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Supplementary Table 3: NMR data of iso-precytochalasin (8) and rosellichalasin (5) in 
CDCl3(500 MHz for 1H NMR and 125 MHz for 13C NMR) 
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Supplementary Table 5. Sequences of primers used in the construction of plasmids. 

 
Primers Sequences 

Lig4KO-1 5’-CGTTATGCAGCCCGATATCA -3’ 
Lig4KO-2 5’-ATGGGCGTGGGAGACATCTG -3’ 
Lig4KO-3 5’-AGCCGGTGGAGCGGCGTCGACGAAAAGGGGTTTCTCTGTTCA -3’ 
Lig4KO-4 5’-GTCCGAGGGCAAAGGAATGAGTTTAGCGTGGACAATTTTCGTC -3’ 
Lig4KO-5 5’-CCTTTTCTCACATCATCATGAACTTG-3’ 
Lig4KO-6 5’-CGCAAATTACGACTACGACTACAAC -3’ 
Lig4KO-7 5’-ACGCCGCTCCACCGG -3’ 
Lig4KO-8 5’-CATATGAAATCACGCCATGTAGTG -3’ 
Lig4KO-9 5’-GCCAATACCCCATACCACCTC -3’ 
Lig4KO-10 5’-TCATTCCTTTGCCCTCGGAC -3’ 
ccsBKO-1 5’-GATCCCTCTTTCGGATCTTAGGGGC -3’ 
ccsBKO-2 5’AGGGAACAAAAGCTGGAGCTCGGATCCATTTAGCAATGGGTGTTGCGCGCAGAA-3’ 
ccsBKO-3 5’-CGCCCCGTCCGGTCCTGCCCGTCACCGAGATTTAGGGGGTGCGTTGGAAAACGT-3’ 
BAR-4 5’-CTAAATCTCGGTGACGGGCAGGA -3’ 
BAR-5 5’-CGACAGAAGATGATATTGAAGGAGC -3’ 
ccsBKO-6 5’-CCCAAAAAGTGCTCCTTCAATATCATCTTCTGTCGTCTTGCGTAGGACGGTATATT-3’ 
ccsBKO-7 5’-ACGTTGTAAAACGACGGCCAGTGAATTCGAGCTCGAACGGAGCTTTTGGCGTCG-3’ 
ccsBKO-8 5’-CGCTCACAAGGCTCAAGGGC-3’ 
ccsB-f 
ccsB-r 

5'-AACATATGGATTATAAGGATGATGATGATAAGCTGCAAACGCTTCAATTCGACAAG-3' 
5'-AAGCGGCCGCTCAGCGCTTGTCCATTCCCTG-3' 

ccsB-R421A 5'-GCCCTGGTACTCGTTCATGTGCAAAgcACCGACGTTTCACAATGACTAC-3' 
  

 
 

Supplementary Table 6. Aspergillus clavatus strains used in this study 
 

Strain Genotype Reference 
A. clavatus NRRL1 Parental cytochalasin E/K producer Fedorova et al., 2008 2

A. clavatus Δlig4 Δ lig4 This work 
A. clavatus OE:ccsR, Δlig4 ccsR overexpressed, Δlig4 This work 
A. clavatus OE:ccsR, Δlig4, ΔccsB (ΔccsB-37) ccsR overexpressed, Δlig4, ΔccsB This work 

 
 

Supplementary Table 7. Expression plasmids used in this study 
 

Plasmid Vector Source Genes Marker Reference 

pYC01 pET23a ccsB Amp This work 

pYC04 pET23a ccsB R421A mutant  Amp This work 
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Supplementary Figure 7. Phylogenetic analysis of cloned BVMO sequences.  The tree shows that 
CcsB groups most closely with cyclododecanone monooxygenase (CDMO) and cyclopentadecanone 
monooxygenase (CPDMO), thereby inferring CcsB may catalyze a BV modification on a ketone site 
within a macrocycle. The BVMOs are listed with their species as follows: AsCHMO: 
cyclohexanone monooxygenase from Arthrobacter sp. L661, (ABQ10653.1); BpCHMO: 
cyclohexanone monooxygenase from Brachymonas petroleovorans strain CHX(AAR99068.1); 
AcCHMO: cyclohexanone monooxygenase from Acinetobacter sp. strain NCIMB 9871 
(BAA86293.1); ACMO: acetone monooxygenase from Gordonia sp. TY-5 (BAF43791.1); PAMO: 
phenylacetone monooxygenase from Thermobifida fuscastrain YX (AAZ55526.1); SMO: steroid 
monooxygenase from R. rhodochrous strain IFO 3338 (AB010439.1); CPMO: cyclopentanone 
monooxygenase from Comamonas sp. strain NCIMB 9872 (BAC22652.1); OTEMO: 2-oxo-Δ3-
4,5,5-trimethylcyclopentenylacetic acid monooxygenase from P. putida ATCC 17453; ScMO: 
putative monooxygenase from S. coelicolor A3(2), (CAB55657.1); CDMO: cyclododecanone 
monooxygenase from Rhodococcusruber strain SC1 (AAL14233.1); CDPMO: cyclopentadecanone 
monooxygenase from Pseudomonas sp. strain HI-70 (BAE93346.1); SavBVMO: putative 
monooxygenase from Streptomyces avermitilis MA-4680 (BAC70705.1); HAPMO: 4-
hydroxyacetophenone monooxygenase from P. fluorescens strain ACB (AAK54073.1); HAPMO2: 
4-hydroxyacetophenone monooxygenase from P. putidaJD1 (ACJ37423.1); BoCHMO: 
cyclohexanone monooxygenase from Brevibacterium oxydans IH-35A.  
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Supplementary Figure 33. Differences in the free energies of activation for the addition of methyl 
hydroperoxide anion to an α,β– and an β,γ–unsaturated ester. Energies reported in kcal mol–1 at 1 
atm and 298.15 K.  The calculation shows if direct addition to the ester were to take place, attack on 
β,γ–unsaturated ester (such as in 8) is more favorable than an attack on an α,β–unsaturated ester 
(such as in 11).  In our reaction, compound 8 does not undergo the second oxidation.  
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Supplementary Note 1 
Structure identification of compounds 7-9 

