

Supplementary Fig. 1. Relative abundances of individual phospholipid fatty acids (PLFAs) in control samples of topsoil, cryoturbated, and mineral subsoil horizons from a tundra ecosystem in the central Siberian Arctic. Bars represent means \pm standard errors of ten replicates (six and ten day controls combined), different letters indicate significant differences between soil horizons (p < 0.05).

Supplementary Table 1. Respiration rates of unamended control samples of topsoil, cryoturbated, and mineral subsoil material from a tundra ecosystem in the central Siberian Arctic. Values are means of all time points, with standard errors in brackets.

	Respiration per dry soil	Respiration per soil C
	μ mol CO ₂ g ⁻¹ dry soil h ⁻¹	μ mol CO ₂ g ⁻¹ soil C h ⁻¹
Topsoil	0.379 (0.030)	4.050 (0.317)
Cryoturbated material	0.024 (0.002)	0.547 (0.043)
Mineral subsoil	0.019 (0.002)	3.227 (0.351)

Supplementary Table 2. Comparison between initial microbial biomass (determined by chloroform-fumigationextraction) and the priming effect after addition of glucose, amino acids, cellulose or protein to topsoil, cryoturbated, and mineral subsoil material from a tundra ecosystem in the central Siberian Arctic. Priming effect is given as the difference in cumulative SOM-derived respiration between amended samples and unamended controls after six days (glucose and amino acids) or ten days (cellulose and protein) of incubation. Values are means of five (initial biomass) or four (priming effect) replicates, with standard errors in brackets. Bold values indicate a significant difference in SOM-derived respiration between amended samples and controls at p < 0.05.

		Topsoil	Cryoturbated material	Mineral subsoil
		µmol C g ⁻¹ soil C	µmol C g⁻¹ soil C	µmol C g ⁻¹ soil C
Initial biomass		504.42 (44.09)	33.61 (8.25)	72.25 (20.53)
Priming effect	Glucose	74.49 (48.60)	6.15 (7.94)	739.63 (90.23)
	Amino acids	-83.25 (42.06)	89.90 (11.43)	595.85 (88.11)
	Cellulose	-127.29 (50.16)	1.63 (7.37)	811.25 (104.32)
	Protein	147.12 (57.63)	169.65 (25.75)	994.56 (100.14)

