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Data Collection. We collected neural data, assessed human be-
havior, and tested models on a common image set. In this section,
we discuss this image set and the data collection methods used.
Array electrophysiology. Neural data were collected in the visual
cortex of two awake behaving rhesus macaques (Macaca mulatta,
7 and 9 kg) using parallel multielectrode array electrophysiology
recording systems (Cerebus System; BlackRock Microsystems).
All procedures were done in accordance with National Institute
of Health guidelines and approved by the Massachusetts Institute
of Technology (MIT) Committee on Animal Care guidelines. Six
96-electrode arrays (3 arrays each in two monkeys) were surgically
implanted in anatomically determined V4, posterior inferior tem-
poral (IT), central IT, and anterior IT regions (1). Of these, 296
neural sites (168 in IT and 128 in V4) were selected as being vi-
sually driven with a separate image set. Fixating animals were
presented with testing images in pseudorandom order with image
duration comparable to those in natural primate fixations (2).
Images were presented one at a time on an LCD screen (Sync-
Master 2233RZ at 120 Hz; Samsung) for 100 ms, occupying
a central 8° visual angle radius on top of a gray background, fol-
lowed by a 100-ms gray blank period with no image shown. Eye
movements were monitored by a video tracking system (EyeLink
II; SR Research), and animals were given a juice reward each time
central fixation was maintained for six successive image pre-
sentations. Eye movement jitter within 2° from a 0.25° red dot at
the center of screen was deemed acceptable, whereas presentations
with large eye movements were discarded. In each experimental
block, responses were recorded once for each image, resulting in
25–50 repeat recordings of the each testing image.
For each image repetition and electrode, scalar firing rates

were obtained from spike trains by averaging spike counts in the
period 70–170 ms after stimulus presentation, a measure of neural
response that has recently been shown to match behavioral per-
formance characteristics very closely (3). Background firing rate,
defined as the mean within-block spike count for blank images, was
subtracted from the raw response. Additionally, the signal was
normalized such that its per-block variance is 1. Final neuron
output responses were obtained for each image and site by aver-
aging over image repetitions. Recordings took place daily over
a period of several weeks, during which time neuronal selectivity
patterns at each recording site were typically stable. Based on firing
rates and spike-sorting analysis, we estimate that each individual
electrode multiunit site in this study picks up potentials from one to
three single neural units. To determine whether results would likely
differ for direct single-unit recordings, we sorted single units from
the multiunit IT data by using affinity propagation (4) together
with the method described in ref. 5. Of these units, 21 had internal
trial-to-trial consistency with an r value of 0.3. We assessed the
hierarchical modular optimization (HMO) model’s prediction
ability for these single units, obtaining a median of 50:4± 2:2%
explained variance, very close to that obtained directly from the
multiunit data. Moreover, we supplemented with serially sampled,
single-electrode recording (6,7) and found that neuronal pop-
ulations from arrays have very similar patterns of image encoding
as assembled single-electrode unit populations.
Test stimulus set. The test stimulus set (Fig. 1A) consisted of 5,760
images of 64 distinct objects chosen from one of eight categories
(animals, boats, cars, chairs, faces, fruits, planes, tables), with
eight specific exemplars of each category (e.g., BMW, Z3, Ford,
etc., within the car category). The set was designed specifically to
(i) include a range of everyday objects, (ii) support both coarse,

basic-level category comparisons (e.g., animals vs. cars) and finer
subordinate level distinctions (e.g., distinguish among specific
cars) (8), and (iii) require strong tolerance to object viewpoint
variation, e.g., pose, position, and size. Objects were placed on
realistic background images, which were chosen randomly to
prevent correlation between background content and object
class identity.
Object view parameters were chosen randomly from uniform

ranges at three levels of variation (low, medium, and high), and
images were rendered using the photorealistic Povray package (9).
The parameter ranges for the three variation levels were as follows:

i) Low variation: All objects placed at image center ðx= 0;  y= 0Þ,
with a constant scale factor ðs= 1Þ translating to objects oc-
cluding 40% of image on longest axis, and held at a fixed
reference pose ðrxy= rxz= ryz= 0Þ.

ii) Medium variation: Object position varies within one-half mul-
tiple of total object size ðjxj;  jyj≤ 0:3Þ, varying in scale be-
tween s= 1=1:3∼ 0:77 and s= 1:3, and between −45° and 45°
of in-plane and out-of-plane rotation ð≤458Þ.

iii) High variation: Object position varies within one whole mul-
tiple of object size ðjxj;  jyj≤ 0:6Þ, varying in scale between
s= 1=1:6∼ 0:625 and s= 1:6, and between −90° and 90° of
in-plane and out-of-plane rotation ð≤908Þ.

Crowd-sourced human psychophysics. Data on human object recog-
nition judgement abilities shown in Fig. 2B and Fig. S6 were
obtained using Amazon’s Mechanical Turk crowdsourcing plat-
form, an online task marketplace where subjects can complete
short work assignments for a small payment. A total of 104 ob-
servers participated in one of three visual task sets: an eight-way
classification of images of eight different cars, an eight-way clas-
sification of images of eight different faces, or an eight-way cat-
egorization of images of objects from eight different basic-level
categories. Observers completed these 30- to 45-min tasks through
Amazons Mechanical Turk. All of the results were confirmed in
the laboratory setting with controlled viewing conditions, and
virtually identical results were obtained in the laboratory and web
populations ðPearson correlation= 0:94± 0:01Þ. For the eight-
way basic-level categorization task set, each human observer
ðn= 29Þ judged a subset of 400 randomly sampled images with
blocks for each of the three variation levels (400 of 640 for low
variation and 400 of 2,560 for medium and high variation levels).
For the eight-way car ðn= 39Þ and eight-way face ðn= 40Þ iden-
tification task sets, each observer saw all 80 images at the low
variation level and all 320 images at both medium and high vari-
ation levels. The presentation of images were randomized and
counterbalanced so that the number of presentations of each class
was the same in the given variation level. Each trial started with
a central fixation point that lasted for 500 ms, after which an
image appeared at the center of the screen for 100 ms; following a
300-ms delay, the observer was prompted to click one of eight
response images that matched the identity or category of the
stimulus image. Response images were shown from a fixed frontal
viewpoint and remained constant throughout a trial block. All
human studies were done in accordance with the MIT Committee
on the Use of Humans as Experimental Subjects.
Performance was determined by computing accuracies for each

task. For a given eight-way task set and variation level (e.g., high-
variation basic-level categorization, medium-variation car sub-
ordinate identification, etc.), we constructed the raw 8× 8 confusion
matrix for each individual observer and computed the population
confusion matrix summing raw confusion matrices across individuals.
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From the population confusion matrix, we computed accuracy
values for each task of recognizing one target class against seven
distractor classes (a.k.a. binary task). We obtained 72 binary task
accuracies by performing this procedure over all combinations of
three task sets and three variation levels (3 task sets × 8 targets
per task set × 3 levels of variation). We used standard signal
detection theory to compute population accuracy from the pop-
ulation confusion matrix definition. The pooled performance
scores were highly consistent, with a median (taken over the 72
tasks) Spearman-Brown corrected split-half Pearson-coefficient
self-consistency of 0.99. To estimate the subject to subject vari-
ability, we selected one subject from each task set and combined
the task performance of the three task sets to produce 72 in-
dividual human accuracies.

