub>$  increases from 50 ppm  $CO<sub>2</sub>$ with 21%  $O_2$  to 220 ppm with 100%  $O_2$ . At a low  $CO_2/high O_2$ ratio that inhibits the carboxylase activity of Rubisco, much malate accumulates, which suggests that the oxygen-insensitive phosphoenolpyruvate carboxylase becomes a significant component of the lower  $CO<sub>2</sub>$  fixation rate. Because of low global levels of  $CO<sub>2</sub>$  and a Rubisco specificity that favors the carboxylase activity, relatively rapid changes in the atmospheric  $CO<sub>2</sub>$  level should control the permissive  $O<sub>2</sub>$  that could lead to slow changes in the immense  $O<sub>2</sub>$  pool.

In contrast to the attention that regulation of atmospheric  $CO<sub>2</sub>$ has attracted, a photosynthetic  $O_2$  compensation point  $(O_2 \lceil)$ has not been described or considered as part of the global  $O<sub>2</sub>$ cycle that has equilibrated the atmospheric  $O_2$  level at 21%. Although  $O_2$  inhibition of photosynthesis has been known for 75 yr (1) and its biochemical process has been recognized as photorespiration (2-8), the existence of an  $O_2$  | was not described because at high  $O_2$  levels,  ${}^{18}O_2$  exchange and a lower rate of  $CO<sub>2</sub>$  fixation continue, and plants senesce only slowly. High  $CO<sub>2</sub>$  alleviates  $O<sub>2</sub>$  inhibition and low  $CO<sub>2</sub>$  intensifies it, as expected from the dual activities of ribulose bisphosphate carboxylase/oxygenase (Rubisco) (9). In the absence of  $O_2$  the  $K_{\rm m}$  (CO<sub>2</sub>) is  $\approx$ 12  $\mu$ M, which increases to 26–42  $\mu$ M between 20° and 30°C with 21%  $O_2$ . Reported  $K_m$  (O<sub>2</sub>) values for the oxygenase activity are between 250 and 400  $\mu$ M O<sub>2</sub> at 20°-30°C in the presence of low levels of  $CO<sub>2</sub>$  (9).

Photosynthesis contributes to the atmospheric  $O_2$  balance by oxygen production from water during  $CO<sub>2</sub>$  assimilation in the  $C_3$  reductive photosynthetic carbon cycle. Net  $CO_2$  fixation by the carboxylase activity of Rubisco and subsequent reduction are illustrated on the left part of Fig. 1. The oxygenase activity of Rubisco initiates photorespiration via the  $C_2$  oxidative photosynthetic carbon cycle that composes both parts of Fig. 1. The  $C_2$  and  $C_3$  carbon cycles coexist and together constitute photosynthetic carbon metabolism (10, 11). In the complete  $C_2$ cycle the  $CO<sub>2</sub>$  released is refixed to regenerate the ribulose bisphosphate to sustain the  $C_2$  cycle. Refixation of  $CO_2$ generates the same amount of  $O_2$  as taken up during the  $C_2$ cycle. There is no net  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  gas exchange during photorespiration (11) unless the complete  $C_2$  cycle is blocked or metabolically interrupted by accumulation or removal of products such as glycine or serine. Photorespiration dissipates excess photosynthetic capacity (ATP and NADPH) without  $CO<sub>2</sub>$  reduction or net  $O<sub>2</sub>$  change. Photosynthetic carbon metabolism is a competition between  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  for the dual activities of Rubisco, based on the ratio of  $CO<sub>2</sub>$  and  $O<sub>2</sub>$ concentrations in the chloroplast and the specificities of Rubisco for its gaseous substrates. As a consequence, the distribution of carbon flow around the  $C_3$  and  $C_2$  cycles is proportional to the ratio of atmospheric  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  and to processes for  $CO<sub>2</sub>$  import and  $O<sub>2</sub>$  export.