una contr		j. Vulues ule			in standard v	inois in order	ets. Dolu values in	diedte û sign			spective com	101 ut p = 0.05	•								
			Тор	soil					Cryoturbat	ed material			Mineral subsoil								
	Control	Glc	AA	Control	Cell	Prot	Control	Glc	AA	Control	Cell	Prot	Control	Glc	AA	Control	Cell	Prot			
	Glc+AA			Cell+Prot			Glc+AA			Cell+Prot			Glc+AA			Cell+Prot					
Total	89.9 (8.0)	122.2 (3.1)	131.3 (8.2)	79.7 (2.8)	70.9 (4.8)	92.1 (9.7)	21.5 (3.5)	37.8 (2.0)	39.0 (2.2)	29.0 (2.4)	26.4 (1.5)	24.8 (2.3)	49.5 (5.7)	28.3 (2.9)	40.5 (2.3)	73.3 (4.7)	59.3 (7.1)	57.9 (2.8)			
i15:0	3.3 (0.7)	3.9 (0.4)	4.3 (0.4)	2.6 (0.5)	2.4 (0.7)	3.5 (0.7)	2.0 (0.8)	5.7 (0.6)	4.3 (0.5)	3.4 (0.6)	3.4 (0.7)	2.7 (0.7)	1.1 (0.2)	0.8 (0.2)	1.3 (0.2)	1.0 (0.1)	1.4 (0.2)	1.1 (0.1)			
a15:0	3.2 (0.7)	3.7 (0.5)	4.2 (0.4)	2.5 (0.5)	2.3 (0.8)	3.4 (0.8)	1.7 (0.8)	5.8 (0.6)	4.5 (0.6)	3.2 (0.6)	3.2 (0.8)	2.4 (0.7)	0.8 (0.2)	1.2 (0.3)	2.0 (0.3)	0.6 (0.1)	1.0 (0.2)	0.5 (0.0)			
i16:0	1.7 (0.1)	2.2 (0.1)	2.2 (0.1)	1.6 (0.1)	1.4 (0.2)	1.8 (0.1)	1.4 (0.2)	3.1 (0.1)	2.6 (0.1)	1.8 (0.1)	2.1 (0.1)	1.4 (0.2)	0.6 (0.1)	1.1 (0.1)	1.1 (0.1)	0.4 (0.1)	0.7 (0.2)	0.3 (0.0)			
i17:0	1.6 (0.1)	1.7 (0.1)	1.6 (0.0)	1.6 (0.0)	1.6 (0.1)	1.6 (0.1)	2.5 (0.1)	2.7 (0.1)	2.7 (0.1)	2.6 (0.3)	2.5 (0.1)	2.7 (0.2)	1.2 (0.1)	5.0 (0.8)	5.5 (1.2)	1.2 (0.1)	1.8 (0.5)	0.9 (0.2)			
a17:0	2.0 (0.1)	2.6 (0.3)	2.1 (0.1)	2.1 (0.0)	2.0 (0.1)	2.1 (0.1)	2.4 (0.1)	2.7 (0.1)	2.5 (0.1)	2.2 (0.1)	2.5 (0.2)	2.2 (0.2)	1.4 (0.1)	2.8 (0.2)	2.4 (0.2)	1.1 (0.1)	1.7 (0.4)	1.1 (0.1)			
16:1ω7	11.1 (0.9)	12.7 (0.4)	13.9 (0.4)	10.7 (0.6)	10.2 (0.8)	11.9 (0.7)	10.3 (0.8)	15.2 (0.2)	16.7 (0.4)	10.8 (0.4)	12.2 (0.6)	12.1 (0.9)	6.0 (0.5)	11.1 (1.0)	14.2 (0.5)	5.2 (0.3)	6.8 (0.9)	5.3 (0.3)			
18:1w7	23.0 (1.1)	20.7 (0.5)	21.0 (0.3)	24.2 (0.9)	23.5 (0.9)	23.2 (1.3)	4.2 (0.3)	5.3 (0.2)	7.4 (0.2)	3.5 (0.1)	4.6 (0.5)	3.7 (0.2)	1.9 (0.1)	6.2 (0.3)	7.0 (0.4)	1.9 (0.1)	2.6 (0.3)	2.3 (0.2)			