 
1. Structure identification of 7. 

The UV absorption spectrum of 7 is similar to that of 1, suggesting it contains the same isoindolone 
scaffold. Its molecular weight was determined as 431 by ESI-MS m/z 432 [M + H]+ and 454 [M + 
Na]+ and the molecular formula of C28H33NO3 was suggested by HRESIMS m/z 432.25183 [M + H]+ 
(calcd for 432.25387, C28H34NO3);  430.23815[M - H]-(calcd for 430.23877, C28H32NO3). 

13C NMR 
of 7 showed the C17 ketone (δC 210.2) and C1 amide (δC 173.4) were intact, which were supported 
by HMBC correlations from H22/H23 to C17, and from H3/H4 to C1. Most importantly, the 
carbonate at C ~149.2 in 1 was shifted to C 196.8 in 7 as would be expected for a ketone. The 
presence of an -unsaturated ketone (C19-C21) was suggested by the chemical shifts (C 196.8, 
139.2, 135.2) and supported by HMBC correlations from H4/H8/H19/H20 to C21. Finally, to verify 
the structure of 7, and determine stereochemistry of the C23 methyl substituent at C18, the crystal 
structure of 7 (named ketocytochalasin) was obtained as shown in Supplementary Figure 12 (CCDC 
970431).   
 
2. Structure identification of 8. 

The molecular weight of 8 was determined as 447 by ESI-MS m/z 448 [M + H]+ and 470 [M + Na]+ 
and the molecular formula of C28H34NO4 was suggested by HRESIMS m/z 448.24674 [M + H]+ 
(calcd for 448.24878, C28H34NO4,);  446.23307[M - H]- (calcd for 446.23368, C28H32NO4,).   
The 13C chemical shift of C9 at C 86.6 and C21 at C 170.8 in 8 suggested oxygen was inserted 
between C9 and C21 to form an ester. Unexpectedly, only four olefinic protons (H7, H13, H14, and 
H19) were identified, compared to the five present in 7. In particular, the triplet C19 signal (H 6.55) 
displayed new COSY (H19/H20 and H19/H23) and HMBC correlations (from H19 to C17 and C23) 
that indicates migration of the -unsaturated double bond to form the vinylogous ketone at C17-
C19 (C 204.6, 143.3, and 132.5).  
 
3. Structure identification of 9. 

Complete NMR characterization of 9 verified the compound to be the carbonate-containing 
cytochalasin Z16. While signals for the aliphatic ketone (δC 212.70, C17) and amide carbonyl (δC 

170.2, C1) remained in the 13C spectra, the vinylogous ketone signal in 7 (δC 196.8) disappeared, and 
instead a new signal (δC 149.8) corresponding to a carbonate carbonyl appeared. Also consistent with 
the carbonate structure of 9 is the shift of the adjacent quaternary C9 (δC from 68.9 to 89.0); and 
opposing shifts in the sp2 C19 (δC 139.2 to 116.5) and C20 (δC 135.2 to 140.2) as a result of the 
neighbouring oxygen. The absolute structure of 9 was further confirmed by X-ray diffraction 
(Supplementary Figure 20, CCDC 970432). 
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Supplementary Note 2 

Computational methods 

All calculations were performed using Gaussian 09 (Revision D.01)37. Optimizations were performed using 
the M06-2X38 hybrid-density functional with the 6-31+G(d,p) basis. The effects of solvation in water were 
taken into account by utilizing the SMD39 implicit solvation model. An “ultrafine” integration grid consistent 
of 99 radial shells and 590 angular points per shell was employed.  Frequency calculations were also 
performed using the SMD(H2O)/M06-2X/6-31+G(d,p) model chemistry. Vibrational normal mode analysis 
confirmed nature of optimized stationary as either minima or transition states (first-order saddle points). 
Thermal corrections were determined assuming a standard state of 1 atm and 298.15 K. Errors in these 
corrections were mitigated by raising vibrational modes with frequency below 100 cm–1 to 100 cm–1, as 
suggested by Truhlar40. All energies reported are Gibbs free energies in kcal mol–1.  The Cartesian 
Coordinates for Relevant DFT Structures are as follow. 