The CO<sub>2</sub> compensation point (CO<sub>2</sub>) is defined as the CO<sub>2</sub> concentration at which net  $CO<sub>2</sub>$  fixation is zero at a given  $O<sub>2</sub>$ level and temperature (12, 13). It has been assumed that at the  $CO<sub>2</sub>$  F respiratory and photorespiratory processes oxidize carbohydrate to  $CO<sub>2</sub>$  as fast as  $CO<sub>2</sub>$  is photosynthetically fixed. This concept may have to be modified to include  $CO<sub>2</sub>$  fixation by phosphoenolpyruvate carboxylase at low ratios of  $CO<sub>2</sub>$  to  $O<sub>2</sub>$ (see Discussion). The CO<sub>2</sub> is  $\approx$  50 ppm CO<sub>2</sub> for an isolated C<sub>3</sub> plant in a closed chamber at  $21\%$  O<sub>2</sub> and  $20^{\circ}$ C. A minimum atmospheric CO<sub>2</sub> equilibrium, resulting from the capacity of plants for  $CO<sub>2</sub>$  uptake and counteracted by abiotic and biotic  $CO<sub>2</sub>$ -generating processes of the global carbon cycle (14), was probably reached millions of years ago. Ice cores from the past 165,000 yr (15) show that such an equilibrium has been  $\approx$ 235  $\pm$  45 ppm CO<sub>2</sub> until this last century.

Much attention has been devoted over the past 50 yr to the increased atmospheric  $CO<sub>2</sub>$  and its regulation and to the  $CO<sub>2</sub>$ with 21%  $O_2$ , but the role of Rubisco in regulating the atmospheric  $O_2$  has not been considered. Because of the dual activities of Rubisco, an  $O_2$ <sup>[</sup> should exist in addition to a  $CO_2$  $\lceil$ . In correspondence with the CO<sub>2</sub>, the O<sub>2</sub> is defined as the  $O<sub>2</sub>$  concentration at which net  $O<sub>2</sub>$  exchange is zero at a given  $CO<sub>2</sub>$  level and temperature. A photosynthetic  $O<sub>2</sub>$  should be expected as a part of the global  $O<sub>2</sub>$  cycle with a given level of  $CO<sub>2</sub>$  and should establish upper limits on the  $O<sub>2</sub>$  concentration at which a positive carbon balance allows plant growth. Studies with  ${}^{18}O_2$  revealed a rapid exchange of atmospheric  $O_2$  in plants during photosynthesis that conformed with a significant  $O<sub>2</sub>$  uptake by photorespiration (16-18). Based on net  $O<sub>2</sub>$ exchange rather than on  $CO<sub>2</sub>$  fixation, we have found that there is an  $O_2$  for  $C_3$  plants (tobacco and spinach) that is not far above the current concentration of atmospheric  $O_2$ . At  $O_2$ levels above the  $O_2$  f there is measurable net oxygen uptake by these plants, while  $CO<sub>2</sub>$  fixation continues at reduced rates with concomitant malate accumulation. With the lowest past recorded levels of  $CO_2$  ( $\approx$ 220 ppm), the  $O_2$  with an isolated  $C_3$ plant is  $\approx$ 23% near current atmospheric levels of  $O_2$ , and with

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: Rubisco, ribulose bisphosphate carboxylase/oxygenase;  $\vert$ , compensation point.



FIG. 1. Scheme for photosynthetic carbon metabolism that consists of the  $C_3$  reductive cycle (solid line on left) and the  $C_2$  oxidative cycle (dashed lines around both right and left sides).

increased CO<sub>2</sub> to <350 ppm today the O<sub>2</sub> F increases to  $\approx$ 27%. From the global carbon and oxygen cycles and to allow plant growth, atmospheric  $CO_2$  levels must be  $>CO_2$  of a  $C_3$  plant, and the  $O_2$  level must be  $\langle O_2 |$ . A lower limit for atmospheric  $CO_2 \approx 235 \pm 45$  ppm) and an upper limit of  $O_2 \approx 21\%$  would appear to be the global equilibria that are set by the average specificities of the abundant Rubisco for  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  and the corresponding  $C_3$  and  $C_2$  photosynthetic carbon cycles.

