Supplementary Figures

Supplementary Figure 1.

Comparison of single- and double-nucleotide greedy algorithms. Nucleosome affinity was minimized for the *CYC1* promoter using a greedy algorithm searching over all possible single nucleotide substitutions per round (used in this study) and a modified algorithm which takes into consideration of all double nucleotide substitutions. It can be seen that the algorithm considering double nucleotide substitutions performs slightly better than the single nucleotide algorithm.

Supplementary Figure 2.

Expression levels of wild-type promoter scaffolds used in this study. Error bars represent standard deviation from three biological replicates.

Supplementary Figure 3.

Experimental promoter strength as a function of the cumulative predicted nucleosome affinity scores for the *TEF1* mutant promoter series and for the redesigned variant, *TEF1v1*. Promoter strength was measured via flow cytometry with strains expressing a yellow fluorescent protein gene, *yECitrine*. Error bars represent standard deviation of biological triplicates.

Supplementary Figure 4.

Computational nucleosome affinity profiles generated using a hidden Markov model¹ for TEF1v1 and TEF1 wild-type.

Supplementary Figure 5.

Computational nucleosome affinity profiles generated using a hidden Markov model¹ for HXT7v1 and HXT7 wild-type.

Supplementary Figure 6.

Computational nucleosome affinity profiles generated using a hidden Markov model¹ for *HIS5v1* and *HIS5* wild-type.

Supplementary Figure 7.

Computational nucleosome affinity profiles generated using a hidden Markov model¹ for CYC1v1-3 and CYC1 wild-type.

Supplementary Figure 8.

Relative fluorescence of TDH3, GAL1, and redesigned promoter constructs. Both redesigned promoters had the same fluorescence relative to wild-type, demonstrating that nucleosome architecture is not limiting in these very strong promoters. Error bars represent standard deviation from biological triplicate.

Supplementary Tables

Supplementary Table 1.

Sequences of redesigned and synthetic promoters. Underlined sequences in the synthetic promoters *Psynth1* and *Psynth2* are designated transcription factor binding sites and 5' UTR sequences.

Promoter	Sequence
Name	
TEF1v1	ATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGA
	CTCCGCGCATCGCCGTACCACTTCAAAACACCCCAAGCACAGCATACTAA
	ATTTCCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGG
	TTTGGAAAAGAAAAAAAGACCGCCTCGTTTCTTTTTTCGTCGAAAA
	AGGCAATAAAAATTTTTTCACGTTTCTTTTTTCTTGAAAAATATTTTTTTG
	ATTTTTTTCTCTTTCGATGACCTCCCATTGATATTTAAGTTAATAAACGG
	TCTTCAATTTCTCAAGTTTCAGTTTCATTTTTTTTTTGTTCTATTACAACTTT
	TTTTACTTCTTGCTCATTAAAAAGAAAGCATAGCAATCTAATCTAAGTTT
HXT7v1	CTCGTAGGAAAAATTTCGGGCCCCTGCGTTTTTTTCTGAGGTTCATTTTT
	TACATTTGCTTCTGCTGGATAATTTTCAGAGAAAAAAGGAAAAATTAT
	ATGAAAAAAGTTTTTTTCAAGGAAAAAACCCTATTTTTTTCGAGATC
	CCCTGTAACTTATTGGCAACTGAAAGAATGAAAAGGAAAAAAAA
	AATATACTAGAACTGAAAAAAAATTAGTATAAATAGAGACGATATATG
	CCAATACTTCACAATGTTCGAATCTTTTTTTTTTTTTCAGCTATTGAAAA
	AAAATAAAACATCAAGAACAAACAAGCTCAACTTGTCTTTTCTAAGAAC
	AAAGAATAAACACAAAAACAAAAAGTTTTTTTAATTTTAATCAAAAA
HIS5v1	AAATGGTTAAAAATTGTTATCATAAATAAGGTGACCGGTTATATTGAGA
	CCTTTCCTGGACAGTAACTAATACAGAAGCCATTGGTAATGCAATAATT
	TTTTTGATCATGTGACTACGATCCGGGTGAGACTATTAAAAAAAGGAGT
	CAAGCATTGAAATAATTAATGACTAATCCGAAGTTAATTGTTAGGAGTC
	AATTGTTTTTTCCAATGAATGGAATCTGAGATGACTAAACTACCAATTTT
	CAATAGTTCATGGTATAGTGACGTAGTTAGTGCTTTTTTTT
	GTTGACTCACTTCAATTGATGTTTCTTACCCTGACATGACATACTTGATT
	TTTTATCTCTCACGTTATATAACTTGAAAAGGATGCACACAGTTCTGTTC
	AATATACCCTCCAATATGTAAAAAAAGTTTTTTCATTGATTACTCTTAAT
	TTTTTTCCTGCTAAACCAGCAGTACGTGTGTGCCGTATATATTAAAATTA
	CACT
CYC1v1	ATTTGGCGAGCGTTGGTTGGTGGATCAAGCCCACGCGTAGGCAATCCTC
	GAGCAGATCCGCCAGGCGTGTATATATAGCGTGGATGGCCAGGCAATTT
	TAGTGCTGACACATACAGGCATATATATATGTGTGCGACGAAAAATGAT
	CATATGGCATGCATGTGCTCTGTATGTATATAAAACTCTTGTTTTCTTTT
	TTTCTCTAAATATTCTTTCCTTATACATTAGGACCTTTGCAGCATAAATT
	ACTATACTTCTATAGACACGCAAAAACAAATACACACACTAA