Data Analysis and Metrics. In this section, we discuss metrics that
were used to characterize neural data andmeasure models’match
to neurons. These metrics apply to any model and neural pop-
ulation and not just output from hierarchical feedforward neural
networks. The only restriction on a model for our methods to be
applicable is that the model be image computable, e.g., it is
a rule for producing output on any arbitrary stimulus set and
does not explicitly rely on stimuli being in a particular subclass of
images (10, 11).
Individual neural site predictions. As described in the main text, we
used a standard methodology for assessing a model’s ability to
predict individual sites (12, 13), in which each site is modeled as
a linear combination of model outputs. In this procedure, linear
regression was used to determine weightings of top-level model
outputs which best fit a given neurons’ output on a randomly
chosen subset of the testing images. The remaining images were
used to measure the accuracy of the prediction. Results from
multiple random subsets were assessed independently and av-
eraged to ensure statistical validity. Linear regressor results are
reported for 10 splits of cross-validation, using 50%/50% train/test
splits. Regression weights were obtained using a simple partial least
squares (PLS) regression procedure, using 25 retained components
(14, 15). For each measured site, separate neural response pre-
dictions and cross validated goodness-of-fit r2 values were obtain-
ed. The percentage of explained variance was then computed on
a per-site basis by normalizing the r2 prediction value for that site
by the site’s Spearman-Brown corrected split-half self-consis-
tency over image presentation repetitions.
To help interpret the meaning of this linear regression tech-

nique, consider a hypothetical case in which the responses for all
IT neurons in one source animal are known on a set of image
stimuli, and the goal is to use these data to predict the response of
a random sample of IT neurons from a second target animal. This
is a problem of neuron identification, e.g., for each target neuron
in the target animal, determining which neuron(s) in the source
animal correspond to that target neuron. Although it is known
that at the population code level the IT responses of several
different animals (and even different primate species) are similar
(16), it is not known to what extent there is a 1-to-1 matching of
responses between individual neural sites. There is likely to be
significant individual variability between the specific tuning
curves of units present in different animals, and it is not clear
whether the IT units in all animals can be thought of as in-
dependent samples from a single master distribution of IT-like
neurons. Hence, to explain a given IT unit in the target animal’s
IT might require linear combinations of multiple source animal
IT units, even if a complete sample of neurons from the source
animal was available. In more mathematical terms, it is plausible
that the best linear fit from one animal’s IT to another’s would
not be particularly sparse. Because it is currently not yet known
how sparse the between-animal mapping actually is, in the
present work each model’s output units is treated a basis from
which any observed IT must be constructed, with no prior on the

expected sparsity of the weighted sums. Although in our experi-
ments we did collect responses from units in two animals, we do
not have enough units from either animal separately to draw
a meaningful conclusion as to what the empircal sparsity distribu-
tion is, because accurate estimation would likely require on the
order of ∼ 103 units from a single animal. If recordings in multiple
animals with enough units and images to assess cross-animal fitting
sparsity becomes available, such data will be useful to falsify our—
or any—model or IT, because the distributions of sparsenesses of
the linear mappings from the model to any one population should
match the typical animal-to-animal sparseness distribution.
This observation helps clarify the relationship between our

work and some existing work on neural fitting (10, 11, 17). In that
line of work, which has provided very useful insight into the units
up to the V4 area, a different nonlinear model—roughly equiv-
alent to a single convolutional neural network (CNN) network in
our model, described below—is fitted separately for each ob-
served visual neuron. Unlike that work, the present results yield
a generative model of a neural population as a whole, one that
can fit not just the tuning curves of observed neurons but also
predicts what types of neurons a typical sample population should
a priori contain.
We also implemented two stronger tests of generalization: (i)

object-level generalization, in which the regressor sample set
contained images of only 32 object exemplars (four in each of
eight categories), with results assessed only on the remaining 32
objects, averaging results across many such object splits, and (ii)
category-level generalization, in which the regressor sample set
contained images of only half the categories (eight objects in
each of, e.g., animal, boat, car, and chair categories), with results
assessed only on images of the other categories (eight objects in
face, fruit, plant, and table categories), averaged across many
such category splits. Fig. S9 shows neural fitting results for object
and category generalizations.
Prediction accuracy remains high for the object-level gener-

alization, suggesting that the HMO model is effective at the
generalizing neural predictions across a wide range of natural
image variability. Neuron-level predictions of all models fall off
somewhat in the category generalization case, although relative
magnitude and ordering between models are preserved. To in-
terpret this, it is again useful to consider the hypothetical animal-
to-animal neural identification task described above. Even with
completely comprehensive source animal response data (e.g., all
the units in IT—the perfect model), the neuron identification
task involves some uncertainty. If the training image stimulus set
is not comprehensive enough to completely identify the target
neuron, predictions from source to target will break down on
images outside that image set. When the data used to identify the
target neuron are narrowed to a very limited semantic slice of
image space (e.g., a fraction of the object categories), it is ex-
pected that it will become difficult to identify that specific neu-
ron from responses to just those images. For example, if all of
the images in the training set were only of simple shapes of
a uniform size and geometry, it would be impossible to effec-
tively carry out the neuron identification procedure (via linear
regression or any other technique). It is instructive to compare
this to the results for the population level coding (see section on
Representational Dissimilarity Matrices below), where even in
the category generalization case, predictions remain accurate.
Linear classifier analysis.Object recognition performance was assessed
by training linear classifiers on model and neural output. Linear
classifiers are a standard tool for analyzing the performance capacity
of a featural representation of stimulus data on discrete classifi-
cation problems (6, 18). For any fixed population of output features
(from either a model or neural population), a linear classifier
determines a linear weighting of the units which best predicts
classification labels on a sample set of training images. Category
predictions are then made for stimuli held out from the weight
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training set, and accuracy is assessed on these held-out images. To
reduce the noise in estimating accuracy values, results are averaged
over a number of independent splittings of the data into training
and testing portions. In our case, the output features of a model on
each stimulus are (by definition) the set of scalar values for each
top-level model unit when evaluated on that stimulus, a typical
procedure from computer vision studies (19, 20). For neuronal
sites, the output features are defined as the vector of scalar firing
rates for each unit, as is typical in neural decoding studies (6, 18).
To measure performance, we trained SVM (15) classifiers with l2

