Cytosolic Ca²⁺ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca²⁺ overload

JCS034496 Supplementary Material

Files in this Data Supplement:

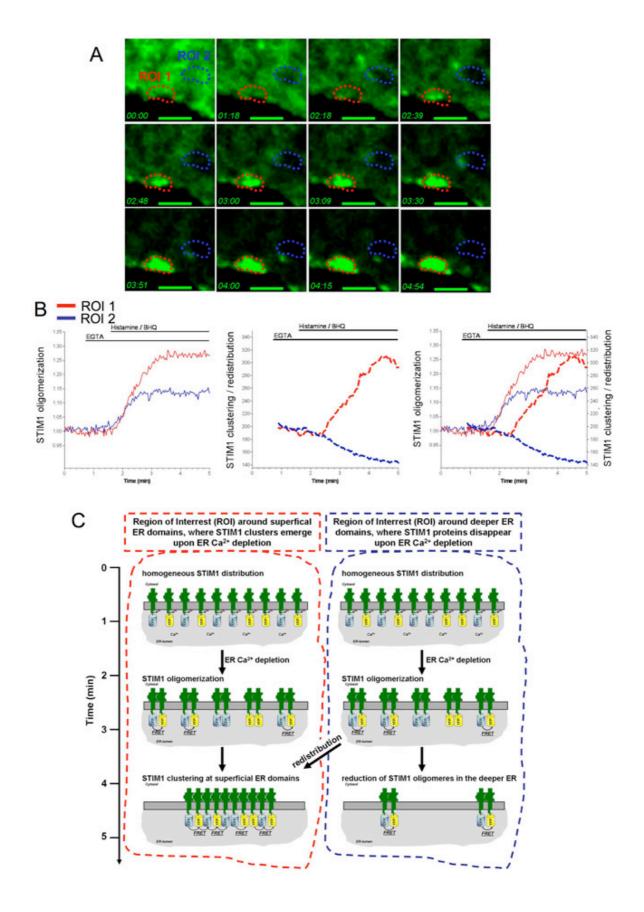
• Supplemental Figure S1 -

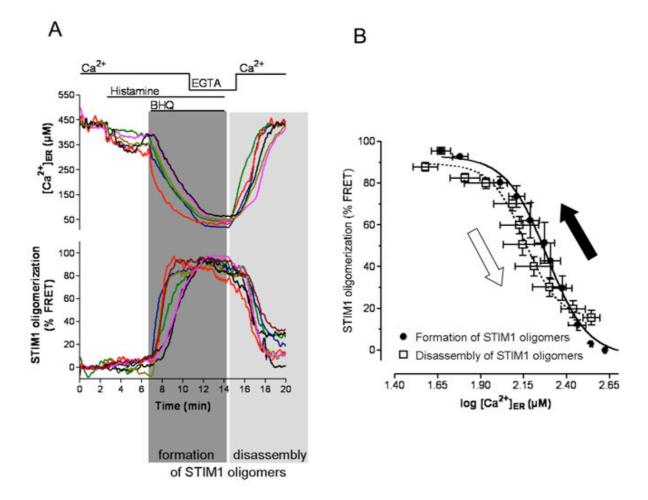
Fig. S1. Comparison on the kinetics of STIM1 oligomerization and clustering in the superficial (ROI 1) and deeper ER (ROI 2) domains upon store depletion with histamine/BHQ (100 and 15 μ M). (A) Images illustrate the location of the two regions of interest (ROI) measured. (B) Representative tracings of the effect of 100 μ M histamine and 15 μ M BHQ on STIM1 oligomerization (lines, left graph), STIM clustering (dotted lines, middle graph) and overlay in ROI 1 (red) and ROI 2 (blue). (C) Schematic illustration of the kinetics of STIM1 oligomerization and redistribution upon ER depletion in both ROIs.