#### MATERIALS AND METHODS

A closed photosynthetic chamber for simultaneous measurements of changes in the atmospheric  $O_2$  and  $CO_2$  was constructed for these tests. It is essential that the system does not leak  $O_2$ . Six- to seven-week-old whole tobacco (Nicotiana tabacum cv. Samsun) or spinach (Spinacea oleracea) plants in pots, which were enclosed in a gas-tight cover just before the experiment to prevent gas exchange with the soil, were put in an air-tight, 19-liter, glass chamber at a controlled temperature, usually of 20°C. The atmosphere in the chamber was stirred with a fan. The  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  concentrations were continuously measured by pumping a stream of the air through a closed, oxygen-light, circuit with an IR gas analyzer (Binos 1.1, Leybold-Heareus, Hanau, Germany) for  $CO<sub>2</sub>$  measurements and an oxygen electrode (Hansatech Instruments, Pentney King's Lynn, U.K.) covered with 2 ml of water. The  $CO<sub>2</sub>$ and  $O_2$  contents of the atmosphere in the chamber could be arbitrarily set by aerating the chamber with oxygen or nitrogen from pressurized steel cylinders and by injecting  $CO<sub>2</sub>$  with a calibrated syringe through a small rubber plug in the jar lid. According to the IR gas analyzer recordings, additional volumes of CO2 were repeatedly supplied to maintain a desired constant  $CO<sub>2</sub>$  concentration within  $±5\%$ . Experiments were run in atmospheres ranging from 220 to 1000 ppm  $CO<sub>2</sub>$  and oxygen concentrations from 2 to 100%. The  $O_2$  level during an experiment was not supplemented because the percentage changes were relatively small. All experiments were run for a length of time that resulted in the same amount of total  $CO<sub>2</sub>$  uptake. Time periods of up to 8 hr were required at low  $CO<sub>2</sub>$  (220 ppm) or high  $O<sub>2</sub>$  levels (40-90%), when the rates of  $CO<sub>2</sub>$  fixation were reduced. Each point on the figures represents one experiment. Individual plants could be used for the experiments of <sup>1</sup> day. At the end of a day, the leaves were removed, and their areas were determined with an areometer. Upon change of atmosphere the plants were allowed to acclimatize to the new conditions for <sup>1</sup> hr. Usually the rates of gas exchange became constant after 30 min.

Three physiological variables that would alter photorespiration were kept constant—temperature, light intensity, and previous growth conditions. The effect of altering these conditions on the  $O_2$  has not been studied in detail. Temperature alters the differential solubility of  $O_2$  to  $CO_2$ , as increased temperature decreases the solubility of  $CO<sub>2</sub>$  more than  $O<sub>2</sub>(19)$ . The relative amount of photorespiration increases more at higher light intensity than net  $CO<sub>2</sub>$  fixation (20), perhaps because more photosynthetic assimilatory capacity needs to be dissipated. A constant light intensity of 300  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> from fluorescent and incandescent bulbs was used in the current experiments. When the light intensity was decreased, the magnitude of  $O_2$  uptake above the  $O_2$  decreased. Plants were used immediately after growth in greenhouses or growth chambers. Plants held more than 12 hr in the dark had lower levels of  $O_2$  uptake when over the  $O_2$ , presumably from depletion of the carbohydrate, needed for photorespiration.

