Supplemental Material to:

Anandkumar Malde, Dharanesh Gangaiah, Kshipra Chandrashekhar, Ruby Pina-Mimbela, Jordi B Torrelles, and Gireesh Rajashekara1

Functional characterization of exopolyphosphatase/ guanosine pentaphosphate phosphohydrolase (PPX/ GPPA) of *Campylobacter jejuni*

> Virulence 2014; 5 (4) http://dx.doi.org/10.4161/viru.28311

http://www.landesbioscience.com/journals/virulence/article/28311/

Figure S1. Phylogenetic tree of *C. jejuni* PPX/GPPA enzymes. MEGA-5 software was used to construct the phylogenetic tree. Branch lengths are indicated next to the protein name and are proportional to the predicted evolutionary change. The number at the branch node indicates the cophenetic correlation coefficient.

Figure S2A (See next page). Structure-based sequence alignment of PPX/GPAA proteins. (A) Alignment of PPX/GPPA domains of *C. jejuni* and related bacteria. Sequence alignment was performed using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html). * indicates positions which have a single, fully conserved residue; ▲, the residues strongly conserved; ■, the residues weakly conserved. Catalytic residue required for phosphatase activity is highlighted in bold letters in red color and the residues required for guanosine pentaphosphate specificity are highlighted by bold black letters on yellow and green background. The conserved amino acids sequence highlighted in sky blue indicates the Walker B motif. *C. jejuni* CJJ81176_0377-(PPX1/GPPA); *A. butzleri* JV22 ZP_07891646-(PPX/GPPA); *H. pylori* HPG27_257-(GPPA); *E. coli* ECS88_4200-(GPPA); *N. meningitidis* MC58 nmb1467-NP_274476.1 (PPX); *Streptomyces* spp. AA4 ZP_07282576-(PPX/GPPA); *S. erythraea* NRRL2338 YP_001103109-(PPX/GPPA); *M. tuberculosis* RV1026-NP_21542.1(PPX/GPPA); *C. glutamicum* actor g0488-(PPX1); *M. tuberculosis* RV0496- NP_215010.2 (PPX/GPPA); *A. aeolicus* aq_891-(PPX); *S. epidermidis* SE2033-(PPX); *C. jejuni* CJJ81176_1251-(PPX2/GPPA). For (**B** and **C**), see following page.