regularization for three types of tasks supported by the testing
image set, including eight-way basic category classification (i.e.,
animals vs. boats vs. cars, etc.), eight-way car identification (astra
vs. beetle vs. clio, etc.), and eight-way face identification, separately
for each of the three levels of variation in the testing image set.
Eight-way task choices were computed as a maximum over margins
from eight binary one-vs.-all (OVA) classifiers (15). Fig. 2B shows
cross-validated performance accuracies (defined as the fraction of
correct predictions averaged over test splits) for the eight-way basic
categorization task at the three variation levels. Fig. S6 shows ac-
curacies for subordinate identification tasks as well.
The values shown in Fig. 2B and Fig. S6 are for classifiers

trained with 75% train/25% test splits, averaged over 20 random
category-balanced splits. However, the absolute values of per-
formance for a linear classifier depend on the choice of the
number of training examples used. To ensure that our con-
clusions were not dependent this choice, we computed perfor-
mance curves for varying numbers of training examples. Although
absolute performances did vary as a function of training examples,
we found that the relative ordering of performances did not (Fig.
S7A). Moreover, representations that were effective at high vari-
ation level (e.g., the IT neuronal population and the HMO model
units) achieved most of their performance with comparatively
small numbers of training examples.
Absolute performance also varies with the number of features

used—the number of neuronal sites sampled in the case of
neural data, or the number of top-end units in the case of
models. As with the number of training examples, we would like
to be sure that our results do not depend strongly on the number
of sampled units. However, the analysis of dependence on number
of units is somewhat less straightforward than analysis of training
set size dependence, because it is not immediately clear how to
fairly equate one neural unit with a fixed number of sample model
units. Ideally, we would have extremely large numbers of both
kinds of units and then simply make comparisons on complete
population samples. Given the limitations of neural data collection,
the limiting factor in this work is the number of neural sites sam-
pled. We believe, however, that for the three key comparisons that
we make, sample sizes issues do not strongly impact our results:

i) IT neural sample vs. V4 neural sample: At approximately the
same number of neural samples (168–128), the performance
values at high variation image set are extremely widely sepa-
rated. Although it is unlikely that this difference is due to
neural sample size, to ensure that this is true, we computed
performance curves for subsamples of the population of dif-
ferent sizes (Fig. S7B), averaging over many subsamples of
each fixed size. At all sizes, the IT population strongly out-
performances the V4 population. Because these subsample
curves appear to have a predictably logarithmic shape, we also
fit the data to a logarithmic functional form to extrapolate
approximately how many units would be required to achieve
the performance measured from the human behavioral experi-
ments. Our estimate suggests that ∼1,050 ± 300 IT units would
be consistent with human performance, whereas ∼ 107 V4
units would be required. Such estimates are necessarily very
rough, but they illustrate the magnitude of the differences
between these neural populations.

ii) IT neural sample vs. existing comparison models: In all cases
the models sampled produced more output features than we
had neural sites (4,096 in the case of HMAX, 24,316 for the
V2-like model, and 86,400 for the V1-like model; see below for
more information on the these models). The results in Fig. 2B
show performances computed with the total number of model
features in each case. The implication of this is that, even with
thousands or tens of thousands of features, these models are not
able to equal the performance level of even 168 randomly cho-
sen IT units. Equating the number of features, either by increas-
ing the number IT samples or decreasing the number of model
features, would only make the magnitude of the gap larger.

iii) IT neural sample vs. the HMO model outputs. Our claim is that
the HMO model is plausibly correct, i.e., it achieves roughly the
right performance for a reasonable number of samples. The
HMO model performs at approximately human levels with
1,250 top-end outputs, within the sampling error of the number
of IT units suggested by extrapolation to achieve human perfor-
mance. We also subsampled the HMO model to have as many
features as our IT sample (168) and found that, although the
performance degraded somewhat, it did not drop below mea-
sured IT performance levels. However, it is certainly possible that
investigating the detailed dependence of model and IT perfor-
mance on number of samples would allow us to falsify the HMO
model. This falsification would be of interest for spurring future
work, but for the reasons described above, it would be unlikely to
invalidate the claims made in the present work.

Population code representational dissimilarity matrices. Given stimuli
S= s1; . . . ; sk and vectors of neural population responses R=~r1;
. . . ;~rk in which rij is the response of the jth neuron to the ith
stimulus, we following ref. 16 by defining the representational
dissimilarity matrix (RDM) as

RDMðRÞij = 1−
cov

�
~ri;~rj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var

�
~ri
�
· var

�
~rj
�q :

RDM structure is indicative of a range of behavior that a given
neural population can support (21), and two populations can
have similar RDMs on a given stimulus set (and similar pop-
ulation-level classification performance) even if the low-level
details of the neural responses are somewhat different. Because
they involve correlations over the feature dimension, RDMs al-
leviate some of the ambiguities just discussed in analyzing in-
dividual units. We produced RDMs for the IT and V4 neural
populations, as well as for each of the model-based synthetic IT
and V4 neural populations using weights obtained from the re-
gressions for the individual site fits (Fig. 3 D and E and Fig. S8).
Following Kriegeskorte (21), we measured similarity between
population representations by assessing the Spearman rank
correlations between the RDMs for the two populations. In ad-
dition to the standard image-level RDM, in which each pair of test
images gives rise to an element of the RDM, we also computed
object-level RDMs by averaging population responses for each
object before computing correlations (so that each pair of objects
gives rise to an element of the 64 × 64 object-level RDM). Sim-
ilarity of the HMO model object-level RDMs with the IT object-
level RDMs are what shown and quantified in Fig. 3 D and E.
The RDM for the IT neural population we measured has clear

block-diagonal structure—associated with IT’s exceptionally high
categorization performance—as well as off-diagonal structure that
characterizes the IT neural representation more finely than any
single performance metric. In contrast, the RDM for the V4
population shows how high levels of variation blur out explicit
categorical structure for intermediate visual areas, providing a clear
visualization of the contrasting population responses underlying
the high-variation V4-IT performance gap shown in Fig. 2B.
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We also computed RDMs for object- and category-level gen-
eralizations, using the weightings from the regressions produced
as described above in the section on individual neural site pre-
dictions. It is instructive to notice that the HMOmodel maintains
high levels of IT similarity even at category-level generalizations
(Fig. 3 D and E), suggesting that, although individual IT units
may be hard to predict from a semantically narrow slice of image
space (e.g., half the categories only), the overall population code
structure remains well predicted.