## RESULTS

The  $CO<sub>2</sub>$  has been measured in the past by placing a plant in a closed chamber in the light with air and determining the  $CO<sub>2</sub>$ equilibrium (12, 13), and the CO<sub>2</sub> has been reported at  $\approx$  50  $\pm$  10 ppm CO<sub>2</sub> with 21% O<sub>2</sub> at 20°C. In Fig. 2 different CO<sub>2</sub>  $\lceil s \rceil$  are shown for atmospheres with different  $O_2$  levels. The rates of  $CO<sub>2</sub>$  removal (left side) at the beginning of the experiment indicate the inhibition of  $CO<sub>2</sub>$  fixation by changing  $O_2$  levels. The constant CO<sub>2</sub> levels reached after  $\approx$  50 min, are the CO<sub>2</sub>  $\lceil s$ . There is a linear dependence of the CO<sub>2</sub>  $\lceil s \rceil$  on the oxygen concentration between  $10\%$  and  $42\%$  O<sub>2</sub> (curve not shown), indicating the competition between  $O_2$  and  $CO_2$  for the oxygenase or carboxylase activity of Rubisco. At  $100\%$  O<sub>2</sub>, the  $CO<sub>2</sub>$  had risen to 220 ppm  $CO<sub>2</sub>$ . The similarity of this high  $CO<sub>2</sub>$  with minimal past atmospheric  $CO<sub>2</sub>$  levels may be coincidental but from the chloroplast thylakoid where  $O_2$  is evolved, oxygen diffusion outward may start at concentrations well above air level (21).

When explaining the  $O_2 \sqrt{ }$ , net  $O_2$  evolution occurs with net photosynthetic  $CO<sub>2</sub>$  reduction, and net  $O<sub>2</sub>$  uptake should occur when the rate of photorespiration exceeds the rate of net  $O_2$ evolution from reduction of fixed  $CO<sub>2</sub>$  to carbohydrate. The  $O<sub>2</sub>$ is the  $O_2$  level when net  $O_2$  change becomes zero in the presence of a given level of  $CO<sub>2</sub>$  (Fig. 3). The maximum rate of  $O_2$  release in the plant chamber, at a constant  $CO_2$  level of 350 ppm and oxygen concentrations below the  $O_2$ , declined



FIG. 2. Time course of net CO<sub>2</sub> uptake at 20°C by a tobacco plant at various oxygen concentrations in a closed chamber. The rate of  $CO<sub>2</sub>$ fixation is the initial slope on the left, and the  $CO<sub>2</sub>$  is the equilibrium on the right, when there is no further change in the  $CO<sub>2</sub>$  level in the closed chamber. Corresponding curves for oxygen were not measured because the contribution of the plant to the large  $O<sub>2</sub>$  volume in the jar (19 liters) is relatively small in the short experimental time. Therefore, the  $O_2$  was determined from a plot of the rates of oxygen release or uptake vs.  $O<sub>2</sub>$  concentration (Fig. 3).



FIG. 3 (A). Photosynthetic  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  gas exchange of tobacco plants depending on the oxygen concentration in a closed chamber. The main line represents the regression curves from the data, while the thin lines include the areas for <sup>a</sup> 5% statistical error. The temperature was 20 $^{\circ}$ C, and the CO<sub>2</sub> concentration was maintained at 350 ppm. O<sub>2</sub> <sup>F</sup> is defined as the atmospheric oxygen concentration at which the change in  $O_2$  level in a closed system was zero. At an  $O_2$  concentration  $\langle O_2 \rangle$ , net  $O_2$  evolution occurred (to the left); at  $O_2$  levels  $\langle O_2 \rangle$  $\mathcal{F}$ , net  $O_2$  uptake was recorded.  $O_2$  inhibition of  $CO_2$  fixation is indicated by the decrease in rate of net  $CO<sub>2</sub>$  uptake. (B) Influence of atmospheric oxygen concentration on photosynthetic  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  gas exchange by tobacco plants at a constant  $CO<sub>2</sub>$  level of 220 ppm and at 20°C.

