
Supporting Methods

The Model Set-up. We model epithelial tissue organized into compartments. In
the simples case, there is one stem cell per compartment. For example, in colon, this
scenario would correspond to crypts with a stem cell situated at the base of each
crypt. Stem cells divide asymmetrically, producing one (immortal) stem cell and one
differentiated cell. Here, we concentrate on the dynamics of the stem cells. Each
division event is equivalent to a replacement of the old stem cell with a copy of itself.
Upon division of a stem cell, the immortal daughter cell might (i) acquire a silencing
mutation in one of its alleles of the adenomatous polyposis coli (APC) gene with
probability u per cell division, or (ii) lose one of its chromosomes, with probability p
per cell division per chromosome. Once both copies of the tumor suppressor (TSP)
gene have been inactivated, the cell will be able to escape homeostatic control and
create a growing clone.

Optimal Rate of Loss of Heterozygozity (LOH). Suppose that a stem cell
has a probability to lose a chromosome p per chromosome per cell division. First,
we calculate the probability to inactivate the TSP gene by time t. The sequence of
events can be expressed by the following simple diagram,
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Here, Yi is the probability for the stem cell to have i inactivated copies of the TSP
gene. The first event of inactivation happens by a fine-scale genetic event (probability
u times two for two alleles), and the second event is a loss of the chromosome with the
remaining copy of the TSP gene (probability p). k is the total number of chromosomes
(k = 23.)

A very important issue here is the exact extent of the damage for the cell and its
reproductive potential that is induced by LOH events. In the most optimistic (for
cancer) scenario (i), there is no loss in fitness due to chromosome loss, i.e. d0(k) = 0,
except when the cell loses the mutated copy of the TSP chromosome at stage y1, so
that d1(k) = p. In the most pessimistic scenario (ii), a loss of any chromosome results
in cell death, unless it leads to a TSP inactivation, so that d0(k) = 1− (1− p)2k and



d1(k) = 1 − (1 − p)2k−1. The reality is probably somewhere in between these two
extremes.

We can write down the Kolmogorov forward equations for all the probabilities
(skipping the argument k of d0 and d1),

Ẏ0 = [(1− d1)(1− 2u)− 1]Y0, [1]

Ẏ1 = (1− d0)2uY0 + [(1− d1)(1− p)− 1]Y1, [2]

Ẏ2 = (1− d1)pY1, [3]

with the initial condition Y0(0) = 1. We need to calculate the probability distribution
of creating a TSP−/− mutant as a function of time, which is given by Ẏ2. We have,

Ẏ2(t) =
up(e−ut − e−(p+d1)t)

p+ d1 − u
, [4]

where we assumed that ut ¿ 1. Note that the argument given here holds without
change for (constant) populations of more than one cells, as long as the number N
of cells satisfies N < 1/u and N < 1/

√
p. Otherwise, the calculations can be easily

adapted to include the effect of “tunneling” (1).
Once a TSP−/− cell has been produced, it starts dividing according to some law

that is (at least, initially) close to exponential. Starting from one cell at time t = 0,
by time t we will have Zy(t) cells, with

Zy(t) = eaβ[1−d1(k)]t. [5]

The parameter a is the growth rate of the initiated cells, and 0 < β < 1 is the cost
due to the fact that a chromosome is missing from all CIN cells because of the LOH
inactivation of the TSP. The factor [1− d1(k)] comes from the probability for a CIN
cell to produce a nonviable mutant, which for scenario (i) happens only if only one
particular chromosome is lost and, for scenario (ii), if any chromosome is lost.

If we now include the mutation stage, we will need to evaluate the convolution,

Zy(t) =
∫ t

0
ẏ2(t

′)eaβ(1−p)2k−1(t−t′) dt′.

The integral yields the following laws of growth:

Zy(t) =
upeaβ(1−d1)t

aβ(1− d1)
,



where we assumed that, for relevant times, aβt > 1. To find an optimal value of p
that maximizes the growth, we solve Zy(t) = M for t, which gives,

t(M) =
1

aβ(1− d1)
log
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]

,

and then we minimize this as a function of p. This calculation can be done easily if
we assume that p ¿ 1/(2k) (it will turn out that the result for p∗ satisfies this as-
sumption). Expanding the expression dt(M)/dp in terms of p, we obtain the equation
for p,

1

p
= (2k − 1) log

aβM

up
,

where we formally have k = 1 for scenario (i), and k = 23 for scenario (ii).

Comparison of Stable and Unstable Pathways. Now, let us include the step
of initiation of CIN. All pathways can be expressed by the following diagram,
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Here, xi are the probability for the stem cell to be stable and have i inactivated copies
of the TSP gene, and yi are similarly the probabilities for the cell to be CIN. uc is
the rate at which a cell may acquire CIN.

The Kolmogorov forward equations are:

ẋ0 = [(1− 2u)(1− uc)− 1]x0, [6]

ẋ1 = (1− uc)2ux0 + [(1− uc)(1− u)− 1]x1, [7]

ẋ2 = (1− uc)ux1, [8]

ẏ0 = (1− u)ucx0 + [(1− d1)(1− 2u)− 1] y0, [9]

ẏ1 = (1− d0)2uy0 + (1− u)ucx1 + [(1− d1)(1− u− p)− 1] y1, [10]

ẏ2 = (1− d1)(u+ p)y1, [11]



with the initial condition x0(0) = 1. It is easy to show that for scenario (i), the two
CIN pathways (x0 → y0 → y1 → y2 and x0 → x1 → y1 → y2) contribute equally to
y2. For scenario (ii), and p À u, the second of these pathways gives a much larger
contribution. The reason for this result is that losing a “wrong” chromosome will
destroy the cell line in this extreme scenario. Therefore, it is much more likely to
reach the state y2 if CIN appears as late as possible. In what follows, we will ignore
the first pathway entirely because it either does not contribute anything or gives a
factor of 2. This omision simplifies the calculation because, now, the first step for
both stable and CIN cancer is x0 → x1, and if we only want to compare the CIN and
non-CIN pathways together, this step can be ignored. This scenario is equivalent to
starting from x1(0) = 1 rather than x0(0) = 1.

The probability distribution of creating a TSP−/− mutant as a function of time is
given by ẋ2, for the stable pathway, and by ẏ2, for the unstable pathway. We have,

ẋ2(t) = ue−uct,

and ẏ2 is given by Eq. 4, with u replaced by uc.
The clonal expansion law for unstable cells is given by Eq. 5, and for stable cells

we simply have Zx(t) = eat. Convolving the rates for the mutation and expansion
stages, we arrive at the following laws of growth:

Zx(t) =
ueat

a
, Zy(t) =

uc(u+ p)eaβ(1−d1)t

aβ(1− d1)
,

It turns out that, unless uc is several orders of magnitude bigger than u, Zy grows
slower than Zx; that is, genetically activated CIN cannot be advantageous.

Large Initial Number of Cells. In the above model, the number of wild-type
cells in the compartment is small (N ¿ 1/u). In order to handle the scenario where
a large population of cells is competing in a compartment, which may correspond to
later stages of carcinogenesis, we numerically simulated a set of quasi-species-type
equations. The estimate obtained for the optimal value of p is very similar to the
ones given for the stochastic model above.
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