cy17:0	4.0 (0.0)	4.2 (0.1)	4.1 (0.1)	4.2 (0.1)	4.1 (0.1)	3.8 (0.1)	3.9 (0.1)	5.1 (0.1)	6.0 (0.1)	3.8 (0.1)	3.9 (0.2)	3.2 (0.1)	1.3 (0.1)	3.7 (0.1)	3.5 (0.2)	0.9 (0.0)	1.4 (0.1)	1.1 (0.0)			
18:1w9	11.7 (0.8)	11.5 (0.2)	11.0 (0.1)	12.5 (0.5)	12.4 (0.6)	11.9 (0.6)	5.7 (0.3)	7.2 (0.2)	10.6 (0.4)	4.8 (0.3)	8.2 (0.9)	4.2 (0.2)	5.5 (0.4)	11.3 (0.2)	11.0 (0.7)	6.8 (0.8)	8.7 (0.7)	5.6 (0.4)			
18:2ω6	5.6 (0.3)	5.8 (0.2)	5.6 (0.2)	5.6 (0.3)	5.8 (0.2)	5.2 (0.2)	0.8 (0.1)	0.6 (0.0)	0.6 (0.1)	0.5 (0.0)	0.8 (0.1)	0.4 (0.1)	1.3 (0.1)	1.4 (0.1)	1.7 (0.6)	1.0 (0.1)	1.2 (0.4)	0.9 (0.1)			
16:0	16.6 (0.6)	17.6 (0.2)	17.3 (0.2)	16.2 (0.4)	16.2 (0.5)	16.6 (0.6)	23.7 (0.6)	27.0 (0.4)	24.5 (0.2)	25.5 (0.6)	24.7 (0.5)	24.4 (0.7)	24.2 (1.9)	19.9 (1.3)	21.2 (1.1)	22.3 (0.7)	22.9 (2.1)	20.6 (0.7)			
17:0	0.8 (0.1)	0.7 (0.0)	0.7 (0.0)	0.8 (0.0)	0.7 (0.0)	0.8 (0.0)	1.2 (0.1)	1.0 (0.1)	0.9 (0.1)	1.0 (0.1)	1.3 (0.1)	1.0 (0.1)	0.9 (0.2)	1.2 (0.1)	1.0 (0.1)	0.7 (0.1)	1.0 (0.2)	0.9 (0.0)			
18:0	3.6 (0.4)	2.8 (0.1)	2.3 (0.1)	3.5 (0.2)	4.5 (0.5)	3.1 (0.3)	15.5 (1.4)	7.1 (0.2)	6.0 (0.3)	13.0 (1.1)	10.7 (0.7)	13.9 (1.4)	22.3 (2.2)	10.7 (0.5)	10.4 (1.5)	18.6 (1.3)	18.6 (2.4)	21.3 (0.6)			
20:0	1.8 (0.2)	1.1 (0.1)	0.9 (0.0)	1.5 (0.1)	4.5 (0.2)	1.2 (0.1)	17.2 (0.8)	4.4 (0.2)	4.2 (0.3)	16.4 (0.4)	11.1 (2.2)	17.8 (0.5)	24.1 (1.1)	3.5 (0.3)	2.5 (0.3)	30.1 (2.2)	23.7 (0.9)	30.7 (0.6)			
16:1ω5	3.3 (0.2)	3.5 (0.1)	3.4 (0.1)	3.3 (0.2)	3.3 (0.2)	3.4 (0.1)	1.5 (0.1)	1.5 (0.0)	0.9 (0.0)	1.3 (0.0)	1.2 (0.1)	1.2 (0.1)	1.0 (0.1)	2.8 (0.5)	2.1 (0.2)	1.1 (0.2)	1.4 (0.3)	0.8 (0.1)			
16:1w11	1.5 (0.1)	1.6 (0.0)	1.6 (0.0)	1.5 (0.1)	1.4 (0.1)	1.5 (0.1)	1.6 (0.1)	1.2 (0.0)	0.9 (0.0)	1.3 (0.0)	1.2 (0.1)	1.2 (0.1)	2.9 (0.6)	1.4 (0.1)	1.4 (0.2)	4.2 (1.4)	2.7 (0.2)	3.5 (0.2)			
19:1ω8	5.2 (0.6)	4.1 (0.3)	3.3 (0.1)	5.8 (0.4)	4.4 (0.3)	5.0 (0.4)	4.6 (0.5)	4.5 (0.1)	4.1 (0.2)	4.5 (0.7)	6.1 (0.9)	5.0 (0.5)	3.6 (0.7)	15.9 (1.8)	10.3 (0.3)	3.0 (0.1)	3.4 (0.7)	3.3 (0.2)			