as the atmospheric  $O_2$  was increased from 20% to the  $O_2$  at 27% O<sub>2</sub> (Fig. 3A). Similarly, the O<sub>2</sub> | was  $\approx$  23% with a constant lower level of 220 ppm  $CO<sub>2</sub>$  (Fig. 3B). At  $O<sub>2</sub>$  levels above the  $O_2$ , net  $O_2$  uptake presumably from photorespiration, increased to levels approaching rates of  $O<sub>2</sub>$  evolution at low oxygen concentrations (Fig. 3). The results are consistent with the main use of photosynthetic energy below the  $O_2$  for  $CO<sub>2</sub>$  fixation with  $O<sub>2</sub>$  evolution. At  $O<sub>2</sub>$  levels above the  $O<sub>2</sub>$  a high rate of  $O<sub>2</sub>$  uptake seems to imply that much light energy was consumed by increased photorespiration with oxygen uptake serving as the acceptor of photosynthetic energy rather than  $CO<sub>2</sub>$ . As discussed later,  $CO<sub>2</sub>$  fixation without reduction to carbohydrate, as by phosphoenolpyruvate carboxylase, would evolve less  $O_2$  evolution. Low rates of  $O_2$  uptake by dark respiration increased from  $\approx$  1.5  $\mu$ mol·m<sup>-2</sup>·s<sup>-1</sup> at 8% O<sub>2</sub> to 3  $\mu$ mol at 54% O<sub>2</sub>.

Inevitable variations when working with many plants, even when raised under controlled conditions, resulted in some scattering of the data (Fig. 3). However, a consistent trend in all the results indicated that the  $O_2$  values could be measured within <1%. Similar results were obtained with tobacco and spinach plants. The  $O_2$  F decreased with a decrease in the  $CO_2$ level to maintain an apparently similar  $CO<sub>2</sub>/O<sub>2</sub>$  ratio for the two competitive activities of Rubisco. Data in Table <sup>1</sup> plot as a straight line for the  $O_2$   $\vert$  vs. the CO<sub>2</sub> concentrations.

Plants survive only at oxygen concentrations below the  $O_2$ and  $CO_2$  concentrations above the  $CO_2$ .  $C_3$  plants held below the  $CO<sub>2</sub>$  F evolve  $CO<sub>2</sub>$  and senesce in 5 to 6 days in continuous light due to carbohydrate depletion by photorespiration (12, 13). The rate of senescence depends on the rate of photorespiration, which is faster at higher temperatures, high light

Table 1. Oxygen  $\lceil$  at 20° with increased CO<sub>2</sub> concentrations for a tobacco plant

| CO <sub>2</sub> concentration,<br>ppm | $O_2$ , % $O_2$ |
|---------------------------------------|-----------------|
| 220                                   | 23              |
| 350                                   | $27*$           |
| 700                                   | 35              |

\*The corresponding  $O_2$   $\lceil$  of spinach was 28%  $O_2$ .

intensity, and higher oxygen and lower  $CO<sub>2</sub>$  (19, 20, 22). Above the  $O_2$  the  $C_3$  plants exhibited negative  $O_2$  balance with high rates of net  $O_2$  uptake. Whereas below the  $CO_2$  there is net  $CO<sub>2</sub>$  loss from photorespiration, above the  $O<sub>2</sub>$  with net  $O<sub>2</sub>$ uptake there was still continuous net  $CO<sub>2</sub>$  fixation at 20–50% of that at  $O_2$  levels below the  $O_2$  (Fig. 3). In subsequent papers we will present a review of the literature and additional data showing that  $C_3$  plants oxidize their carbohydrates by increased rates of photorespiration at higher  $O<sub>2</sub>$  to form large amounts of oxidized products (glycolate, glycine, serine, glycerate) of the  $C_2$  oxidative photosynthetic carbon cycle  $(6, 10, 10)$ 11). At  $O_2$  levels above the  $O_2$ , growth decreased and our tobacco plants senesced within  $\approx$  10 days in continuous light or within  $\approx$  14-16 days on a 16:8 hr day-night regime.