Modeling. Comparison models. We compared results for perfor-
mance, single site neural fitting, and population-level similarity
for a variety of computational models, including the following:

i) The trivial Pixel control, in which 256 × 256 square images
were flattened into a 65,536-dimensional feature represen-
tation. The pixel features provided a control against the most
basic types of low-level image confounds.

ii) The baseline SIFT computer vision model (22). This model
provided another control against low-level image confounds.

iii) An optimized V1-like model (23), built on grid of Gabor
edges at a variety of frequencies, phases, and orientations.
This model provided an approximation of a comparison
point to lower levels in the ventral visual stream.

iv) A recent V2-like model (24), composed of conjunctions of
Gabors. This model provides an approximation of the sec-
ond level of the ventral stream.

v) HMAX (19, 25), a multilayer convolutional neural network
model targeted at modeling higher ventral cortex. Because it
is a deep network, HMAX has large IT-like receptive fields.
HMAX is one of main existing first-principles-based models
that attempts to build up invariance through hierarchical
alternation of simple and complex cell-like layers.

vi) PLOS09, a recent three-layer convolutional neural network
(26), which also has large IT-like receptive fields and which
was discovered via a high-throughput screening procedure
that was a predecessor to the HMO procedure.

Ideal observer semantic models. As shown in Figs. 3 and 5, we also
computed the IT and V4 predictivity for ideal-observer semantic
models (27). Although these ideal observers are not image
computable models, given our perfect knowledge of image
metadata, we were able to compute explained variance percen-
tages using the same linear regression protocol applied to the
image-computable models. We evaluated two ideal observers:

i) A category ideal observer. This model has eight features, one
for each of the eight categories present in the test image set.
For each image, the ith feature is 1 if the image contains an
object of category i; otherwise, it is 0. For each IT unit, the
eight linear regression weights for this feature set effectively
describe how much each category contributes to that unit’s
response.

ii) An all-variable ideal observer. This model is given oracular
access to all metadata parameter variables for the images, with
one feature for each of 64 object identities (similar to the cat-
egory ideal observer features above), in additional to features
reporting object position, size, scale and image background.

If the IT or V4 explained variance for these (or any) ideal
observers were close to 100%, then they would provide a con-
ceptually interpretable explanation of neural variation, a very
scientifically desirable result. In fact, the explained variance
percentages are significantly less than 100% for the ideal
observers we tested (although of course other better ones might
be found, e.g., by taking into account 3D object curvature). These
ideal observers therefore serve as useful controls to which other
computational models can be compared. For example, the ideal
category model serves to control for the minimum amount of IT

explained variance that should be expected from any model that
has high categorization performance. Insofar as a model with high
categorization performance explains more explained variance
than the ideal category model, that additional predictivity can be
attributed to the constraints of the model class.
CNN model class. Here, we mathematically specify the basic class of
CNN models used in this paper. These principles are consistent
with a large parameter space of possible networks. The specific
parameterized space of networks we use is close to that described in
Pinto et al. (26), with one, two, or three convoluational layers.
Each layer is characterized by a fixed set of parameters, but pa-
rameter values can differ between layers. This parameter space
expresses an inclusive version of the hierarhical feedforward net-
work concept and contains models similar to that used in many
previous studies for different parameter values (19, 23, 24, 25).
More specifically, each individual layer is composed of oper-

ations including local pooling, normalization, thresholding, and
filterbank convolution, which are combined as follows:

NΘðXÞ=NormalizeθN
�
PoolθpfThresholdθT ½FilterθF ðXÞ�g�; [S1]

where X is a 2D input image. The subscripts Θ= ðθp; θN ; θT ; θFÞ
denote the specific parameter choices for the constituent opera-
tions, setting radii, exponents, and thresholds, as described in
Pinto et al. (26). Similar to previous studies, we also use randomly
chosen filterbank templates in all models, but additionally allow
the mean and variance of the filterbank to vary as parameters.
Functions of the form NΘ are the simplest computational units
that we operate on and are thought to be plausible representa-
tions of what happens in a single cortical layer (28). To produce
deep CNNs, layers of the form NΘ are stacked hierarchically:

. . .P ℓ−1
θP;ℓ−1����!Filter F ℓ

θF;ℓ�����!Threshold T ℓ
θT;ℓ���!Pool N ℓ

θP;ℓ������!Normalize P ℓ
θN;ℓ

. . . ;

[S2]

where ℓ is layer number and the initial input at the 0th layer is the
image pixel array X. We denote such a stacking operation as ⊗,
so that the stacked hierarchical model can be written as

N≡⊗k
i=1NΘi :

Let N k denote the space of all stacked networks (N) of depth k or
less. In this study, our CNNs are networks of depth k= 3 or less.
Mixture networks. We extend the class of CNNs by a fourth prin-
ciple, namely that, at any stage, networks can consist of mixtures
of CNNs where each component has a potentially distinct set of
parameters (e.g., pooling size and number of filters), representing
different types of units with different response properties (29).
Such mixture networks may combine components of differing
complexity, which correspond to anatomical bypass connections
within the ventral stream (30) (Fig. S2B).
For a mathematical formulation of this idea, note that because

the networks in N 3 are convolutional, they can be combined in
a standard fashion. Specifically, given a sequence of individual
modules NðΘi1;Θ12; . . . ;ΘiniÞ for i∈ ½1; . . . ; J�, possibly of differ-
ent depths, the mixture network is defined by aligning the
module output layers along the spatial convolutional dimension.
Because the outputs of each of the modules is a 3D tensor, this
alignment is well defined up to a rescaling factor in the spatial
dimension. We denote this alignment operation by the symbol⊕,
so that a combined mixture network can be written as

N ≡ ⊕ J
i=1NðΘi1;Θ12; . . . ;ΘiniÞ:

