## **Supplementary Information**

## Protein Mass-modulated Effects in the Catalytic Mechanism of Dihydrofolate

## **Reductase: Beyond Promoting Vibrations**

Zhen Wang,<sup>1</sup> Priyanka Singh,<sup>2</sup> Clarissa M. Czekster,<sup>1, §</sup> Amnon Kohen,<sup>2,\*</sup> and Vern L. Schramm<sup>1, \*</sup>

<sup>1</sup> Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 <sup>2</sup> Department of Chemistry, University of Iowa, Iowa City, IA 52242

\* Author to whom correspondences should be addressed. E-mail: vern.schramm@einstein.yu.edu Phone: 718-430-2814 E-mail: amnon-kohen@uiowa.edu Phone: 319-335-0234

<sup>§</sup> This author's present address: Department of Chemistry, Yale University, 350 Edwards Street, New Haven, CT 06511.



*Figure S1*. The raw (x-axis: Mass/Charge) and deconvoluted (x-axis: Mass) mass spectra of light ecDHFR (*l*-DHFR) and heavy ecDHFR (*h*-DHFR). The *h*-DHFR is 11% heavier than *l*-DHFR.



*Figure S2*. The observed rate constants  $(k_{obs})$  of the ligand-dependent exponential phase in formation of binary and ternary complexes of *l*-DHFR (blue) and *h*-DHFR (red) with various ligands (L), measured at 25 °C, pH 7. The association and dissociation rate constants ( $k_{on}$  and  $k_{off}$ , respectively) of each ligand can be solved from:  $k_{obs} = k_{on} \cdot [L] + k_{off}$ .<sup>1</sup> The values of  $k_{on}$  and  $k_{off}$  are summarized in Table 4 in the main text.

*Table S1*. The observed H/T and D/T KIEs on  $k_{cat}/K_M^{NADPH}$  (<sup>T</sup>(V/K) and <sup>T</sup>(V/K)<sub>D</sub>, respectively), intrinsic H/T and H/D KIEs on the hydride transfer (<sup>T</sup> $k_{hyd}$  and <sup>D</sup> $k_{hyd}$ , respectively), and forward commitment factor ( $C_f$ ) of *l*-DHFR (numbers in blue) and *h*-DHFR (numbers in red) determined by the competitive KIE experiments at pH 9 (Figure 4 in main text).

| Temperature<br>(°C) | $^{\mathrm{T}}\left( V/K ight)$ | $^{\mathrm{T}}(V/K)_{\mathrm{D}}$ | $^{\mathrm{T}}k_{hyd}$ | $^{\mathrm{D}}k_{hyd}$ | $C_{f}$         |
|---------------------|---------------------------------|-----------------------------------|------------------------|------------------------|-----------------|
| 5                   | $3.1 \pm 0.1$                   | $1.51 \pm 0.02$                   | $6.2 \pm 0.4$          | $3.5 \pm 0.2$          | $1.5 \pm 0.2$   |
|                     | $2.40 \pm 0.05$                 | $1.50 \pm 0.02$                   | $11.7 \pm 0.5$         | $5.6 \pm 0.2$          | $6.6 \pm 0.4$   |
| 10                  | $3.69 \pm 0.03$                 | $1.57 \pm 0.03$                   | $5.9 \pm 0.5$          | $3.7 \pm 0.2$          | $0.8 \pm 0.2$   |
|                     |                                 |                                   |                        |                        |                 |
| 15                  | $4.76 \pm 0.04$                 | $1.63 \pm 0.01$                   | $5.9 \pm 0.3$          | $3.5 \pm 0.1$          | $0.30 \pm 0.08$ |
|                     | $3.29\pm0.04$                   | $1.61 \pm 0.05$                   | $9.2 \pm 0.7$          | $4.7 \pm 0.3$          | $2.6 \pm 0.3$   |
| 25                  | $4.85 \pm 0.09$                 | $1.66 \pm 0.03$                   | $6.1 \pm 0.4$          | $3.6 \pm 0.2$          | $0.3 \pm 0.1$   |
|                     | $4.10\pm0.03$                   | $1.64 \pm 0.04$                   | $6.9 \pm 0.1$          | $3.88\pm0.05$          | $0.91 \pm 0.03$ |
| 35                  | $4.8 \pm 0.1$                   | $1.66 \pm 0.01$                   | $6.3 \pm 0.4$          | $3.6 \pm 0.2$          | $0.4 \pm 0.1$   |
|                     | $4.91\pm0.04$                   | $1.69\pm0.02$                     | $6.9 \pm 0.2$          | $3.9 \pm 0.1$          | $0.52 \pm 0.04$ |
| 45                  | $4.8 \pm 0.1$                   | $1.65 \pm 0.02$                   | $6.1 \pm 0.4$          | $3.6 \pm 0.2$          | $0.3 \pm 0.1$   |
|                     | $5.05\pm0.06$                   | $1.70 \pm 0.07$                   | $6.9 \pm 0.4$          | $3.88\pm0.03$          | $0.5 \pm 0.1$   |

(1) Fierke, C. A.; Johnson, K. A.; Benkovic, S. J. *Biochemistry* **1987**, *26*, 4085-4092.