Whereas below the  $CO<sub>2</sub>$  | there is net  $CO<sub>2</sub>$  loss from photorespiration, above the  $O_2$  with net  $O_2$  uptake there was still continuous net  $CO<sub>2</sub>$  fixation at 20–50% of that at  $O<sub>2</sub>$  levels below the  $O_2$  (Fig. 3). Net  $O_2$  uptake in the light, but with continued  $CO<sub>2</sub>$  fixation, invokes several hypotheses. (i) Above the  $O_2$   $\lceil$ , increased  $O_2$  uptake from photorespiration could exceed the lower rates of  $CO<sub>2</sub>$  reduction to carbohydrate and of  $O<sub>2</sub>$  evolution. This hypothesis is supported by continuous  $^{18}O_2$  exchange measurements (17). (ii) Another hypothesis, consistent with oxygen inhibition of  $CO<sub>2</sub>$  fixation by Rubisco, would be a partial substitution of  $CO<sub>2</sub>$  fixation by Rubisco for bicarbonate fixation by the oxygen-insensitive phosphoenolpyruvate carboxylase, which results in malate formation with less  $O_2$  evolution, as occurs in the mesophyll cells of a  $C_4$  plant.  $CO<sub>2</sub>$  fixation from new  $CO<sub>2</sub>$ , or from photorespiration without net reduction to carbohydrate, would greatly reduce  $O_2$  evolution. GC-MS analyses found that the malate content of our tobacco leaves from plants placed in an atmosphere of 350 ppm  $CO<sub>2</sub>$  and 40%  $O<sub>2</sub>$  was five times higher than that of leaves from plants maintained at 350 ppm  $CO_2$  and 21%  $O_2$ .  $C_3$  leaves have substantial amounts of phosphoenolpyruvate carboxylase (23), and phosphoenolpyruvate could be formed from 3-phosphoglycerate produced by the ribulose bisphosphate oxygenase reaction. This malate pool can be gluconeogenic in the dark (24) and might explain why the leaves of tobacco plants survived in high  $O_2$  for 2 weeks on a 16:8 hr light-dark day with  $30\%$  O<sub>2</sub> and  $350$  ppm CO<sub>2</sub>. However, in continuous light with  $40\%$  O<sub>2</sub> and 350 ppm CO<sub>2</sub> the plants senesced substantially faster, probably because of continuous net degradation of carbohydrates by photorespiration. Dual photosynthetic processes for fixing inorganic carbon  $(CO<sub>2</sub>$  and  $HCO<sub>3</sub><sup>-</sup>$ ), one of which is not competitive with  $O_2$  uptake, explain the noncoincidence of the  $CO<sub>2</sub>$  and  $O<sub>2</sub>$  s.

#### DISCUSSION

The  $O_2$  represents an upper limit on the atmospheric  $O_2$  (with a given  $CO<sub>2</sub>$  level) above which plants cannot survive. Thus, a minimum atmospheric  $CO<sub>2</sub>$  concentration of 220 ppm  $CO<sub>2</sub>$ restricts the atmospheric  $O_2$  level to some value less than the  $23\%$  O<sub>2</sub>. A lower atmospheric oxygen concentration than the  $O_2$  is required for a plant to grow. In the global  $O_2$  cycle (14) atmospheric  $O_2$  is lowered by oxidation of minerals, pyrite, and biological materials. The difference between our current global O<sub>2</sub> levels at 21% and the measured 23% O<sub>2</sub>  $\lceil$  of a C<sub>3</sub> plant with 220 ppm  $CO<sub>2</sub>$  (at 20 $^{\circ}$ C) seems small, suggesting that the global  $O_2$  level is close to the  $O_2$  for plant photosynthesis. With the past minimum  $CO<sub>2</sub>$  level, the global  $O<sub>2</sub>$  level could not have risen further because that would have limited the survival of  $C_3$  plants, the major source of atmospheric oxygen. Higher  $O_2$  levels could only have existed if the  $CO_2$  levels were higher than in the recent past. The global atmospheric  $0.03\%$  $CO<sub>2</sub>$  and 21%  $O<sub>2</sub>$  equilibria seem to be limits set by the average specificity properties of Rubisco from plants and algae. Since the global  $CO<sub>2</sub>$  level has risen to 350 ppm  $CO<sub>2</sub>$  in this century, the potential  $O_2$   $\lceil$  for  $C_3$  plants has risen to 27% at 20°C (Fig.  $3A$ ), and the permissive global  $O<sub>2</sub>$  equilibrium could also rise. However, a higher permissive  $O_2$  level may be offset by accelerated 02 uptake at present times from combustion of fossil photosynthate (25).