The total output of networks of this form is also a 3D tensor, so
they too can be stacked with the ⊗ operation to form more
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complicated, deeper hierarchies. By definition, the full class N

consists of all of the networks formed by iteratively composed
the stacking (⊗) operation and the combination (⊕) operation.
Conceptually, members of N are nonlinear mixtures of modules
chosen from a base class of simpler homogenous neural networks
(e.g., the elements of N ). Schematically, ⊗ is a vertical compo-
sition relationship, increasing the depth complexity of the network.
Biologically, it is plausible to think of ⊗ as corresponding to pro-
ducing complex nonlinear representations by feedforward layering.
Conversely, ⊕ is a horizontal composition relationship, increasing
the breadth complexity of the network. Biologically, this may cor-
respond to the idea of mixing heterogenous populations of different
types of units in a given area.
HMO. The HMO procedure (31) is a computational optimization
procedure designed to identify high-performing network archi-
tectures from the space N. Intuitively, it is a version of adaptive
boosting in which rounds of optimization are interleaved with
boosting and hierarchical stacking (32). The process first analy-
ses error patterns in the recognition predictions of candidate
networks, picking complementary components, e.g., those with
optimally nonoverlapping errors. Subsequent rounds of optimi-
zation attempt to optimize a criteria weighted toward those
stimuli that are misclassified by the first-round results. As a result,
complementary components emerge without having to prespecify
the corresponding subtasks semantically (or in any other way),
mapping the complex structure of high-variation recognition prob-
lems onto the parameter space of neurally plausible computations.
These components are then aligned along their convolutional di-
mensions and used as inputs to repeat the same procedure hier-
archically to build more complex nonlinearities. Although other
possible optimization procedures could potentially be used to create
high-performing neural networks (33), the HMO process may be
particularly efficient because it explicitly takes advantage of the
complementary strengths of different components within the large
space of network architectures.
This section describes details of the HMO procedure. Suppose

that N ∈N and S is a screening stimulus set. Let E be the binary-
valued classification correctness indicator, assigning to each stim-
ulus image s 1 or 0 according to whether the screening task pre-
diction was right or wrong, where the prediction for each s was
made by using maximum correlation classifiers (MCCs) (34) on the
output features of N with threefold cross-validation (see Materials
and Methods describing screening set metric). Let

performanceðN; SÞ=
X
s∈S

E½NðsÞ�:

To efficiently find N that maximizes performanceðN; SÞ, the HMO
procedure follows these steps:

i) Optimization: Optimize the performance function within the
class of single-stack networks of some fixed depth d1, obtain-
ing an optimization trajectory of networks in N d1 (Figs. S2C
and S5A, Left). The optimization procedure that we use is
hyperparameter tree parzen estimator, as described in ref.
35. This procedure is effective in large parameter spaces that
include discrete and continuous parameters.

ii) Boosting: Consider the set of networks explored during step
1 as a set of weak learners and apply a standard boosting
algorithm (Adaboost) to identify some number of networks
N11; . . . ;N1l1 whose error patterns are complementary (Fig.
S2C, Right).

iii) Combination: Form the heterogenous network N1 = ⊕ iN1i
and evaluate E½N1ðsÞ� for all s∈ S.

iv) Error-based reweighting: Repeat step 1, but reweight the
scoring to give the jth stimulus sj weight 0 if N1 is correct
in sj and 1 otherwise. That is, the performance function to be
optimized for N is now

X
s∈S

E½N1ðsÞ�×E½NðsÞ�:

Repeat step 2 on the results of the optimization trajectory obtained
to get models N21; . . .N2k2 , and repeat step 3 (Figs. S2C and S5A,
Right). Steps 1, 2, and 3 are repeated K times.
After K repetitions of this process, we will have obtained

a mixture network N = ⊕ i≤K ;j≤kiNij. The process can then simply
be terminated or repeated with the output of N as the input to
another stacked network. In the latter case, the next layer is
chosen using the model class N d2 to draw from, for some fixed
depth d2, and using the same adaptive hyperparameter boosting
procedure. The metaparameters of the HMO procedure include
the numbers of components l1; l2; . . . to be selected at each
boosting round, the number of times K that the interleaved
boosting and optimization is repeated, and the number of times
M that this procedure is stacked. For the purposes of this work,
we fixed the metaparameters K = 3, l1 = l2 = l3 = 10, and M = 2
(with d1 = 3, d2 = 1).
Model screening procedure.To construct a specific model network, we
applied HMO to a screening task (Figs. S1B and S5). Like the
testing set, the screening set was designed to be very challenging—
having high levels of object pose, position, and scale variation (36).
However, to ensure that a fair test could be made, in all other
regards, the screening images were distinct from the testing image
set, containing objects in totally nonoverlapping semantic catego-
ries, using none of the same background scenes, lighting, or noise
conditions. The image set used for the HMO screening procedure
consisted of 4,500 images of 36 distinct objects, chosen from one of
nine categories, including bodies, building, flowers, guns, musical
instruments, jewelry, shoes, tools, and trees. As in the testing set, in
the high-variation subset, objects were shown in varying positions,
sizes, and poses, placed in a variety of uncorrelated natural back-
grounds scenes. Lighting was provided by ambient environment
reflection, and speckle noise was added to simulate natural image
distortions. Images were rendered with the Panda3d package (37).
The relationship between the screening set and testing set is

intended to be similar to that between any two typical samples of
natural images: having some high-level natural statistical com-
monalities, but otherwise quite different specific content. For this
reason, any performance increases that could be demonstrated
to transfer from the screening to the testing set are likely to also
transfer, at least to some extent, to other high-variation image sets.
The screening objective sought to minimize classification perfor-

mance error on the 36-way object classification task (no categorical
semantic informationwas used), as assessed by training unregularized
MCC classifiers with threefold cross-validated 50%/50% train/test
splits. Using the HMOprocedure on this screening set, we generated
a network HMO0, which produces 1,250-dimensional feature
vectors for any input stimulus. HMO0 is the model that we refer
to throughout the paper as the HMO model and that we used
for all testing evaluation.
In the optimization, candidate networks were first evaluated on

overall performance metric, and performance gradients in pa-
rameter space were identified as seen in the trend toward de-
creasing screening loss (step 1; Fig. S5A, Left, blue dots). Ten
components were identified by boosting (step 2) and combined.
In subsequent rounds (Fig. S5A, Right, red dots), the optimiza-
tion criterion was biased toward weighting more heavily errors of
the architectures from earlier rounds (step 4). Decreasing loss in
these later rounds indicates that models are improving at the
subset of images that confused the components identified in
round 1. The complementary model components identified in
the two different optimization rounds were associated with dif-
ferent directions in the overall large parameter space of possible
neural-like computations that effectively solve different subtasks
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of the overall recognition task (Fig. S5B). As expected, training
performance increases as components are combined (Fig. 4C).
Assessment. As described in the main text, we then assessed the
HMO0 model against the testing dataset (Fig. S1A). The HMO0
model showed high performance on testing set, as described in
the main text, Fig. 2B, and Fig. S6. Comparisons to neural data
showed that the HMO0 model also had significantly power to
explain neural data, both at the individual site level (Figs. 3 A–C
and 5) and the population level (Fig. 3 D and E and Fig. S8). The
HMO model is a significantly closer match to IT population
representations at all variation levels, but the difference is es-
pecially evident at the high variation level that most clearly ex-
poses how the high-level IT representation differs from the
lower-level V4 representation (Fig. S8, black bars).
Subsequently, we determined the stability of the HMO pro-