 
Cartesian Coordinates for Relevant DFT Structures 

 
MeOO- Methyl Crotonate Model Direct Adduct 

C          1.06981       -0.21550        0.00001 
H          1.10387       -0.85174       -0.89481 
H          1.93505        0.45586        0.00016 
H          1.10364       -0.85197        0.89465 
O         -0.08023        0.59627       -0.00000 
O         -1.23995       -0.27867       -0.00000  
 
SCF energy: -190.306617 hartree 
zero-point correction: +0.043378 hartree 
enthalpy correction: +0.047958 hartree 
free energy correction: +0.018637 hartree 
quasiharmonic free energy correction: 
+0.018637 hartree 
 

O          1.54084       -0.75658       -0.00001 
C          0.56271        0.16020       -0.00001 
O          0.79225        1.36095       -0.00002 
C         -0.77185       -0.46463       -0.00004 
C          2.88362       -0.24851        0.00003 
H          3.52813       -1.12517        0.00011 
H          3.05673        0.35283        0.89428 
H          3.05682        0.35272       -0.89427 
C         -1.87849        0.28707        0.00001 
C         -3.26748       -0.25301        0.00002 
H         -3.81121        0.11099       -0.87831 
H         -3.81114        0.11086        0.87845 
H         -3.27778       -1.34509       -
0.00003 
H         -1.76730        1.37117        0.00007 
H         -0.81001       -1.55001       -
0.00010 
 
SCF energy: -345.657684 hartree 
zero-point correction: +0.124186 hartree 
enthalpy correction: +0.133218 hartree 
free energy correction: +0.091645 hartree 
quasiharmonic free energy correction: 
+0.091911 hartree 

O          0.76121       -0.89990       -0.89228 
C         -0.01124       -0.52870        0.26141 
O         -0.19055       -1.47062        1.14285 
C         -1.23680        0.16337       -0.31184 
C          1.87189       -1.73611       -0.60105 
H          2.47936       -1.77896       -1.50746 
H          1.55161       -2.74873       -0.33716 
H          2.47629       -1.32969        0.21729 
C         -2.47343       -0.07749        0.12087 
C         -3.70683        0.58762       -0.41093 
H         -4.23023        1.12801        0.38548 
H         -4.41109       -0.15406       -0.80349 
H         -3.46647        1.29429       -1.20996 
H         -1.06348        0.88299       -1.11045 
H         -2.61201       -0.80596        0.92005 
O          0.80480        0.51224        0.97868 
O          1.06455        1.63690        0.13317 
C          2.45117        1.63925       -0.17178 
H          2.61653        2.56228       -0.73298 
H          2.72386        0.77737       -0.78707 
H          3.04688        1.65587        0.74632 
 
SCF energy: -535.971483 hartree 
zero-point correction: +0.169876 hartree 
enthalpy correction: +0.182595 hartree 
free energy correction: +0.132338 hartree 
quasiharmonic free energy correction: 
 +0.133084 hartree 
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Full Michael Adduct 
O          0.25207        0.20827        0.09921 
C         -0.38366        0.21877        1.34786 
C         -1.72840        0.51898        1.30430 
H         -2.23294        0.57837        2.26266 
C         -2.49999        0.76151        0.05748 
H         -1.86355        0.57236       -0.81353 
C         -3.78276       -0.10153       -0.11259 
H         -4.35923        0.36106       -0.92469 
C         -3.32276       -1.43885       -0.69635 
C         -3.52162       -2.74721        0.04705 
H         -3.63585       -2.53824        1.11524 
C         -2.31619       -3.67878       -0.15529 
H         -2.54091       -4.62002        0.36118 
H         -2.19926       -3.90257       -1.22115 
C         -1.05723       -3.07446        0.39191 
H         -1.04990       -2.86641        1.46510 
C          0.00711       -2.72705       -0.33575 
H          0.01424       -2.92250       -1.40815 
C          1.22107       -2.08127        0.27097 
H          1.06617       -2.06345        1.35690 
C          2.51575       -2.80697       -0.01839 
C          3.65394       -2.32149        0.49766 
C          3.50995       -1.05139        1.32266 
H          2.86997       -1.29283        2.18425 
C          2.72338       -0.00791        0.49665 
H          2.44956        0.80901        1.16507 
C          3.55111        0.54470       -0.69246 
H          4.55451        0.10910       -0.70662 
N          2.82822        0.07851       -1.86984 
H          3.09586        0.35773       -2.80858 
C          1.61704       -0.43311       -1.63778 
C          1.41636       -0.58337       -0.11967 
O          0.32302       -0.02841        2.37489 
C         -4.66471       -0.21841        1.12950 
H         -5.06878        0.75760        1.40594 
H         -4.10976       -0.60498        1.98795 
H         -5.51121       -0.88592        0.94358 
O         -2.80647       -1.44582       -1.80797 
C         -4.81066       -3.39949       -0.47987 
H         -5.00142       -4.32850        0.06449 
H         -4.70165       -3.63611       -1.54315 
H         -5.67953       -2.74623       -0.36022 
C          5.00020       -2.94670        0.27626 
C          4.80784       -0.47610        1.88647 
H          5.28566       -1.18932        2.56419 
H          4.59434        0.43413        2.45650 
H          5.53238       -0.22300        1.10655 
C          3.70321        2.07839       -0.68950 
H          4.36844        2.33733        0.14144 
H          4.20256        2.37460       -1.61924 
C          2.38919        2.80358       -0.53948 
C          1.98262        3.28364        0.71186 
H          2.65007        3.17627        1.56407 
C          0.73727        3.88908        0.87939 
H          0.43935        4.25180        1.85878 
C         -0.12148        4.02799       -0.21081 
H         -1.09235        4.49725       -0.08378 