The specificity of Rubisco seems to establish both a  $CO<sub>2</sub>$  and  $O_2$ , which depend on the ratio of  $CO_2$  to  $O_2$  concentration. These two photosynthetic  $\lceil s \rceil$ , in turn, are rapid parts of the global carbon and oxygen cycles, which had equilibrated with the atmosphere, at least over the past 165,000 yr between 180 and 280 ppm (average 235  $\pm$  45 ppm) CO<sub>2</sub> (15) and 21% O<sub>2</sub> (26). Earlier when the  $CO_2$  level was  $>1000-1500$  ppm  $CO_2$  and/or the  $O_2$ level was lower, Rubisco functioned primarily only as a carboxylase, and the  $CO<sub>2</sub>/O<sub>2</sub>$  ratio for the dual activities of Rubisco was not a controlling factor on plant growth. However, once the level of  $O_2$  increased and that of  $CO_2$  decreased, the oxygenase activity of Rubisco limited  $CO_2$  removal and the  $CO_2/O_2$  ratio became a governing factor on net photosynthesis, plant growth, and the atmospheric composition.  $O_2$  peaked at  $\approx$ 35% about 300 million yr ago for a period of millions of years (26). This condition was mimicked in our growth chamber by using  $700$  ppm  $CO<sub>2</sub>$ , which allowed an  $O_2$   $\lceil$  of 35% for a  $C_3$  plant (Table 1). In the past century, the CO<sub>2</sub> level has risen from  $\approx$  250 ppm, where the O<sub>2</sub> was 23–24% to 350 ppm  $CO<sub>2</sub>$  with a permissive  $O<sub>2</sub>$  of 27%. The potential  $O_2 \Gamma$  can rise with increased  $CO_2$  concentration to maintain a  $CO<sub>2</sub>/O<sub>2</sub>$  ratio based on the average Rubisco specificity for these two substrates. Because there has been  $\approx$  700 times more  $O<sub>2</sub>$  in the atmosphere than  $CO<sub>2</sub>$ , any permissive increase in atmospheric  $O_2$  will be very slow. Because of the very low level of  $CO<sub>2</sub>$  and a specificity of Rubisco that favors the carboxylase activity, it is changes in the level of atmospheric  $CO<sub>2</sub>$  that quickly change the  $CO<sub>2</sub>/O<sub>2</sub>$  ratio relatively to slow changes in the immense  $O<sub>2</sub>$  pool.

This research was initiated while N.E.T. was a senior awardee from the Alexander von Humboldt-Stiftung in the laboratory of Professor Beck.