Δ				
CJJ81176 0377	FYTTCEYKRKVRLGEN	43		
ZP 07891646	MSKVTTIIDIGSNSM <mark>R</mark> MVVLQKSSRFAFSLINETKSRVKISEG	43		
HPG27_257	MAKITTVIDIGSNSVRLAVFKKTSQFGFYLLFETKSKVRISEG	43		
ECS88_4200	MGSTSSLYAAIDLGSNSFHMLVVREVAGSIQTLTRIKRKVRLAAG	45		
NP_274476.1	MTTTPANVLASVDLGSNSFRLQICENNNGQLKVIDSFKQMVRFAAG	46		
VD 001102109	RUGIVDLARENKIVRLGU	40		
NP 215542 1	MALTRVAAIDCGINSIRLLIADVGAGLARGELHDVHRETRIVRLGQG	47		
cq1115	FKEITRENTIVRLGKG	41		
cg0488	MRLGVLDVGSNTVHLVAVDARPGGHPTPMSNWRTPLRLVEL	41		
NP_215010.2	HPTPMSSTKATLRLAEA	41		
aq_891	MSLDNKPIMRVASIDIGSYSVRLTIAQIKDGKLSIILERGRITSLGTK	48		
SE2033	LNEILDIGSNTIRLVIFGYNKKTGLNEILNIKTPARLSQY	43		
000011/0_1201	A * * A ADA	30		
CTT01176 0277	A VANCETT OFFAMODAFDATA FFOCAT FURCEST AT DAA DAGENETED TEDAT	102		
ZP 07891646	CYENDGNLOEIPMORAYESLKSFLNISNALKSRKIICVATSALRDAPNSKTFINKVRNDL	103		
HPG27 257	CYAFNGILQEIPMQRAVKALSEFKEIALKYKSKKILCVATSAVRDAPNRLEFVARVKKAC	103		
ECS88_4200	LNS-ENALSNEAMERGWQCLRLFAERLQDIPPSQIRVVATATLRLAVNAGDFIAKAQEIL	104		
NP_274476.1	LDE-QKNLSAASQEQALDCLAKFGERLRGFRPEQVRAVATNTFRVAKNIADFLPKAEAAL	105		
ZP_07282576	VDA-TGRLAPEALERTRAALADYTVAARRKGVEKVRMVATSATRDASNRDEFFAMTRETL	105		
1P_001103109	VDA-IGRLADEALERIRAALVDIANIARRKGVERIRMVAISAIRDASNREEFFAMVREIL	112		
og1115	VDA-IGKFAFEATARIKIALIDIALLIF GAALVKIVAISAARDVVVKDVFFAITADVI VDA-IGOLDEATEREVALENVVELMETHGVEAVBAVATSATEDASNDDEFESMTROL. 10			
cg0488	LDD-SGAISEKGINKLTSAVGEAADLAKTLGCAELMPFATSAVRSATNSEAVLDHVEKET	100		
NP 215010.2	TDS-SGKITKRGADKLISTIDEFAKIAISSGCAELMAFATSAVRDAENSEDVLSRVRKET	100		
aq_891	VKE-TGRLQEDRIEETIQVLKEYKKLIDEFKVERVKAVATEAIRRAKNAEEFLERVKREV	107		
SE2033	LTK-SNEMNDEGIHVLKETLSSFRKVADKFNVDALYPIATAAIRQSKNREAIIKEIKQDI	102		
CJJ81176_1251	LNQ-SGEISKEAIQRLKNALSILAKEQDLSKARAVATAAFRKASNTNEIFAHLKEEF	91		
CJJ81176_0377	SLNIRCIDGKSESYLGGLAALNLLSPFKDGTT-LDIGGGSSELCLIKNN	151		
ZP_07891646	GLNIKVIDGEKEAYFGGVAASNLLHDDTFVT-VDIGGGSTEFCFVKNG	150		
HPG27_257	GLQIKIIDGQKEALYGGIACANLLHKNSGIT-IDIGGSTECALIEKG	150		
ND 274476 1	CFDIFILACDFRADI.IVTCVIHTLDDCCCKMLVIDIGGASIELVIGIGA	154		
ZP 07282576	GVEAEVISCDEEARLSFTGAVGEODPDDGPFVVVDVGGGSTELVLGTWNGREA	158		
YP_001103109	GIDAEVITGDEEARLSFIGAVGDLDPQDGPFVVTDVGGGSTELVVGTWDGVRA	165		
NP_215542.1	GAALPGSAAEVITGAE R AELSFRGAVGELGSAGAPFVVV <mark>DLGGGSTE</mark> IVLGEH	159		
cg1115	SKIRPGYQAEVISGEE E ALLSFRGAIVDLPEDQGPFCVI <mark>DLGGGSTE</mark> FIVGTYDG	155		
cg0488	GVRLSILSGEDEARQTFLAVRRWYGWSAGRITNLDIGGGSLELSSGTDE	149		
NF_215010.2	CVELQALKGEDESKLIFLAVKKWIGWSAGKILNEDIGGGSLEVSSGVDE	149		
SE2033	HIEIOIVPERDRAFYGYYAITHTTDIENGISVDIGGGSTEVTLFKDK	149		
CJJ81176_1251	GIDFKLIDAKS E AKISVLGMQSGLRRLKIWGEFAYCDLGGASCELSFGKS	141		
CJJ81176_0377	RIISCISLDIGTVRLKELFYDTGKMDSLEEFIKPILEQIPKEFCNQNLIA	201		
ZP_07891646	KIEKSISLNIGTVRIKELYFNKNNIEGAKKYILDNLEKIFKLDVEIPKKVVG	202		
HPG27_257	KIKDLISLDVGTIRIKEMFLDKDLDVKLAKAFIQKEVSKLPFKHKNAFG	199		
ECS88_4200	QTISLFSLSMGCVIWLERIFADRNL-GQENFDAAEKAAREVLRPVADELRIHG-WKVCVG	210		
ZP 07282576	EVTAAKSVDIGCVEITERALKDDDD-TADEIAABELARGILAEAFDVVDVAK-ARTWIG	216		
YP 001103109	DITAAYSADIGCVRLTERSLHGDPP-AEDEVREAVKVARGILDDAFAAVDSSD-ARTWVG	223		
NP_215542.1	EVVASYSADIGCVRLTERCLHSDPP-TLQEVSTARRLVRERLEPALRTVPLEL-ARTWVG	217		
cg1115	EILGSHSTQMGCVRLTERIMRSDPP-TETEVEIARDYVAERIQEVKAIVPISK-AKTFVG	213		
cg0488	SPDLAFSLDLGAGRLTHNWFDTDPP-ARKKINLLRDYIDAELAEPARQMRTLGPARLAVG	208		
NP_215010.2	EPETALSLPLGAGRLTREWLPDDPP-GRRRVAMLRDWLDAELAEPSVTVLEAGSPDLAVA	208		
SE2033	OLKEAHSFPFGVVSLKROFFGDKAHNDKTAIKNMEOFLREOFSOLDWLSNOHIALVG	206		
CJJ81176 1251	FKSFDFGIISFYEKNCHSYYKSCISYKKLIKKYPKFIINIKDKKLKIHFLIANPYL	197		
	* 0* 0			
CJJ81176 0377	IGGSLRAISNSIMQKNSYPLKNLHDFRYMLDEEKGHILKIFNS-NLDSLINFGIKKD <mark>R</mark> -F	259		
ZP_07891646	IGGSIRALSKLIMVKNQYPLDILHGYTYEVKNEIALLNRISKSKNCEDLKSFGIKKD <mark>R</mark> -F	261		
HPG27_257	VGGTIRALSKVLMKRFDYPIDSLHGYEIDAHKNLAFIEKIVML-KEDQLRLLGVNEE <mark>R</mark> -L	257		
ECS88_4200	ASGTVQALQEIMMAQGMDERITLEKLQQLKQRAIHCGRLEELEIDGLTLER-A	262		
NP_274476.1	TSGSAKSIRDVLAAEMPQEADITYKGMRALAERIIEAGSVKKAKFENLKPER-I	264		
VP 001103109	VAGIVIILSAVSIGLPEIDSERVHLSKLTHGQIDELAGQLLASDRATRAENPVIHPGR-V VAGIVIILSAIAONLDEVDDAAIHLSOISDNGLEDITEOLLSMTHDEDAGIGSIUAGP-W	282		
NP 215542 1	LAGINTILSALAOSMIAYDAAAIHI.SRVPCADI.LEVCODI.ICMIDKHGIG5LAAG	276		
cg1115	CAGTFTTISAWVQGLESYDRDAIHLSALNFDALRVVTDEIISESSSQRASNPVVDPCR-A	272		
cg0488	TSKTFRTLARLTGAAPSSAG-PHVTRTLTAPGLRQLIAFISRMTAADRAELEGISSDR-S	266		
NP_215010.2	TSKTFRSLARLTGAAPSMAG-PRVKRTLTANGLRQLIAFISRMTAVDRAELEGVSAD <mark>R</mark> -A	266		
aq_891	LGGTITTLAALEYNVYPYDPQKVHGKVLTYGQIKKWFDTFKEIPSEERSKRFRQVED R RA	268		
SE2033	VGGSARNVARIHQSAHAYPIGGVHNYKMTSKDINNVYDLIRKSSRDELTNLDGLSRDR-V	265		
000011/0_1201		230		