Full Direct Adduct 
O          0.34677        0.48627        0.58842 
C          0.69332        1.43795       -0.48223 
C          2.16279        1.82644       -0.23002 
H          2.61636        2.36415       -1.06608 
C          2.87821        1.53357        0.85703 
H          2.37631        1.05705        1.69830 
C          4.38561        1.60292        0.99535 
H          4.62191        1.78448        2.04925 
C          4.81024        0.15299        0.78312 
C          5.24825       -0.35932       -0.58094 
H          5.01270        0.39085       -1.34365 
C          4.51967       -1.67692       -0.91781 
H          4.99644       -2.09567       -1.81402 
H          4.66808       -2.39423       -0.10255 
C          3.05976       -1.45735       -1.17635 
H          2.82372       -0.79191       -2.00645 
C          2.04754       -1.94975       -0.45373 
H          2.26178       -2.59727        0.39713 
C          0.60257       -1.65570       -0.77600 
H          0.58738       -1.04833       -1.68758 
C         -0.20521       -2.91763       -0.99279 
C         -1.51419       -2.83269       -1.27337 
C         -2.08533       -1.42756       -1.31780 
H         -1.56837       -0.88867       -2.12636 
C         -1.68311       -0.68993       -0.02124 
H         -1.90106        0.37082       -0.16932 
C         -2.41459       -1.19386        1.24410 
H         -3.14077       -1.97661        1.00138 
N         -1.34709       -1.76597        2.05907 
H         -1.52371       -2.21118        2.95335 
C         -0.10562       -1.47458        1.66572 
C         -0.17116       -0.79559        0.28837 
O          0.38277        1.14451       -1.66750 
C          5.08322        2.62280        0.10708 
H          4.82875        3.62871        0.45382 
H          4.79006        2.54332       -0.94298 
H          6.16945        2.50219        0.16268 
O          4.89310       -0.58622        1.75777 
C          6.76949       -0.57221       -0.53353 
H          7.12843       -0.89189       -1.51539 
H          7.02682       -1.34501        0.19709 
H          7.29381        0.34813       -0.25545 
C         -2.39187       -4.03057       -1.50245 
C         -3.58260       -1.32565       -1.61157 
H         -3.80026       -1.69473       -2.61868 
H         -3.90933       -0.27953       -1.56458 
H         -4.19292       -1.89999       -0.90870 
C         -3.11686       -0.05709        2.01262 
H         -3.50798       -0.46168        2.95294 
H         -2.36190        0.70042        2.25320 
C         -4.22834        0.56566        1.20719 
C         -5.44381       -0.10523        1.03212 
H         -5.60773       -1.05497        1.53612 
C         -6.43695        0.42658        0.21134 
H         -7.37347       -0.10824        0.08335 
C         -6.23055        1.64076       -0.44700 
H         -7.00418        2.05042       -1.08904 

Intermediate 8 
O         -0.00033       -0.45629        0.39241 
O          0.07139        0.13592       -2.35796 
C          1.27914        2.07944       -0.40473 
H          1.39942        2.15639       -1.48511 
C         -0.81695        0.62183       -0.11309 
O         -0.35426        0.04057        2.56388 
N         -2.18652        0.24383       -1.96659 
H         -2.44516       -0.06032       -2.90054 
C          0.23391       -0.58404        1.70372 
C         -0.89949        0.30202       -1.61524 
C         -2.72376        1.95982        0.97716 
H         -2.12286        2.08399        1.88989 
C         -0.12253        1.99599        0.13679 
H         -0.05954        2.08443        1.22999 
C         -1.04960        3.07355       -0.37959 
C         -2.32762        3.07759        0.02465 
C          4.67321        0.94928        0.36251 
H          4.55984        0.82915        1.44272 
C          2.35660        2.06454        0.38400 
H          2.21325        1.98933        1.46496 
C         -2.28798        0.60443        0.37438 
H         -2.39491       -0.15299        1.15241 
C         -3.13318        0.19270       -0.85931 
H         -3.93205        0.91442       -1.04896 
C          2.61938       -0.95771        1.40129 
H          3.09579       -0.23637        2.05706 
C          3.09663       -1.15516        0.16071 
C          3.77889        2.13668       -0.09041 
H          3.81215        2.20888       -1.18438 
H          4.24796        3.04278        0.31315 
C         -2.74662       -2.27371       -0.40030 
C         -3.76420       -1.20859       -0.72890 
H         -4.27567       -1.44237       -1.66926 
H         -4.52260       -1.15493        0.05967 
C         -1.90988       -2.79780       -1.39456 
H         -2.04373       -2.48695       -2.42784 
C          1.36165       -1.56662        1.96174 
H          1.10879       -2.51539        1.48341 
H          1.43460       -1.70847        3.04022 
C         -4.18818        1.94451        1.40996 
H         -4.36953        1.09741        2.07944 
H         -4.44010        2.85956        1.95315 
H         -4.87814        1.86140        0.56512 
C         -2.56451       -2.70612        0.91964 
H         -3.21150       -2.31479        1.70164 
C          4.21098       -0.30610       -0.36028 
C         -1.56452       -3.62333        1.24297 
H         -1.43669       -3.94207        2.27350 
C          2.52823       -2.13104       -0.83144 
H          1.80220       -2.80374       -0.37417 
H          2.02902       -1.59712       -1.64850 
H          3.32812       -2.72955       -1.27555 
O          4.69445       -0.57521       -1.45905 
C         -0.90500       -3.71138       -1.07550 
H         -0.26094       -4.10011       -1.85907 
C         -0.72718       -4.12448        0.24551 
H          0.05860       -4.83153        0.49547 
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C          0.27233        3.55856       -1.46474 
H         -0.39180        3.66383       -2.31775 
C          1.51991        2.95531       -1.62732 
H          1.82176        2.59811       -2.60905 
O          0.77862       -0.72751       -2.49846 
H          5.46810       -3.22934        1.22600 
H          4.91418       -3.84117       -0.34618 
H          2.49900       -3.70168       -0.63856 
H          5.68310       -2.24510       -0.21684 
O         -2.81639        2.16260       -0.18683 
O         -3.55836        2.67875        0.92444 
C         -4.76005        3.21366        0.39183 
H         -5.31329        3.58653        1.25717 
H         -4.54606        4.03929       -0.29408 
H         -5.34179        2.43993       -0.11979 
 