Promoter	Sequence					
Name						
CYC1v2	ATTTGGCGAGCGTTGGTTGGTGGATCAAGCCCACGCGTAGGCAATCCTC					
	GAGCAGATCCGCGAGGCGTGTATATATAGCGTGGATGGCCAGGCAACT					
	TTAGTGCTGACACATACAGGCATATATATATGTGTGCGACGACACATGA					
	TCATATGGCATGTATGTGCTCTGTATGTATATAAAACTCTTTTTTTT					
	TTTCTCTAAATTTTTTTTCCTTATACATTAGGACCTTTGCAGCATAAATTA					
	CTATACTTCTATAGACACGCAAACACAAATACACACACAAA					
CYC1v3	ATTTCGCGCGCGTTGGTTAGTAAAAAAGCCCACGCGTAGGGAATCCTC					
	GAGCATATACGCGAGGCGCGTATATATAGCGCGTATGTTCAGGTAAATT					
	TAGTGCTGACACATACAGGCATATATATATGTGCGCGTATATACATGAT					
	TATATGGCATGTATGTGCTCTGTATGTATATAAAACTCTTTTTTTT					
	TTCTCTAAATTTTTTTTCCTTATACATTAGGACCTTTGCAGCATAAATTA					
	CTATACTTCTATAGACACGCAAATACAAATACACACACTAA					
TDH3v1	AGTTTATCATTATCAATACTCGCCATTTCAAAGAATACGTAAATAATTA					
	ATAGTAGTGATTTTCCTAACTTTTTTAGTCAAAAAATTAGCCTTTTAAT					
	TCTGCTGTAACCCGTACATGCCCAAAATAGGGGGGCGGGTTACACAGAAT					
	ATATAACATCGTAGGTGTCTGGGTGAACAGTTTATTCCTGGCATCCACT					
	AAATATAATGGAGCCCGCTTTTTAAGCTGGCATCCAGAAAAAAAA					
	ATCCCAGCACCAAAATATTTTTTTTTTTCTTCACCAACCA					
	CATTCTCTTAGCGCAACTACAGAGAACAGGGGCACAAACAGGCAAAAA					
	ACGGGCACAACCTCAATGGAGTGATGCAACCTGCCTGGAGTAAATGAT					
	GACACAAGGCAATTTACCCGCGCATGTATCTATCTCATTTTTTACACCT					
	TCTATTACCTTCTGCTCTCTGATTTGGAAAAAGCTGAAAAAAAGGT					
	TGAAACCAGTTCCCTGAAATTATTCCCCTACTTGACTAATAAGTATATA					
	AAGACGGTAGGTATTGATTGTAATTCTGTAAATCTATTTCTTAAACTTCT					
	TAAATTCTACTTTTATAGTTAGTCTTTTTTTTTTAGTTTTAAAAAAACCAGAA					
	CTTAGTTTCGACGGAT					
GALlvl	ACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTC					
	TCCTCCGCGCGTCCGCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATG					
	TGCCTCGCGCCGCACTGCTCCGAAAAATAAAGATTCTACAATACTAGCT					
	TTTTTGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACC					
	TTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAG					
	TTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTG					
	ATCTATTAACAGATATATAAATGAAAAAGCTGCATAACCACTTTAACTA					
	ATACTTTCAACATTTTCAGTTTTTATTACTTCTTATTCAAATGTCATAAA					
	AGTATCAACAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGA					
	GAAAAAC					