Supplementary Table 3. Total amount of phospholipid fatty acids (PLFAs; in μ mol C g⁻¹ soil C), and relative abundances of individual PLFAs (in % of total C in PLFAs), for topsoil, cryoturbated, and mineral subsoil horizons from a tundra ecosystem in the central Siberian Arctic. Samples were amended with glucose (Glc), amino acids (AA), cellulose (Cell) or protein (Prot), or left unamended (controls), and incubated for six days (glucose, amino acids and control Glc+AA) or ten days (cellulose, protein and control Cell+Prot). Values are means of five replicates, with standard errors in brackets. Bold values indicate a significant difference to the respective control at p < 0.05.

Topsoil									Cryoturbat	ed material	Mineral subsoil													
	Glc	AA	Cell	Prot	Glc	AA	Cell	Prot	Glc	AA	Cell	Prot	Glc	AA	Cell	Prot	Gle	AA	Cell	Prot	Glc	AA	Cell	Prot
Total	7.6 (2.4)	7.5 (0.8)	0.4 (0.1)	1.8 (0.5)					1.7 (0.2)	3.3 (2.0)	0.0 (0.0)	0.2 (0.1)					2.2 (0.8)	3.4 (0.9)	0.0 (0.0)	0.5 (0.0)				
i15:0	2.6 (0.3)	3.8 (0.3)	3.4 (0.9)	3.1 (0.6)	b	а	ab	ab	4.6 (0.4)	1.9 (0.2)	4.5 (1.1)	2.7 (0.7)	а	b	а	ab	0.6 (0.2)	0.7 (0.2)	1.8 (0.7)	0.8 (0.2)	а	а	а	а
a15:0	2.6 (0.4)	2.9 (0.3)	3.2 (0.9)	2.3 (0.5)	а	а	а	а	8.1 (0.6)	4.2 (0.4)	2.9 (0.7)	2.2 (0.6)	а	b	bc	c	3.9 (1.0)	4.2 (0.8)	0.6 (0.3)	1.0 (0.2)	а	а	b	b
i16:0	2.1 (0.1)	2.0 (0.1)	1.8 (0.3)	1.7 (0.1)	а	ab	ab	b	4.0 (0.0)	0.6 (0.0)	1.2 (0.1)	1.5 (0.2)	а	c	b	b	2.0 (0.1)	0.6 (0.0)	n.d.	1.3 (0.0)	а	c		b
i17:0	1.0 (0.0)	1.7 (0.1)	2.8 (0.1)	1.0 (0.1)	c	b	а	c	1.7 (0.0)	0.9 (0.0)	3.1 (0.2)	1.1 (0.2)	b	с	а	c	0.8 (0.0)	0.8 (0.1)	2.1 (1.0)	0.6 (0.1)	а	а	а	а
a17:0	1.2 (0.1)	2.3 (0.1)	3.1 (0.1)	1.5 (0.1)	d	b	а	с	2.3 (0.1)	0.7 (0.0)	0.9 (0.1)	1.0 (0.1)	а	с	bc	b	3.5 (0.3)	1.7 (0.2)	0.9 (0.5)	0.8 (0.1)	а	b	bc	с
16:1ω7	15.0 (0.8)	23.0 (1.0)	15.6 (0.8)	15.3 (1.1)	b	а	b	b	31.7 (0.4)	26.8 (0.8)	23.7 (0.7)	25.5 (2.2)	а	b	с	bc	28.7 (2.3)	31.2 (1.6)	42.6 (4.7)	15.2 (1.0)	а	а	а	b
18:1w7	26.7 (1.1)	26.5 (0.7)	15.7 (1.9)	30.8 (2.3)	а	а	b	а	14.4 (0.7)	18.9 (0.6)	11.6 (1.4)	20.8 (1.7)	b	а	b	а	18.2 (1.7)	15.4 (0.7)	6.0 (2.0)	21.7 (1.0)	ab	b	с	а