SCF energy: -1632.318695 hartree 
zero-point correction: +0.609048 hartree 
enthalpy correction: +0.643968 hartree 
free energy correction: +0.545558 hartree 
quasiharmonic free energy correction: 
+0.551235 hartree 

C         -5.02850        2.32785       -0.26551 
H         -4.86118        3.27777       -0.76564 
C         -4.03870        1.79293        0.55879 
H         -3.10310        2.33201        0.70514 
O          0.93354       -1.75015        2.28243 
H         -2.86085       -3.99994       -2.49174 
H         -1.81108       -4.95371       -1.42628 
H          0.29902       -3.88030       -0.92673 
H         -3.20028       -4.07178       -0.76337 
O         -0.19243        2.54515        0.12943 
O          0.05039        3.76016       -0.61168 
C         -0.93683        3.80995       -1.62435 
H         -0.75558        3.03788       -2.38607 
H         -1.94161        3.69831       -1.19688 
H         -0.83767        4.81048       -2.05756 
 
SCF energy: -1632.312006 hartree 
zero-point correction: +0.607512 hartree 
enthalpy correction: +0.642860 hartree 
free energy correction: +0.543266 hartree 
quasiharmonic free energy correction: 
+0.549194 hartree 

C          6.13757        1.24704        0.04951 
H          6.27349        1.47680       -1.01099 
H          6.46894        2.11102        0.63186 
H          6.77784        0.39639        0.30018 
H         -0.65953        3.81944       -1.06934 
C         -3.33431        4.09668       -0.42162 
H         -3.75371        4.63871        0.43324 
H         -2.87716        4.82080       -1.10075 
H         -4.17461        3.61877       -0.93824 
 
 
SCF energy: -1442.006356 hartree 
zero-point correction: +0.562469 hartree 
enthalpy correction: +0.593628 hartree 
free energy correction: +0.503919 hartree 
quasiharmonic free energy correction:  
+0.507856 hartree 
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Intermediate 11 

O         -0.11932        0.47049       -0.14566 
C          0.43591        0.55661       -1.36332 
C          1.82231        1.06650       -1.32575 
H          2.29576        1.20928       -2.29229 
C          2.47796        1.13681       -0.16128 
H          1.92004        0.95966        0.75749 
C          3.96154        1.26684        0.02229 
H          4.15375        2.00950        0.80387 
C          4.32684       -0.08868        0.64624 
C          4.36284       -1.33336       -0.22710 
H          4.09456       -1.06115       -1.25315 
C          3.36189       -2.40383        0.27114 
H          3.71765       -3.36691       -0.11736 
H          3.38985       -2.46487        1.36485 
C          1.95984       -2.18433       -0.22481 
H          1.86946       -2.03167       -1.30430 
C          0.84342       -2.17477        0.50971 
H          0.89491       -2.32383        1.58775 
C         -0.51391       -1.95391       -0.10978 
H         -0.38208       -2.00769       -1.19925 
C         -1.57813       -2.94858        0.29096 
C         -2.80995       -2.80316       -0.21923 
C         -2.99834       -1.63664       -1.17922 
H         -2.32411       -1.81425       -2.03011 
C         -2.48375       -0.33175       -0.52308 
H         -2.39034        0.41782       -1.31075 
C         -3.41511        0.20723        0.59324 
H         -4.34969       -0.35727        0.63712 
N         -2.66347       -0.03956        1.81862 
H         -3.00752        0.26538        2.72406 
C         -1.36482       -0.29873        1.64817 
C         -1.10308       -0.53487        0.15071 
O         -0.11539        0.17851       -2.38415 
C          4.75816        1.59729       -1.23593 
H          4.44549        2.57147       -1.62246 
H          4.61137        0.85801       -2.02759 
H          5.82523        1.64831       -1.00538 

O          4.55316       -0.16739        1.84406 
C          5.80014       -1.87042       -0.21053 
H          5.88362       -2.72203       -0.89067 
H          6.07065       -2.20198        0.79673 
H          6.51511       -1.10413       -0.52595 
C         -3.95878       -3.70716        0.11888 
C         -4.40159       -1.47533       -1.75996 
H         -4.66939       -2.34516       -2.36616 
H         -4.43763       -0.59245       -2.40656 
H         -5.16948       -1.36104       -0.98958 
C         -3.76252        1.70364        0.44005 
H         -4.40234        1.80219       -0.44338 
H         -4.34865        2.00777        1.31452 
C         -2.53617        2.57057        0.29482 
C         -2.08968        2.97209       -0.97050 
H         -2.68237        2.72257       -1.84780 
C         -0.89055        3.66905       -1.12054 
H         -0.55691        3.96224       -2.11187 
C         -0.11912        3.98190       -0.00059 
H          0.81957        4.51574       -0.11543 
C         -0.56451        3.60997        1.26853 
H          0.02353        3.85920        2.14696 
C         -1.76476        2.91338        1.41323 
H         -2.10323        2.62587        2.40596 
O         -0.50333       -0.34209        2.53143 
H         -4.36885       -4.18085       -0.77992 
H         -3.64351       -4.49132        0.81187 
H         -1.33091       -3.74278        0.99251 
H         -4.77665       -3.14329        0.58225 
 