Promoter	Sequence
Name	
Psynth1v1	TCCGGGTAACGCCGACACAGTAAGTAACGAGATGTATGGGTGTCCTAAC
	TAAAA <u>GGCTTCCA</u> ACTCAACATTGAATCAGGTAATCCTAGATCAA <u>GGCT</u>
	TCCATACACAGGTTTATATTAATACATATACGACAACTCTCCAATTCGCT
	CATAATTACAACAAAGATCGAACTGAGAGAGACTTAGACTCGTACAAC
	TACATTTTTCGTTAACTTTTTAACATACGCGAGGGTATTAAACTTAGCTG
	ACGCAACTCTAGTTGTATCTCGCGATAATTTCTTTTACTTGTCTATT <u>TAT</u>
	<u>AAAAA</u> CCAAGCTAATAACTTCATACGTCTTATTGTATTTAGACTATTTCT
	TTTTAACCTAACTATAGCAGAACCCGCGGGTAATTAC <u>TTAAAACACCAA</u>
	GAACTTAGTTTCGAATAAACACACATAAACAAACAAA
Psynth1v2	TCCGGGTAACGCCGAAAAAATAAGTAACGCGATGTATGGGTGTACTAA
	AAAAAAGGCTTCCAATAAAAAATTGAATCAGGTAATCCTATATCAAGG
	<u>CTTCCA</u> TATATAGGTTTATATTAATACATATACGAAAAAACTCTTTTTCG
	CGCATAATTATAATAAAAATCGAACTGAGAGAGACTTAGACTCGTACA
	ACTATTTTTTTGTTAATTTTTTTATATACGCGCGGGTATTAAACTTAGCT
	GACGCGATTCTATTTGTATCTCGCGATAATTTCTTTTTCTTCTCTATT <u>TA</u>
	TAAAAACCAAGCTAATAACTTCATACGTCTTTTTGTATATAGACTTTTTC
	TTTTTTTCCTAACTATAGGAGAACCCGCGGGTAATTTT <u>TTAAAACACCAA</u>
	<u>GAACTTAGTTTCGAATAAACACACATAAACAAACAAA</u>
Psynth1v3	TCCGGGTAACGCCGAAAAAATTATATACGC <u>GATGTATGGGTGT</u> ATTAAA
	AAAAA <u>GGCTTCCA</u> ATAAAAAAAAGAATCAGGTAATCCTTTTTCGC <u>GGCT</u>
	TCCATATATATTTTTTTTTTATTAATACATATACGAAAAAAGTCTTTTTCGCG
	GGTAATTATAATAAAAATCGAACTGAGAGAGACTTTCACACGTACTACT
	ATTTTTTTTATTATTTTTTTTTTTTATATACGCGCGGGTAAAAAAATTAACTAA
	CGCGATTTTTTTTTTCTTCGCGCGAAAATTTCTTTTTTCTTCTCTATT <u>TATA</u>
	AAAAGGAAGGAAAAAAGTTCTTACCTCTTTTGTATATACACTTTTTCTT
	TTTTTCCTTAGTAAAGGAGAACGCGCGGGGTATTTTT <u>TTAAAACACCAAG</u>
	AACTTAGTTTCGAATAAACACACATAAACAAACAAA
Psynth2v1	<u>TCCGGGTAAC</u> TGCGGGTGACCGCAATCTTA <u>GATGTATGGGTGT</u> TAACTG
	AGCTA <u>GGCTTCCA</u> TGCATTTAGAGAACTTATTAACTGAATAGTTA <u>GGCT</u>
	TCCAAACGAGCTAGTTCTCGCGTGTCATCTAAAAAAATTCTAGACTGGT
	GATACITATAAC <u>TATAAAAA</u> AACIGACACITCICCCTAAICGTAGIAIT
	GTATATATTTTTTTAAAAAAAACTTGCAACCAT <u>TTAAAAACACCAAGAAC</u>
Psynth2v2	TCCGGGTAACCGCGGGTAACCTCAATCTTAGATGTATGGGTGTTAACTG
	AGCTC <u>GGCTTCCA</u> TGTATTAAAAAAAATTATTAACTGAAAAAAAA <u>GGCT</u>
	TCCAAACTAGTTTTTTTCGCGTGTGATCAAAAAAATTCTAGACGGGT
	GTATATATTTTTTTAAAAAAAACTTGCAACCAT <u>TTAAAAACACCAAGAAC</u>
	<u> TTAGTTTCGAATAAACACACATAAACAAACAAA</u>