cy17:0	3.3 (0.1)	3.5 (0.2)	2.1 (0.1)	4.4 (0.2)	b	b	c	а	5.2 (0.1)	9.2 (0.3)	2.5 (0.4)	6.1 (0.3)	с	а	d	b	7.2 (0.3)	5.0 (0.2)	0.5 (0.2)	6.0 (0.1)	а	с	d	b
18:1ω9	14.8 (0.4)	9.9 (0.2)	4.4 (0.6)	8.5 (0.6)	а	b	с	b	5.2 (0.2)	18.8 (1.0)	8.2 (0.9)	11.7 (1.0)	с	а	b	b	11.1 (1.1)	22.2 (2.3)	6.9)2.5)	18.3 (0.7)	b	а	b	а
18:2ω6	6.2 (0.2)	3.2 (0.2)	0.4 (0.0)	1.9 (0.3)	а	b	d	с	0.2 (0.0)	n.d.	1.4 (0.2)	2.4 (0.2)	с		b	а	0.2 (0.1)	0.0 (0.0)	0.4 (0.3)	5.0 (0.3)	b	с	bc	а
16:0	17.2 (0.1)	16.3 (0.1)	25.5 (0.4)	21.2 (1.0)	с	d	а	b	18.2 (0.2)	15.8 (0.2)	24.2 (1.8)	19.5 (0.2)	b	с	а	а	19.5 (0.5)	15.3 (0.4)	31.0 (2.5)	20.6 (0.7)	b	с	а	b
17:0	0.5 (0.0)	0.5 (0.0)	0.3 (0.0)	1.0 (0.1)	b	b	с	а	0.6 (0.0)	0.4 (0.0)	0.7 (0.1)	0.7 (0.1)	а	b	а	ab	1.2 (0.2)	0.8 (0.1)	0.2 (0.1)	1.3 (0.2)	ab	b	с	а
18:0	1.5 (0.0)	0.8 (0.0)	1.6 (0.2)	1.9 (0.2)	а	b	а	а	1.1 (0.1)	0.4 (0.0)	2.1 (0.6)	2.8 (0.3)	b	с	abc	а	1.0 (0.1)	0.7 (0.1)	0.9 (0.3)	5.0 (0.5)	b	с	bc	а
20:0	0.1 (0.0)	0.0 (0.0)	0.4 (0.1)	0.2 (0.2)	b	b	а	а	0.2 (0.0)	0.0 (0.0)	0.3 (0.1)	0.6 (0.1)	b	с	ab	а	0.0 (0.0)	0.0 (0.0)	0.3 (0.2)	0.7 (0.0)	b	b	ab	а
16:1w5	2.2 (0.1)	1.7 (0.1)	16.6 (2.3)	1.9 (0.2)	b	с	а	bc	1.4 (0.0)	0.8 (0.0)	11.7 (1.5)	0.8 (0.0)	b	с	а	с	1.2 (0.1)	1.0 (0.1)	1.6 (0.8)	0.2 (0.1)	а	а	ab	b
16:1 ω 11	1.0 (0.0)	0.8 (0.0)	2.2 (0.2)	0.9 (0.1)	b	с	а	bc	0.7 (0.0)	0.3 (0.0)	1.2 (0.2)	0.1 (0.0)	b	с	а	d	0.5 (0.0)	0.3 (0.0)	4.3 (1.3)	0.2 (0.1)	а	b	ab	ab
19:1 ω 8	2.1 (0.2)	1.1 (0.1)	1.0 (0.1)	2.6 (0.4)	а	b	b	а	0.5 (0.1)	0.3 (0.0)	0.0 (0.0)	0.6 (0.1)	а	а	b	а	0.3 (0.1)	0.2 (0.1)	n.d.	1.3 (0.2)	b	b		а

Supplementary Table 4. Total amount of substrate-derived C in phospholipid fatty acids (PLFAs; in μ mol C g⁻¹ soil C), and incorporation into individual PLFAs (in % of total substrate-derived C in PLFAs), for topsoil, cryoturbated, and mineral subsoil horizons from a tundra ecosystem in the central Siberian Arctic. Samples were amended with glucose (Glc), amino acids (AA), cellulose (Cell) or protein (Prot), and incubated for six days (glucose and amino acids) or ten days (cellulose and protein). Values are means of five replicates, with standard errors in brackets. Different letters indicate significant differences between substrates at p < 0.05.