SCF energy: -1441.995987 hartree 
zero-point correction: +0.561736 hartree 
enthalpy correction: +0.593270 hartree 
free energy correction: +0.501801 hartree 
quasiharmonic free energy correction: 
+0.506961 hartree 
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Model Michael Adduct Model Direct Addition Transition State Model Michael Transition State
O         -2.76657       -0.70347       -0.01744 
C         -1.41151       -0.56317        0.27867 
O         -0.91233       -1.63042        0.76391 
C         -0.76298        0.63128        0.05007 
C         -3.46789        0.40695       -0.56041 
H         -4.49576        0.07473       -0.70953 
H         -3.04216        0.71128       -1.52193 
H         -3.45770        1.25654        0.13002 
C          0.68385        0.74458        0.35338 
C          1.15668        2.17706        0.53544 
H          2.24297        2.22497        0.64709 
H          0.70173        2.60745        1.43224 
H          0.86463        2.78555       -0.32696 
O          1.38889        0.14244       -0.78656 
O          2.76838       -0.04438       -0.43347 
C          2.92114       -1.41664       -0.09949 
H          0.96012        0.13350        1.22257 
H         -1.26318        1.48176       -0.39383 
H          3.97394       -1.53433        0.16794 
H          2.68317       -2.05071       -0.95895 
H          2.28966       -1.68447        0.75386 
 
SCF energy: -535.977531 hartree 
zero-point correction: +0.171044 hartree 
enthalpy correction: +0.183664 hartree 
free energy correction: +0.132669 hartree 
quasiharmonic free energy correction: 
 +0.134233 hartree 
 
 
 

C          2.40381       -1.73881        0.04136 
O          1.07958       -1.60105       -0.46858 
H          2.91268       -2.43682       -0.62281 
H          2.39155       -2.13696        1.05879 
H          2.91832       -0.77327        0.03141 
C          0.29587       -0.67942        0.18721 
C         -1.07343       -0.68723       -0.40105 
O          0.54943       -0.34502        1.35331 
O          0.95349        0.88065       -0.95203 
O          1.29914        1.96433       -0.08398 
C          0.12692        2.70697        0.18289 
H          0.42797        3.54726        0.81603 
H         -0.61582        2.09805        0.71082 
H         -0.31023        3.08747       -0.74900 
C         -2.16039       -0.46198        0.33824 
H         -1.14378       -0.90950       -1.46351 
H         -2.03036       -0.24852        1.39958 
C         -3.56117       -0.47310       -0.18716 
H         -3.58430       -0.69301       -1.25762 
H         -4.04336        0.49633       -0.01968 
H         -4.16537       -1.22097        0.33742 
 
SCF energy: -535.960177 hartree 
zero-point correction: +0.168551 hartree 
enthalpy correction: +0.181521 hartree 
free energy correction: +0.130405 hartree 
quasiharmonic free energy correction: 
 +0.131164 hartree 

O          2.27068       -0.54143       -0.61971 
C          1.19370       -0.42335        0.21288 
O          1.27378        0.27177        1.23434 
C          0.06715       -1.18058       -0.24329 
C          3.44053        0.19494       -0.25664 
H          4.17696       -0.02286       -1.02895 
H          3.81579       -0.12575        0.71784 
H          3.22912        1.26668       -0.23449 
C         -1.14987       -1.08856        0.38843 
C         -2.25480       -2.06254        0.11971 
H         -3.23397       -1.61932        0.31675 
H         -2.14236       -2.92915        0.78170 
H         -2.22371       -2.41725       -0.91412 
O         -2.23764        0.47203       -0.44681 
O         -1.29864        1.49419       -0.78167 
C         -1.17794        2.36328        0.32481 
H         -1.17528       -0.58616        1.35245 
H          0.17948       -1.74899       -1.16138 
H         -0.42031        3.10595        0.05647 
H         -0.85319        1.81763        1.21868 
H         -2.13063        2.86752        0.53046 
 
SCF energy: -535.955997 hartree 
zero-point correction: +0.169138 hartree 
enthalpy correction: +0.181850 hartree 
free energy correction: +0.131108 hartree 
quasiharmonic free energy correction:  
+0.132144 hartree 

 

  



 

           Syn

 
1. Isolatio
from the U
suspension
(~10 mL),
on solid m
liquid med
rpm for se
the flask.  
autoclaved
pulverized
2h at 4 °C
separated. 
layers wer
the organi
cytochalas
consecutiv
EtOAc : h
were consi
Cytochala
2969.5, 29
Hz), 7.26 (
15.6, 9.8 H
5.29 (d, 1H
J = 10.5, 0
J = 13.4, 9
2.00 (m, 1
CDCl3): δ 
127.1, 114
HRESI-M
 
2. Desacet
A fresh so
(23 mg) in
methanol (
for 2-3 ho
When hyd
amount of
residue wa
were obser
purificatio

nthesis proc

on of cytoch
University of
n (1 mL). T
 and mainta

media, a swa
dium (2  25
ven days, at
These were 

d PD and sha
d in a Warin
C. This mixtu

The aqueou
re dried with
ic layer wa
sin D could
ve columns o
hexanes. The
istent with li
asin D (19):
932.8, 1739.6
(s, 1H), 7.24

Hz), 5.63 (ap
H, J = 1.7 H
0.8 Hz), 3.23
9.4 Hz), 2.51
H), 1.50 (s, 
(ppm) 210.2

4.5, 77.7, 69
S (calculated

tylation of c
olution of Na
n dry methan
(2 mL) was a
urs. Progres

drolysis of th
f HCl (45 ml
as taken up i
rved, and the

on. 

cedures for c

halasin D (1
f Alberta Mi

This was tha
ained at room
ab of the spo
5 mL in 125
t which poin

transferred 
aken at 225 r
g blender an

ure was filte
us layer was
h brine (one 
as evaporate
d be crystall
of silica-gel 
e title produ
iterature. 

