A Facile Synthetic Route for Surface Functionalized Magnetic Nanoparticles: Cell Labeling and Magnetic Resonance Imaging Studies

Hyun Jung Chung^{1,#}, Haeshin Lee^{2,3,#}, Ki Hyun Bae¹, Yuhan Lee¹, Jongnam Park⁴, Seung-Woo Cho⁵, Jin Young Hwang⁶, Hyunwook Park⁶, Robert Langer^{7,8,9}, Daniel Anderson^{7,8,9,*}, Tae Gwan Park^{1,3,*}

¹Department of Biological Sciences, ²Department of Chemistry, ³The Graduate School of Nanoscience & Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305–701, Republic of Korea, ⁴Energy Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea 689–805, ⁵Department of Biotechnology, Yonsei University, Seoul, 120–749, Republic of Korea, ⁶Department of Electrical Engineering, KAIST, Daejeon, 305–701, Republic of Korea, ⁷David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, ⁸Department of Chemical Engineering, Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, 02139 USA

Table S1. Screening of a commercial library of PEG derivatives for organic-to-aqueous phase transfer of iron oxide nanoparticles (- : no transfer, + : incomplete

Category	Polymer type	Molecular weight	Transfer	Stability after	trai sfe:
Nonfunctional PEGs	HO-PEG-OH	1,000	-	-	+ +
	HO-PEG-OH	2,000	-	-	
	HO-PEG-OH	3,400	-	-	•
	HO-PEG-OH	5,000	-	-	con
	HO-PEG-OH	10,000	-	-	plet
	HO-PEG-OH	20,000	+	_	е
	HO-PEG-OH	35,000	+	-	tror
	HO-PEG-OH	2,000,000	+	-	
Amine-functionalized PEG	H ₂ N-PEG-NH ₂	1,000	_	-	stei
	$H_2N-PEG-NH_2$	2,000	+ +	-).
	H ₂ N-PEG-NH ₂	3,400	+ +	-	
	H ₂ N-PEG-NH ₂	5,000	+ +	+	
	H ₂ N-PEG-NH ₂	10,000	+ +	++	
	H ₂ N-PEG-NH ₂	35,000	+ +	++	
	4(PEG-NH ₂) ^a	10,000	+ +	+ +	
	6(PEG-NH ₂) ^b	15,000	+ +	+ +	
Thiol-functionalized	HS-PEG-SH	5,000	-	-	
PEG	4(PEG-SH) ^c	10,000	+	-	
Carboxyl-	HOOC-PEG-COOH	5,000	+ +	-	
functionalized PEG	4(PEG-COOH) ^d	10,000	+ +	-	
Methoxy PEG	mPEG ^e -NH ₂	2,000	-	-	
	mPEG-NH ₂	5,000	+ +	+	
	mPEG-COOH	5,000	+ +	_	
	mPEG-SH	5,000	-	-	
Hetero-functionalized PEG	H ₂ N-PEG-COOH	3,400	+ +	-	
	H ₂ N-PEG-COOH	5,000	+ +	+	
	HO-PEG-NH ₂	5,000	+ +	_	
	HOOC-PEG-SH	5,000	+	-	
	mPEG-biotin	5,000	-	-	
	Biotin-PEG-NH ₂	5,000	-	-	
	Fluorescein-PEG-	5,000	++	+	

^a4-arm amine-functionalized PEG, ^b6-arm amine-functionalized PEG, ^c4-arm thiol-functionalized PEG, ^d4-arm carboxyl-functionalized PEG, ^emethoxy-functionalized PEG.

Figure S1. Characterization of IONP-6PEG: (A) TGA of aqueous-dispersed IONPs (IONP-6PEG) with oleic acid and 6(PEG-NH₂) (6PEG) as control. (B) DSC of aqueous-dispersed IONPs (IONP-6PEG) with 6(PEG-NH₂) (6PEG) as control.

Figure S2. DLS (A) and zeta potential (B) measurements of IONP-6PEGs before (IONP-6PEG) or after biofunctionalization with HA (IONP-6PEG-HA), heparin (IONP-6PEG-hep), and chondroitin sulfate (IONP-6PEG-CS).

Figure S3. Labeling of MSCs using IONP-6PEG-HA. (A) Confocal microscopy of MSCs treated with fluorescein-labeled IONP-6PEG-HA (green) with nuclei stained with DAPI (blue). (B) Quantitative uptake of IONP-6PEG-HA measured by ICP-AES. (C) Live (green) and dead (red) cells treated with IONP-6PEG-HA. Values for MSCs without any treatment (no treat) or treated with CTAB (CTAB) and CTAB coated IONPs (IONP-CTAB) are shown as control. Cells treated with IONP-6PEG-HA in the presence of excess HA is shown with a (+), otherwise (-).

Figure S4. Confocal microscopy of CD44 over-expressing HCT116 cells (upper row) and normally expressing HeLa cells (bottom row) treated with fluorescein-labeled IONP-6PEG-HA (green) in absence (-) or presence (+) of excess HA, or without any treatment (No treat). Nuclei were stained with DAPI (blue).