Figure S2B and C. Structure-based sequence alignment of PPX/GPAA proteins. (**B and C**) Predicted 3D structure of *C. jejuni* PPX/GPPA proteins. 3D structure was identified with CBLAST, 3D structure alignment search tool using *A. aeolicus* PPX/GPPA as reference (http://www.ncbi.nlm.nih.gov/Structure/CBLAST). (**B**) 3D structural alignment of *C. jejuni* PPX1/GPPA. (**C**) 3D structural alignment of *C. jejuni* PPX/GPPA. The region in pink or red indicates *C. jejuni* PPX/GPPA residues identical to *A. aeolicus* PPX/GPPA, while the region with no homology is indicated in blue. The region in grey indicates unaligned sequences of *C. jejuni* PPX/GPPA. For (**A**), see previous page.

Figure S3. Growth kinetics of *C. jejuni* Δ ppx mutants. Mid-log phase grown cultures were used to adjust an OD₆₀₀ of 0.05 in 5 ml of MH broth and incubated microaerobically at 42 °C with shaking at 200 rpm. The growth was assessed by CFU determination at different time points.

Figure S4. Sensitivity of Δ ppx mutants to oxidative stress. (**A**) Sensitivity to oxidative stress was determined by disc diffusion assay using 0.3% hydrogen peroxide or 20 mM paraquat. (**B**) Quantification of oxidative stress, the zone of inhibition was measured after 24 h of incubation and expressed in centimeter. Each bar represents the mean ± SE from 3 independent experiments performed in triplicate each time.