: white solid
6, 1702.8, 1
4 (s, 1H), 7.1
pp t, 1H, J =

Hz), 5.14 (dd,
3 (dt, 1H, J =
1 (app q, 1H
3H), 1.19 (d
2, 173.6, 16

9.9, 53.5, 53
d): 508.2694

cytochalasin
aOMe in me

nol (1 mL) at
added NaOM
ss of the dep
he acetyl grou
l of a 1M so
in CDCl3, dr
e product Zy

Supplem
cytochalasin

19).  The pro
crofungus C

awed, and tr
m temperatu
ores was tra
5 mL flasks)
nt white sphe

sterilely into
rpm and 27
nd then stirr
red through 
s washed wi
volume) and

ed to give c
lized directl
chromatogr

uct was isola

d; []D  -31
690.8. 1H-N

14-7.12 (m, 
 2.5 Hz), 5.5
, 1H, J = 15
= 8.8, 4.2 Hz
H, J = 11.3 H
d, 3H, J = 6
9.7, 147.6, 1
.3, 50.1, 47.

4 [M+H]+; (o

n D to give Z
ethanol (1M
t 0 °C. To a 
Me (45 mL o
protection re
up was deem

olution) and 
ried over Na2

ygosporin D

mentary N
n D derivati

oducer orga
Collection an
ransferred to
ure for sever
ansferred int
). These wer
eres (~ 50) re
o large-scale
C for 10-12
red with an e

cheesecloth
ith one volu
d then over N
crude extrac
ly from ace
raphy, eluted
ated as a wh

1.34 (c = 4
NMR (600 M

2H), 6.11 (d
50 (s, 1H), 5
.8, 2.3 Hz), 
z), 2.87-2.79
Hz), 2.25 (s, 
.9 Hz), 0.95 
137.3, 134.3
.0, 45.4, 42.
observed): 5

Zygosporin 
M) was prepa

solution of c
of 1M solutio
eaction was m
med complet
the solvent 
2SO4 and an
was directly

Note 3 
ive dehydro

anism, Zygos
nd Herbarium
o a potato-d
ral days. Upo
to freshly au
re incubated
epresenting 
e production

2 days. The c
equal volum

h, and the or
ume of EtOA
Na2SO4. The
ct. For larg
etone. Small
d by 97:3 C
hite solid (3

4.90, CHCl3)
MHz, CDCl3)
dd, 1H, J = 1
5.36-5.30 (dd
5.08 (s, 1H)

9 (m, 2H), 2.
 3H), 2.15 (
 (d, 3H, J = 

3, 134.1, 132
.4, 37.8, 32.
08.2694 [M

D 
ared by disso
cytochalasin
on), which w
monitored b
te, the mixtu
was remove

nalyzed by N
y used in the

ozygosporin

sporium mas
m (UAMH) a
dextrose-agar
on sporulati
utoclaved po
d at 27 °C, w

the organism
n flasks (25
cultures (incl

me of ethyl a
rganic and aq
Ac, and the 
e drying age

ger amounts
ler amounts

CH2Cl2:MeO
31-70 mg/L 

).  IR (film)
): δ (ppm) 7
15.8, 2.7 Hz)
dd, 1H, J = 
), 4.62 (br s, 
.75-2.71 (m,
(dd, 1H, J = 

6.7 Hz). 13C
2.3, 130.7, 1
7, 29.7, 24.2
+H]+.  

olving hexan
n D (41 mg, 0
was stirred a
by TLC (95:
ure was quen
ed under red

NMR. Typica
e following s

n D (12) 

sonii, was ob
as a frozen m
r (PDA) pet
on of the or

otato-dextros
with shaking
m were obse
500 mL) con
luding medi
acetate (EtOA
queous layer
 combined o

ent was filter
s of crude 
s were purif

OH followed 
yield), and 

)  (cm-1): 3
7.31 (d, 2H, 
), 5.69 (dd, 
15.8, 10.2, 5
 1H), 3.81 (d
 2H), 2.67 (d
5.1, 3.4 Hz)

C-NMR (125
29.1, 129.0,
2, 20.8, 19.4

nes-washed 
0.081 mmol

at room temp
5 CH2Cl2: M

nched with a
duced pressu
al yields of 9
step without 

 

btained 
mycelia 
tri dish 
rganism 
se (PD) 
g at 225 
erved in 
ntaining 
a) were 
Ac) for 
rs were 
organic 
red and 
extract, 
fied by 
by 1:1 
spectra 