• Supplemental Figure S2 -

Fig. S2. Determination of the effective correlation concentrations (ECC₅₀) of STIM1. Oligomerization upon ER Ca²⁺ depletion (ECC₅₀/oligomerization) and of the disassembly of STIM1 oligomers upon ER Ca²⁺ refilling (ECC₅₀/disassambly). (A) Representative tracings of the effect of 100 μM histamine and 15 μM BHQ on Ca²⁺_{ER} (upper panel) and STIM1 oligomerization (lower panel), in the presence of 2 mM extracellular Ca²⁺ followed by the removal of extracellular Ca²⁺ (i.e. EGTA containing solution), and a subsequent re-addition of extracellular Ca²⁺ in the absence of histamine and BHQ. (B) The correlation between ER Ca²⁺ depletion and STIM1 oligomerization (continuous line, black circles, n=9 for STIM1 oligomerization; n=10 for Ca²⁺_{ER}) is compared with the correlation between ER Ca²⁺ refilling and the disassembly of STIM1 oligomers (dotted line open squares, n=9 for STIM1 oligomerization; n=10 for Ca²⁺_{ER}). Ca²⁺_{ER} was recorded in single endothelial cells that transiently expressed D1_{ER} and STIM1-YFP, respectively. STIM1 oligomerization was measured by following FRET between STIM1-CFP and STIM1-YFP. For STIM1 oligomerization, the ratios (F₅₃₅/F₄₈₀)/F₀ were normalized (Δ _{max}=100%). Curves were fitted using Prism 4.0 for Mac (GraphPad Software, San Diego, CA).

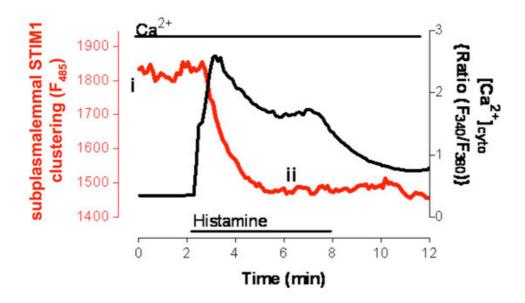
• Supplemental Figure S3 -

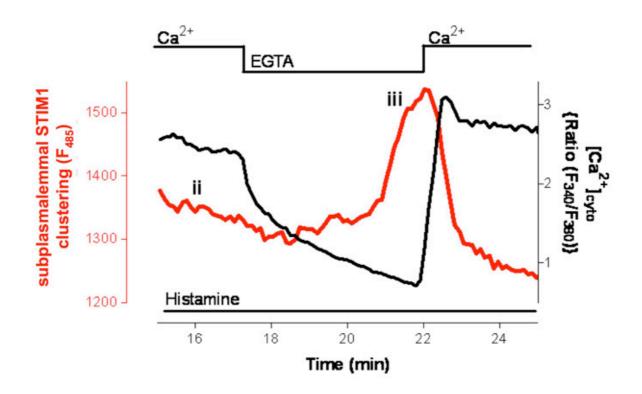

Fig. S3. Simultaneous recordings of the disassembly/reformation of STIM1 clusters (red traces) with Ca²⁺_{cyto} (black traces). Ca²⁺_{cyto} was recorded simultaneously with STIM1 dynamics in cells that transiently expressed YFP-STIM1 and loaded with fura-2-am. Images for subplasmalemmal STIM1 clustering were captured using an array confocal laser scanning microsope and for fura-2 measurements a conventional high-resolution imaging at the same device was used.


• Movie 1 -

Movie 1. Histamine-nduced degradation of basal STIM1 clusters. The cellular dynamics of STIM1-YFP is shown upon cell stimulation with the cytosolic- Ca^{2+} -elevating agonist histamine (100 μ M) in the presence of 2 mM extracellular Ca^{2+} .

Movie 2 -


Movie 2. STIM1 clustering upon moderate and strong ER Ca^{2+} depletion in the presence and absence of extracellular Ca^{2+} . The cellular dynamics of STIM1-YFP is shown upon moderate ER Ca^{2+} depletion using 100 μ M histamine in the presence of 2mM extracellular Ca^{2+} followed by strong ER Ca^{2+} depletion using the combination of 100 μ M histamine and 15 μ M BHQ first in the presence of 2mM extracellular Ca^{2+} and subsequently in the absence of extracellular Ca^{2+} (i.e. EGTA-containing solution).



$[Ca^{2+}]_{cyto}$ $_{\circ}$

YFP-STIM1-signal of a basal STIM1-cluster