- 1. Turner, J. S. & Brittain, E. G. (1962) Biol. Rev. 37, 130-170.<br>2. Forrester, M. L., Krotkov, G. & Nelson, C. D. (1966) Pla
- 2. Forrester, M. L., Krotkov, G. & Nelson, C. D. (1966) Plant Physiol. 41, 422-427.
- 3. Zelitch, I. (1969) Photosynthesis, Photorespiration and Plant Productivity (Academic, New York).
- 4. Gibbs, M. (1969) Ann. N.Y. Acad. Sci. 168, 356-368.<br>5. Jackson, W. A. & Volk, R. J. (1970) Annu. Rev. Plant i
- 5. Jackson, W. A. & Volk, R. J. (1970) Annu. Rev. Plant Physiol. 21, 385-426.
- 6. Tolbert, N. E. (1980) in The Biochemistry of Plants, eds. Stumpf, P. & Conn, E. (Academic, New York), Vol. 2, pp. 488-525.
- 7. Osmond, C. B. (1981) Biochem. Biophysica Acta 638, 77-98.<br>8. Ogren, W. L. (1984) Annu. Rev. Plant Physiol. 35, 415-447.
- 8. Ogren, W. L. (1984) Annu. Rev. Plant Physiol. 35, 415–447.<br>9. Lorimer. G. H. (1981) Annu. Rev. Plant Physiol. 32, 349–38
- 9. Lorimer, G. H. (1981) Annu. Rev. Plant Physiol. 32, 349-383.<br>10. Husic, D. W., Husic, H. D. & Tolbert, N. E. (1987) Crit. Re
- Husic, D. W., Husic, H. D. & Tolbert, N. E. (1987) Crit. Rev. Plant Sci. 5, 45-100.
- 11. Tolbert, N. E. (1994) in Regulation of Atmospheric  $CO_2$  and  $O_2$  by Photosynthesis and Photorespiration, eds. Tolbert, N. E. & Preiss, J. (Oxford Univ. Press, Oxford), pp. 8-33.
- 12. Widholm, J. M. & Ogren, W. L. (1969) Proc. Natl. Acad. Sci. USA 63, 668-675.
- 13. Moss, D. N., Krenzer, E. J., Jr., & Brun, W. A. (1969) Science 164, 187-188.
- 14. Walker, J. C. G. (1994) in Regulating of Atmospheric  $CO_2$  and  $O_2$ by Photosynthetic Carbon Metabolism, eds. Tolbert, N. E. & Preiss, J. (Oxford Univ. Press, Oxford), pp. 75-89.
- 15. Branola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. (1987) Nature (London) 329, 408-414.
- 16. Radmer, R. J. & Kok, B. (1976) Plant Physiol. 58, 336-340.<br>17. Canvin. D. T.. Berry. J. A., Badger, M. R., Fock, H. & Osmo.
- Canvin, D. T., Berry, J. A., Badger, M. R., Fock, H. & Osmond, C. B. (1980) Plant Physiol. 66, 302-307.
- 18. Gerbaud, A. & André, M. (1980) Plant Physiol. 66, 1032-1036.<br>19. Ku. S.-B. & Edwards. G. E. (1978) Planta 140. 1-6.
	- 19. Ku, S.-B. & Edwards, G. E. (1978) Planta 140, 1–6.<br>20. Tolbert, N. E. (1974) in Algae Physiology and Bioch
	- Tolbert, N. E. (1974) in Algae Physiology and Biochemistry, ed. Stewart, W. D. P. (Blackwell Scientific, Cambridge, MA), pp. 474-504.
	- 21. Steiger, H. M., Beck, E. & Beck, R. (1977) Plant Physiol. 60, 903-906.
	- 22. Laing, W. A., Ogren, W. L. & Hageman, R. H. (1974) Plant Physiol. 54, 678-685.
	- 23. Lepiniec, L., Vidal, J., Chollet, R., Gadal, P. & Cretin, C. (1994) Plant Sci. 99, 111-124.
	- 24. Benedict, C. R. & Beever, H. (1962) Plant Physiol. 37, 176–178.<br>25. Keeling, R. & Shertz, S. R. (1992) Nature (London) 358, 723–727.
	- 25. Keeling, R. & Shertz, S. R. (1992) Nature (London) 358, 723-727.<br>26. Berner, R. A. & Canfield, D. E. (1989) Am. J. Sci. 289, 333-361.
	- 26. Berner, R. A. & Canfield, D. E. (1989) Am. J. Sci. 289, 333-361.