3416.4, 
J = 7.6 
1H, J = 

5.2 Hz), 
dd, 1H, 
dd, 1H, 
), 2.03-
5 MHz, 
, 127.6, 
4, 13.7. 

sodium 
) in dry 

perature 
MeOH). 
an equal 
ure. The 
92-97% 
further 

47 



48 
 

Zygosporin D: []D -21.51  (c = 4.80, CHCl3). IR (film)  (cm-1): 3400.1, 3086.0, 3062.2, 2967.9, 
2932.4, 2851.8, 1700.5, 1686.6.1H-NMR (500 MHz, CDCl3): δ (ppm) 7.35 (t, 2H, J=7.3 Hz), 7.25-
7.23 (m, 1H), 7.16 (d, 2H, J=7.0 Hz), 6.26 (dd, 1H, J = 15.9, 2.6 Hz), 5.71 (dd, 1H, J = 15.8, 9.0 Hz), 
5.45 (dd, 1H, J = 15.9, 2.3 Hz), 5.38 (br s, 1H), 5.36-5.32 (m, 1H), 5.31 (ddd, 1H, J = 15.3, 10.2, 4.8 
Hz), 5.17-5.12 (m, 1H), 4.67 (br s, 1H), 4.14-4.10 (m, 1H), 3.83 (d, 1H, J = 11.2 Hz), 3.23 (app dt, 
1H, J = 8.7, 4.1 Hz), 2.97-2.90 (m, 2H), 2.87 (app t, 1H, J = 10.2 Hz), 2.81-2.72 (m, 1H), 2.65-2.58 
(m, 2H), 2.53 (app q, 1H, J = 11.9 Hz), 2.05 (dd, 1H, J = 13.0, 5.2 Hz), 1.58 (s, 3H), 1.23 (d, 3H, J = 
6.9 Hz), 1.15 (d, 3H, J = 6.7 Hz). 13C-NMR (100 MHz, CDCl3): δ (ppm) 210.2, 174.9, 148.1, 137.3, 
137.0, 133.7, 131.1, 129.2, 128.9, 127.2, 127.1, 114.1, 77.8, 76.6, 69.7, 54.2, 53.5, 50.2, 45.7, 45.4, 
42.4, 37.7, 32.9, 24.3, 19.4, 13.9. HRESI-MS (calculated): 488.2407 [M+Na]+; (observed): 
488.2399 [M+Na]+.  
 
3. Synthesis of Dehydrozygosporin D (12) 
To avoid over oxidation during this reaction, careful NMR analysis was used to monitor reaction 
progress. Specifically, the doublets corresponding to the hydrogen atoms attached to C20 and C19 of 
the starting material (6.22 and 5.45 ppm respectively) were followed. In the desired product these 
peaks shifted to 6.97 and 6.35 ppm. Over-oxidation resulted in a slight upfield shift of these signals. 
Zygosporin D (19 mg, 0.04 mmol) was dissolved in CD2Cl2 (2 mL), in a dried round bottom flask (5 
mL). A solution of Dess-Martin periodinane (17 mg, 0.04 mmol) in CD2Cl2 (1 mL) was also 
prepared. Aliquots (0.1-0.2 mL) of the periodinane were added to Zygosporin D and stirred at room 
temperature. The reaction progress was monitored by NMR spectroscopy every 30-60 minutes, and 
more periodinane was added until reaction progress showed 50-65% completion (further reaction 
resulted in doubly-oxidized product which is difficult to separate). The reaction was quenched with 
isopropanol (0.5 mL) and evaporated under reduced pressure. The residue was directly purified by 
silica gel chromatography, using an eluent of 1:1 hexanes:EtOAc. The title product was obtained as 
a white solid (8.7 mg, 47%). 
Dehydrozygosporin D (12): white solid; []D -40.22 (c = 0.87, CHCl3). IR (film)  (cm-1): 3417.2, 
3292.0, 2969.1, 2933.7, 1685.6, 1619.3, 1454.1, 1375.2, 1015.6, 754.91H-NMR (600 MHz, CDCl3): 
δ (ppm) 7.32 (t, 2H, J=7.5 Hz), 7.25 (t, 1H, J=7.4 Hz), 7.12 (d, 2H, J=7.0 Hz), 6.97 (d, 1H, J=15.7 
Hz), 6.35 (d, 1H, J=15.7 Hz), 5.80 (ddd, 1H, J=15.5, 9.8, 0.9 Hz), 5.58 (br s, 1H), 5.25 (s, 1H), 5.19 
(ddd, 1H, J=15.5, 10.9, 4.7), 5.08 (s, 1H), 4.71 (br s, 1H), 4.06 (d, 1H, J=10.1 Hz), 3.34-3.28 (m, 
1H), 3.24 (dd, 1H, J=5.9, 2.4 Hz), 2.83-2.75 (m, 1H), 2.72 (ddd, 1H, J=10.9, 6.8, 1.3 Hz), 2.67 (dd, 
1H, J=13.4, 5.5 Hz), 2.57 (dt, 1H, J=13.1, 11.0 Hz), 2.46 (dd, 1H, J=13.3, 8.9 Hz), 2.41 (app t, 1H, 
J=9.9 Hz), 2.12-2.07 (m, 1H), 1.64 (s, 3H), 1.21 (d, 3H, J=6.8 Hz), 1.00 (d, 3H, J=6.7 Hz). 13C-
NMR (125 MHz, CDCl3): δ (ppm) 209.9, 197.4, 172.7, 148.5, 143.3, 137.0, 135.0, 134.3, 129.8, 
129.3, 128.9, 127.0, 114.4, 78.6, 71.5, 64.1, 53.1, 51.7, 45.2, 44.2, 42.9, 38.3, 31.6, 23.6, 19.8, 13.0. 
HRESI-MS (calculated): 486.2241 [M+Na]+; (observed): 486.2251 [M+Na]+. 
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Supplementary Data Set List 

  

 Data set 1: CIF file for the crystal structure of cytochalasin Z16 (9), CCDC 970432  

 Data set 2: CIF file for the crystal structure of ketocytochalasin (7), CCDC 970431 

 Data set 3: Checkcif output file for CIF file of 9. 

 Data set 4: Checkcif output file for CIF file of 7. 
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