Figure S5. LOS profile of Δ ppx/gppa mutants. (**A**) Whole cell lysate (50 μ g protein) was spotted on TLC plate and developed with n-propanol-water-25% NH₄OH (60:30:10-v/v/v) solvent system and visualized by using 10% sulfuric acid in ethanol. (**B**) CPS whole cell lysates (20 μ g protein) were separated by 15% SDS-PAGE and stained with periodic acid silver nitrate (PAS) stain.

Figure S6. qRT-PCR analysis of *C. jejuni* Δppx mutants for genes involved in LOS and CPS biosynthesis. Fold difference in transcript level was assessed by $\Delta\Delta$ CT method after normalizing the expression to 16s-*rRNA* and compared to wild-type expression level. Each bar represents the mean ±SE of the relative fold change in expression from 4 independent experiments performed in duplicates each time. **P* ≤ 0.05.

Figure S7. Genetic organization of ppx1/gppa and ppx2/gppa genes in *C. jejuni* genome. Schematic representation (not drawn to scale) of approximate location of kanamycin, and chloramphenicol antibiotic markers in Δppx deletion mutants of *C. jejuni* 81-176 strain. The *fdxB* encodes ferredoxin, *pdxJ* encodes for pyridoxine 5'-phosphate synthase, and the *pdxA* encodes 4-hydroxythreonine-4-phosphate dehydrogenase.

Table S1. List of primers used in this study.

Name	Sequence (5'-3')	Description
PPX1/GPPA_F	AAATTA GGTA CC ATATGAGT GTAGCGGAGC TT	Used for <i>ppx1/gppa</i> gene amplification along with 1 kb up and downstream sequences
PPX1/GPPA_R	AAATTA CTGC AG GGTTATCA AACCGATTCT TC	
PPX1/INV_F	TTAATT GGAT CC TCTCTATG TTTGAGTTTT AA	Used for <i>ppx1/gppa</i> gene deletion by inverse PCR
PPX1/INV_R	AATTAA GGAT CC CTCTATAA GATTTTGAAT TC	
PPX1C_F	TTAATT GGAT CC TCTCTATG TTTGAGTTTT AA	Used for <i>ppx1/gppa</i> gene amplification for
PPX1C_R	GATAT GGATC C GAAGCTATT TATGAAAATA G	complementation
PPX2/GPPA_F	AAATTA GGTA CC AAACAAGT TGATCCTTTG GA	Used for <i>ppx2/gppa</i> gene amplification along with 1 kb up and downstream sequences
PPX2/GPPA_R	AAATTA CTCG AG GTAAGCTT TCGTGGATAA AA	
PPX2/INV_F	TAATAA GGAT CC AGTATTTG AACCAAGATC TA	Used for <i>ppx2/gppa</i> gene deletion by inverse PCR
PPX2/INV_R	AATTAA GGAT CC ACTTTCGT AAGTTTTAAT GT	
PPX2C_F	ATGC GGTACC CTTGCTTTAA TGGATTTTGG	Used for <i>ppx2/gppa</i> gene amplification for complementation
PPX2C_R	ATAAA GGATC C CCGTGTTTA GCTGCTATAA A	
SpoT F	GTAACCACTC GCACAATATC	
SpoT R	GATGTCGCAG TTTATTCTCC	Used for dRT-PCR
PPK1 F	TGAAGCAAGT ATGGAAGGAG	Used for qRT-PCR
PPK1 R	ATATAGGAGT CATAAGTTCT AAGC	
PPK2 F	ATCTAATACT CCAACTTGTC	Used for qRT-PCR
PPK2 R	TTCTTCTTCT CCACTACG	
LgtF F	ACCTCAGTGC AAGGGAAGAA GGAA	Used for qRT-PCR
LgtF R	TCTCATGCTC GGTACCATCA GCTT	
Cstll_F	AGCTCACATC CTCGTATTCC ACCA	Used for qRT-PCR
CstII_R	AGAAGCGTCG GGTCTTCTCG CT	
KpsM_F	CCCTAAAGCA AAAGCTGAGC	Used for qRT-PCR
KpsM_R	TTAGCCTATA AACCTGTAAA ACCTATA	
WaaF_F	ATCACAAATG ACAGTGGACC T	Used for qRT-PCR
WaaF_R	GCCAAGGTGA AGTTTGAGTA AAT	
16s RNA_F	GTCTCTTGTG AAATCTAATG	Used as qRT-PCR internal control
16s RNA_R	GTATTCTTGG TGATATCTAC	

Bold sequence indicate the restriction enzymes site.