Promoter	Sequence					
Name						
Psynth2v3	TCCGGGTAACCGCGGGTAACATATATATATA <u>GATGTATGGGTGT</u> AAAAAA					
	AGCGC <u>GGCTTCCA</u> TGTATTAAAAAAAATTTTTTTCTGAAAAAAAA <u>GGCT</u>					
	TCCATACTAATTTTTTTCGCGCGGGTAGAAAAAAATACTAGTCGGGT					
	AATACATATAAG <u>TATAAAAA</u> AAGAGACACTTCTCCCTAATCGTACTATT					
	GTATATATTTTTTAAAAAAAGTTCGAAGCTT <u>TTAAAACACCAAGAAC</u>					
	TTAGTTTCGAATAAACACACATAAACAAACAAA					

Supplementary Table 2.

Glycolytic promoter architecture and design of Psynth1 and Psynth2. The positions and lengths between various transcription factors in a collection of yeast glycolytic promoters were catalogued in order to design *Psynth1* and *Psynth2*. All lengths refer to the distance in basepairs between the start of each binding site. Column Descriptions: 1. Number of Gcr1p binding sites. 2. Number of Rap1p binding sites. 3. Number of Reb1p binding sites. 4. 5' UTR length. 5. Length between TATA box and transcription start site. 6. Length between Gcr1p binding site and TATA box. 7. Length between two Gcr1p binding sites when they occur in close proximity to a Rap1p or Reb1p binding site. Values of N/A mean that the sites did not occur in a pair. A value of 40 bp was chosen for the synthetic promoters because PGK1 and GPM1 were identified as outliers in this category. 8. Length between Rap1p binding site and Gcr1p binding site when they occur in close proximity to each other. Values of N/A mean that the sites did not occur close together or there was no Rap1p binding site. 9. Length between Rap1p and Reb1p binding sites. Values of N/A mean that the promoter did not have both a Rap1p site and a Reb1p site. The minimum distance was chosen in this category because the three values had a large distribution and some of the promoters that lack a Reb1p binding site have an Abf1 binding site in a similar position.

Promoter	1	2	3	4	5	6	7	8	9
	Gcr1	Rap1	Reb1	5'	TATA	Gcr1	Gcr1	Rap1	Rap1
				UTR	-> TSS	->	->	->	->
						TATA	Gcr1	Gcr1	Reb1
TDH3	2	1	1	41	93	309	38	27	31
FBA1	3	1	0	11	105	255	42	N/A	N/A
TPI1	2	0	1	31	140	167	40	N/A	N/A
ADH1	2	1	0	39	82	207	N/A	N/A	N/A
PGK1	2	1	1	42	104	279	17	24	88
CDC19	5	1	1	29	163	64	47	12	170
TDH2	4	0	1	33	93	170	45	N/A	N/A
GPM1	2	1	0	11	128	196	16	37	N/A
Average	2.75	0.75	0.625	29.6	113.5	205.9	35	25	96.3
Minimum	2	0	0	11	82	64	16	12	31
Psynth1	2	1	1	41	100	200	40	24	30
Psynth2	2	1	1	41	80	65	40	24	30

Supplementary Table 3.

Primer sequences for cloning of promoters, yECitrine and LacZ genes, knockout and integration cassettes, and primers for qPCR of yECitrine. All redesigned and synthetic promoters were cloned using the "general promoter primers" with the exception of HIS5v1, which was cloned using the HIS5 promoter primer set.