cedure by running it on a variety of alternative screening sets with
different choices of objects and categories, varying the numbers of
within-category exemplars and varying amounts of semantic
similarity to the testing set. Performance and neural fitting ability
were largely stable to these changes. Although some of these later
models exhibited higher performance and neural explanatory
power than the initial HMO0 model, to prevent domain over-
fitting, we report only the results of the initial model HMO0
constructed before any testing set results were obtained.
It is important to note how our screening process connects to

the evaluation of other models. In the cases of the SIFT, V1-like,
and V2-like models, we did not pretrain those models using the
screening set: this is because those models do not accept pre-
training data at all. In the case of HMAX, which does accept
pretraining data, we used the testing data itself for pretraining, to
give that model that highest chance of performance success.
Separately, we also performed a pretraining of the HMAXmodel
using the screening set and then reextracted it on the testing set,
but found that this only further decreased final performance and
neural fit results of the HMAX model (e.g., learned parameters
did not effectively transfer from the screening to the testing set).
Another issue relevant to comparison of models is the question

of numbers of total internal units. In the mixture models that we
used to create the HMO model, the numbers of filters at each
layer were kept very small ð≤24Þ to ensure that a total combined
model composed of several such components would not be un-
manageably large. In theHMO0 model, the total number of units is
approximately the same as that in the HMAX model, and the total
number of output features is somewhat smaller (1,250 vs. 4,096).
Correlation experiments.Performance and neural predictivity results
suggest that as performance on high-variation tasks increases,
metrics of neural similarity also increase (Fig. 1b). To determine
whether this correlation is a general feature of the deep feed-
forward architectures defined here, we ran several additional high-
throughput experiments, evaluating a large number of candidate
model architectures and measuring categorization performance and
IT neural predictivity for each model (Fig. 1a and Fig. S3). Spe-
cifically, we performed three high-throughput searches of the pa-
rameter space N 3 described in the above:

i) Random selection. We drew several thousand randomly sam-
pled models from the parameter space N 3. For each one, we
computed linear classifiers for performance and linear regres-
sors for IT predictivity, as described above. Each green point
in Fig. S1A corresponds to one such model. In this condition,
there is a significant correlation between performance and IT
predictivity (r= 0:55, n= 2;016). Negative values on the y axis
correspond to models having negative goodness of fit (the r2
coefficient of determination statistic), due to overfitting on
the training images. Fig. S3, Left, shows model performance
for as a function of time during the procedure; the lack of any
trend corresponds to random sampling of models.

ii) Performance optimization. Using the recently developed Hy-
peropt metaparameter optimization algorithm (35), we per-
formed a directed search for network parameters that
maximized performance on the high-variation eight-way cat-
egorization task (Fig. S1A, blue points). This optimization
was carried out using the recently developed hyperparameter
optimization algorithm Hyperopt (35). Via this optimization,
absolute performance and fitting values were significantly
improved compared with the random condition. Moreoever,
although the optimization was done without reference to any
neural data, the correlation between performance and IT
predictivity actually increased significantly (r= 0:78, n= 2;043).
Fig. S3, Center, shows the optimization criterion as a function
of time step during the optimization procedure; the upward
trend is due to the optimization process. Although the opti-
mization gains toward the end of the optimization process are
slow and appear to be plateau, small improvements are still
observed.

iii) IT predicitivity optimization. In the third experiment, we di-
rectly optimized model architecture for IT predictivity, this
time without reference to performance (Fig. S1A, orange
dots). The correlation is comparable to the performance-op-
timized condition (r= 0:80, n= 1;876), but the optimization
plateau occurs significantly earlier (Fig. S3, Right; we re-
peated the optimization multiple times, and obtained the
same result each time; this suggests that continued optimiza-
tion would not be effective). Moreover, the best-performing
models from the performance-optimization experiment pre-
dict IT neural output as well as the models explicitly opti-
mized for the predictivity objective, whereas the reverse does
not hold.

The results of these experiments support three inferences.
First, model performance is modestly correlated with neural pre-
dictivity in a random selection regime. Second, optimization pressure
for either metric produces markedly better cross-validated accuracy
on the optimized axis, and in doing so, significantly strengthens the
correlations with the other nonoptimized metric. Third, when op-
timizing for performance, the best-performingmodels predict neural
output approximately, as well as the most predictive models selected
explicitly for neural predictivity, but not vice versa. The feedforward
model architecture class itself imposes a relationship between high-
level behavior (performance) andmore detailed neural mechanisms,
but directed optimization focuses on a region within network pa-
rameter space where this constraint is much stronger.
The inclusion of the category ideal observer (purple square in

Fig. 3D) shows an effective negative control on the performance-
predictivity relationship: it lies significantly off the main trend,
making it visually clear how the correlation arises from a com-
bination of architectural and performance constraints working in
concert.* However, this ideal observer is not an image-computable
model, It would be especially instructive to identify a image-
computable algorithm that achieved invariant object recognition
high performance but low neural IT neural consistency. If such an
algorithm existed, its architecture might illustrate a very nonneural
solution to object recognition tasks as a purely computer vision
problem. With current understanding, we cannot rule out the
possibility that such an algorithm does not exist—e.g., recent high-
performing computer vision systems are deep convolutional neu-
ral networks (33).
Fig. 1A also implies that, even with intensive optimization,

individual models in the N 3 are limited in performance and

*Note that a converse control, in which a model has very high neural consistency for
a population of IT units but low performance, cannot exist. IT units are already known
to have high performance, so any model that matches IT units sufficiently well must also
have high performance.

Yamins et al. www.pnas.org/cgi/content/short/1403112111 6 of 14

www.pnas.org/cgi/content/short/1403112111


neural prediction ability, underscoring the need for an enlarged
model class. However, further analysis of the results of these
optimization experiments provides insight into how to construct
a more effective model class. In Fig. S10, we show scatter plots
of model performance on pairs of binary subtasks, e.g., perfor-
mance on the two-way cars-vs.-planes task compared with per-
formance on the two-way boats-vs.-chairs task. These plots show
that, as the optimization algorithm explores parameter space, it
identifies mutually exclusive subspaces that are effective for
some of the natural subtasks defined in the overall task space.
The highest performing architectures for one subtask are often
significantly suboptimal for other subtasks, leading to V-shaped
subtask-vs.-subtask scatter plots. In choosing a single architec-
ture that is best for overall performance, the optimization is
forced to tradeoff performance on some of these subtasks.
The effectiveness of optimized mixture models (such as HMO)

may be understood in the context of Fig. S10, which suggests that
models composed of mixtures from the N 3 class might be sig-
nificantly more effective than any single model alone. Such
mixtures are also suggested by the observation from neuro-
physiology studies that patches within IT are selectively re-
sponsive for distinct object classes (38–40). Intuitively, such
subregions might correspond to architecturally specialized
structures within the larger feedforward class. Mixture models
avoid the tradeoffs inherent in individual feedforward structures
by combining several pareto-optimal network architectures. By
identifying particularly effective mixture combinations, the HMO
procedure overcomes these limitations efficiently. In addition,
however, a key ingredient for the HMO model’s success is that
the components constituting the model, which were (by con-
struction) complementary on the original screening set, were
still complementary on the testing set. This holds even though
the testing set had entirely distinct object categories, so the
basis on which the complementarity of the components was
originally discovered—nonoverlapping error patterns in screening
set object identity judgements—is no longer even applicable. This
strongly rules out image domain-specific overfitting and suggests
that mixture components discovered by performance optimization
may form a generically useful visual representational basis that can
be recombined to solve new object recognition problems. In fact,
achieving high performance and neural fitting capability appears
to require diversity in many of the parameters of the constituent
components (Fig. S11).
Model parameter diversity analysis.We characterized model parameters
in terms of per-component tuning specificity vs. intercomponent
diversity. Tuning specificity is a measure of how specifically each
parameter needed to be tuned to produce optimal performance. To
compute this, we analyzed the distribution of each parameter’s
values along the optimization trajectory near the optimal point
using the concept of entropy. By definition, the entropy of (N
samples from) a distribution P is

EðPÞ= logðNÞ− 1
N

X
i

ni logðniÞ;

where N is the number of samples from the distribution, the sum
is taken over possible values i of the distribution, and ni is the
number of samples with value i.
Suppose an optimal module component Θ* occurs at time-

point tp in the trajectory of one optimization run in the HMO
process. Then, let Pp;kðΘpÞ be the distribution of values of
parameter p in the k-neighborhood around tp in the optimization
trajectory

Pp;kðΘ p Þ= ðvalue of parameter p at time points 
t∈ ½t p − k; . . . ; t; . . . ; t p + k�Þ:

The specificity of parameter p around optimal point Θp is, by
definition,

−E
�
Pp;kðΘ p Þ�:

Intuitively, this is because, if the distribution Pp;kðΘpÞ had high
entropy, this indicated that the value of the parameter near the
optimal point did not matter very much and therefore was not
tuned very specifically. If, on the other hand, the distribution had
low entropy, it was tightly clustered around one or a few optimal
values that the optimization had identified as being important,
suggesting it was highly tuned. For the purposes, we took k= 25
time steps, but values were not strongly sensitive to k with the range
of 10–100. For each parameter p, we report the median tuning
specificity of that parameter, taken over all component modules.
Intercomponent diversity is a measure of how variable a pa-

rameter is between the component modules. This was measured
by computing, for each pair of components, how well separated
the distributions of the parameter’s values around each compo-
nent were from each other. More formally, the d-prime discrimi-
nability index, d′, for two distributions P1 and P2 is defined by

d′ðP1;P2Þ= jhP1i− hP2ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5½varðP1Þ+ varðP2Þ�p :

(The sample d′ uses the sample versions of the mean and var-
iances.) Suppose Θp

1 and Θp
2 are two optimal components chosen

by the HMO procedure. Then we measure separability for these
two components as

d′
�
Pp;k

�
Θ p

1

�
;Pp;k

�
Θ p

2

��
:

For each parameter p, we define intercomponent diversity as the
median of this separation value taken over all pairs of compo-
nents Θ1 and Θ2. The higher the diversity, the more different the
components were from each other, and vice versa.
Parameters that have both high tuning specificity and high

intercomponent diversity are both critical for performance and
required to be heterogenous. Our results highlight certain types of
parameters as being simultaneously highly tuned and diverse. This
is particularly true for two broad classes of parameters, as can be
seen Fig. S11, upper right: (i) local filter statistics, including filter
mean and spread and (ii) the pooling exponents trading off be-
tween max-pooling and average-pooling (41). Other types of
parameters are highly tuned but less diverse (nonlinear activa-
tion thresholds; lower right), whereas some appear less impor-
tant overall (higher-level pooling and normalization kernel sizes;
lower left). Interestingly, we observe that the parameter con-
trolling the number of network layers (depth) is both com-
paratively highly tuned and diverse suggests that allowing
network modules of different levels of complexity in the het-
erogeneous models is important for achieving high model
performance. As a result, the final model has a significant
proportion of lower-complexity units projecting directly to the
final layer, suggesting that bypass connections (e.g., projects
from V1 to V4 or V2 to IT) may be a key functional feature of
the ventral stream (30).
Taken together, these results point to a computationally rig-

orous explanation for why heterogeneity is observed in the re-
ceptive fields of ventral stream neurons both at the unit and
subarea levels (29, 38, 30, 42).
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Fig. S1. (A) The neural representation benchmark (1) testing image set on which we collected neural data and evaluated models contained 5,760 images of 64
objects in eight categories. The image set contained three subsets, with low, medium, and high levels of object view variation. Images were placed on realistic
background scenes, which were chosen randomly to be uncorrelated with object category identity. (B) The screening image set used to discover the HMO
model contained 4,500 images of 36 objects in nine categories. As with any two uncorrelated samples of images from the world—such as those images seen
during development vs. those seen in adult life—the overall natural statistics of the screening set images were intended to be roughly similar to those of the testing
set, but the specific content was quite different. Thus, the objects, semantic categories, and background scenes used in screening were totally nonoverlapping with
those used in the testing set. Moreoever, different camera, lighting and noise conditions, and a different rendering software package, were used.