Primer	Forward Primer	Reverse Primer		
set name				
yECitrine	GGCGCTACTAGTATGTCTAAAGG	ACGCGTCGACTTATTTGTACAATT		
	TGAAGAATTATTCACTGG	CATCCATACCATG		
LacZ	GGCGCTTCTAGAACTAGTATGAC	ACGCGTCGACTTATTTTTGACACC		
	CATGATTACGGATTCACT	AGACCAACTG		
General	TAAAGGGAACAAAAGCTGGAGCT	CAGTGAATAATTCTTCACCTTTAG		
promoter	С	ACATACTAGTTCTAGA		
primers				
HXT7	TGACTGAGCTCCTCGTAGGAACA	GGCGCTACTAGTTCTAGATTTTTG		
promoter	ATTTCGGG	ATTAAAATTAAAAAAACTTTTTGT		
		TTT		
HIS5	TGACTGAGCTCAAATGGTTAAAA	GGCGCTACTAGTTCTAGAAGTGTA		
promoter	ATTGTTATCATA	ATTTTAATATATACGGCA		
P_{CYC1}	TGAATCTAAAATTCCCGGGAGCA	TAGCACCTTTCTTAGCAGAACCGG		
knockout	AGATCAAGATGTTTTCACAGCTG	CCTTGAATTCAGTCATGCATAGGC		
cassette	AAGCTTCGTACGC	CACTAGTGGATCTG		
K. lactis	TGACTGAGCTCCAGCTGAAGCTT	GCATAGGCCACTAGTGGATCTG		
URA3	CGTACGC			
TRP1	TGGAGATATTCCTTATGGCATGTC	ACACCAATAACGCCATTTAATCTA		
integration	TGGCGATGATAATAAAGGGAACA	AGCGCATCACCAACGGTACCCAAT		
cassette	AAAGCTGGAGCTC	TCGCCCTATAGT		
yECitrine	TTCTGTCTCCGGTGAAGGTGAA	TAAGGTTGGCCATGGAACTGGCAA		
qPCR				
primers				
ALG9	ATCGTGAAATTGCAGGCAGCTTG	CATGGCAACGGCAGAAGGCAATA		
qPCR	G	Α		
primers				

Supplementary Table 4.

Primers for nucleosome mapping tiling array. Primers sets marked with a * were used for both *CYC1* and *CYC1v3*. All other sets were used for a specific promoter as noted.

Primer set Mid-amplicon		Forward primer	Reverse primer	
	location relative to	-	-	
	start codon			
CYC1_1	-313.5	CGCGCAATTAACC	AACCAACGCTCGC	
		CTCACTAA	CAAAT	
CYC1_2	-271.5	ATTTGGCGAGCGT	CGGATCTGCTCGA	
		TGGT	GGATTG	
CYC1_3	-222.5	GCAATCCTCGAGC	GCCTGTATGTGTC	
		AGATCC	AGCACTAA	
CYC1_4	-189	ATGGCCAGGCAAC	GTGTCGTCGCACA	
		TTTAG	CATA	
CYC1_5	-170.5	TAGTGCTGACACA	CACATGCATGCCA	
		TACAGG	TATGAT	
CYC1_6	-120.5	GTGCGACGACACA	GGTCCTAATGTAT	
		TGAT	AAGGAAAGAATA	
			TTTAG	
CYC1v3_1	-315.5	CGCGCAATTAACC	AACGCGCGCGAA	
		CTCACTAAA	ATGAG	
CYC1v3_2	-270.5	GCGCGCGTTGGTT	ATATGCTCGAGGA	
		AGTAAA	TTCCCTACG	
CYC1v3_3	-233.5	CCCACGCGTAGGG	TCAGCACTAAATT	
		AATC	TACCTGAACATAC	
CYC1v3_4	-208.5	GTATATATAGCGC	GCCTGTATGTGTC	
		GTATGTTCAGGTA	AGCACTAA	
CYC1v3_5	-179.5	TAGCGCGTATGTT	CAGAGCACATACA	
		CAGGTAAA	TGCCATATAATC	
CYC1v3_6	-167	GTGCTGACACATA	CAGAGCACATACA	
		CAGGCATA	TGCCATATAATC	
CYC_7*	-52	TTTCCTTATACATT	AGTGTGTGTGTATTT	
		AGGACCTTTGCAG	GTATTTGCGTGT	
CYC_8*	-11	GACACGCAAATAC	TTGGGACAACACC	
		AAATACACACA	AGTGAATAA	
CYC_9*	129.5	TTCTGTCTCCGGT	TAAGGTTGGCCAT	
		GAAGGTGAA	GGAACTGGCAA	
Ampicillin control*	N/A	TGTAACTCGCCTT	TTGTTGCCATTGC	
		GATCGTTGGGA	TACAGGCATCG	

Supplementary Reference

1. Xi, L. et al. Predicting nucleosome positioning using a duration Hidden Markov Model. *BMC Bioinformatics* **11**, 346 (2010).