1. Cadieu C, et al. (2013) The neural representation benchmark and its evaluation on brain and machine. International Conference on Learning Representations. arXiv:1301.3530.
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Hierarchical Layeringc

Fig. S2. In this work, we use CNN models. CNNs consist of a series of hierarchical layers, with bottom layers accepting inputs directly from image pixels, with
units form the top and intermediate layers used to support training linear classifiers for performance evaluation and linear regressors for predicting neural
tuning curves. (A) Following a line of existing work, we limited the constituent operations in each layer of the hierarchy to linear-nonlinear (LN) compositions
including (i) a filtering operation, implementing AND-like template matching; (ii) a simple nonlinearity, e.g., a threshold; (iii) a local pooling/aggregation
operation, such as softmax; and (iv) a local competitive normalization. These layers are combined to produce low complexity (L1), intermediate complexity (L2),
and high complexity (L3) networks. All operations are repeated convolutionally at each spatial position, corresponding to the general retinotopic organization
in the ventral stream. (B) In creating the HMO model, we allow mixture of several of these elements to model heterogenous neural populations, each acting
convolutionally on the input image. The networks are structured in a manner consistent with known features of the ventral stream, as a series of areas of
roughly equal complexity, but which permit bypass projections. (C) HMO is a procedure for searching the space of CNN mixtures to maximize object recognition
performance. With several rounds of optimization, HMO creates mixtures of component modules that specialize in subtasks, without needing to prespecify
what these subtasks should be. Errors from earlier rounds of optimization are analyzed and used to reweight subsequent optimization toward unsolved
portions of the problem. The complementary component modules that emerge via this process are then combined and used as input to repeat the procedure
hierarchically (Materials and Methods and SI Text).
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Fig. S3. Optimization time traces for the high-throughput experiments shown in Fig. 1. In the performance and fitting-optimized the y axis shows the op-
timization criterion—in the random selection case (Left), no optimization was done, and the performance data were ignored.
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Fig. S4. Correlation of model parameters with IT predictivity for the three high-throughput experiments shown in Fig. 1. Parameters for which the correlation
is significantly different from 0 are shown. Also included are several additional metrics that are not direct model parameters but that represent measurable
quantities of interest for each model, e.g., model object recognition performance. The x axis is Spearman r correlation of the given parameter with IT pre-
dictivity for the indicated model selection procedure, including random (Left, green bars), performance-optimized (Center, blue bars), and IT predictivity
optimized (Right, red bars). Parameters are ordered by correlation value for the random condition. Performance strongly correlates with IT predictivity in all
selection regimes. Number of layers (model depth) consistently correlates as well, but much more weakly. Interestingly, one obvious metric—receptive field size
at the top model layer—is only very weakly associated with predictivity, because, although the best models tended to have larger receptive field sizes, a large
number of poor models also shared this characteristic.
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Fig. S5. (A) Optimization loss traces during the HMO procedure showing decreased loss as optimization proceeded. (B) Parameter-space trajectories during
two optimization rounds shown in A (round 1 are blue dots; round 2 are red dots). This 3D plot shows parameter values for two chosen parameters (L1 filter
mean and L2 pooling exponent) out of many, but it is evident that subsequent rounds of optimization (e.g., red) gravitate toward different paremeter
combinations (i.e., different network architetures) than earlier rounds of optimization (e.g., blue). (C) Training performance as a function of model complexity,
showing dramatic increases as components from round 1 (blue bars) and round 2 (red bars) were added. The final model (black bar) consists of 30 components
identified with three complementary rounds of optimization, plus one L1 layer that, anatomically, stacks on top of those 30 components and, functionally,
produces nonlinear combinations of their outputs.
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Fig. S6. Classification results for tasks including basic eight-way basic categorization (Top), eight-way subordinate car identification (Middle), and eight-way
subordinate face identification (Bottom). Each task was assessed at low, medium, and high levels of image variation (SI Text). Comparison was made between
neural data, human data, existing models from the literature, and the HMO model outputs. The tasks span a wide range of difficulty, from low-variation basic
eight-way categorization where humans perform at greater than 95% accuracy to high-variation subordinate face identification, where human performance is
indistinguishable from chance.
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Fig. S7. (A) Dependence of performance on number of training examples for models and neural populations. HMO model is shown in red; IT population in
solid green; V4 in dotted green; all other control models are shown in black. (B) Direct comparison of dependence of performance on number of neural sites,
for the IT (solid green) and V4 (dotted green) neural populations.
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Fig. S8. Additional RDM comparisons to IT population structure. As in Fig. 3 D and E, each bar shows the Spearman correlation of an RDM for a model (or V4
population) with the RDM for the IT neural population on the same stimulus set. We show comparisons for three subsets of the test image set separated by
variation level (Low, Medium, and High), as well as for the whole stimulus set (All). (A) Comparisons of RDMs at the object level, in which population rep-
resentation vectors are averaged on a per-object basis before taking the pairwise correlations to make the RDM matrices. (B) More detailed image-level RDMs
comparisons, with each stimulus represented separately. (C) Object-level RDMs for a variety of models and the V4 and IT neural populations.
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Fig. S9. IT explained variance for each model, fit with training/test image splits generated by (1) image generalization, a random selection process in which
train and test splits contain images of the same 64 objects, but on different backgrounds and at widely different poses, positions, and sizes; (2) object gen-
eralization, in which train and test images are split so that they contain no overlapping objects, so that predictions are tested for generalization across object
identity as well as position, pose, size and background variation; and (3) category generalization, in which train an test images are split so that they contain no
overlapping categories, so that predictions are tested across category boundaries as well. Fig. 3E shows the corresponding results at the population RDM level.
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Fig. S10. Tradeoffs between subtask-optimal architectures. Each panel shows pairwise relative performance of the models from the high-throughput ex-
periments in Fig. 1A and Fig. S3 on a variety of binary subtasks. As in that figure, random selections are shown in green and performance-optimized selections
are shown in blue. Sometimes performance on one binary subtask—e.g., Boats-vs.-Fruits and Fruits-vs.-Tables (lower right corner panel)—directly correlates
with performance on another. More commonly, there is a tradeoff between subtask performance in the models explored during optimization, leading to the V
pattern observed in subtask pairs. Because the procedure was maximizing overall performance (as opposed to performance on any one subtask), one arm of
the V is heavier than the other, corresponding to the optimization process being forced to make a single choice in each of these tradeoffs.
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Fig. S11. Characterization of selected model parameters in terms of per-component tuning specificity vs. intercomponent diversity. Each point in this plot
represents an architectural parameter in the HMO model. Parameters in the upper right corner are highly tuned but also highly diverse in their tunings
between model components. See SI Text for the definition of diversity and tuning specificity.
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